Slides used for illustrations in the lectures will be posted here, but do not represent a complete set of notes. Much of the material is presented on the blackboard.
 
Chapter 1 Basic Concepts: Current, Voltage, Resistance, Ohm's Law pdf (updated Jan 17, 2019)
 
1) Current
     a) definition, b) current density, c) drift speed, d) conservation of charge and Kirchhoff's junction rule
 
2) Voltage
     a) seat of emf, b) conservation of energy and Kirchhoff's loop rule
 
3) Power
 
4) Resistors
     a) Ohm's law and resistance, b) resistivity, c) conductivity, d) temperature dependence
 
5) Resistor circuits
     a) simple circuit, b) application of loop rule (polarities), c) resistors in series and voltage divider, d) resistors in parallel
 
6) Internal resistance of a battery
 
7) Measuring current and voltage (meters)
     a) voltmeter, b) ammeter, c) galvonometer, d) design of an analog ammeter, e) design of an analog voltmeter
 
8) ground, open circuits and short circuits
 
9) Equivalent circuit theorems
     a) Thevenin's theorem and maximum power transfer, b) Norton's theorem
 
10) Circuit analysis using Kirchhoff's rules
     a) standard method, b) mesh method
 
11) ac circuits
     a) dc, b) sinusoidal signals, c) RMS value of sinusoidal signals, d) average power in ac (resistor) circuit, e) power factor
 

Chapter 2 Time varying signals; capacitors and inductors
 
1) Capacitors, transient RC circuit
     a) about capacitors, b) capacitors in series and parallel, c) charging, d) discharging, e) energy stored in capacitors
 
2) Inductors, transient RL circuit
     a) about inductors, b) "charging", c) "discharging", d) series and parallel inductors, e) energy stored in inductors
 
3) Capacitor in an ac (sinusoidal) circuit; RC circuit
     a) capacitive reactance, b) current in an RC circuit, c) high-pass filter d) low-pass filter e) differentiating circuit, f) integrating circuit
 
4) Inductor in an ac circuit; LRC circuit
     a) inductive reactance, b) current in an LR circuit, c) current in an LRC circuit
 
5) Complex impedance and complex circuit analysis
     a) complex numbers, b) complex impedance in LRC circuit, c) Ohm's law for ac
 
6) Gain in dB and RC filters pdf (updated 10 Feb 2019)
 
              pdf (sections 7 - 9)
 
7) Series LRC resonance circuit
     a) resonance; b) voltage across resistor; c) Q-factor; d) voltage across capacitor; e) voltage across inductor; f) notch filter
     g) parallel LRC resonance circuit
 
8) LC oscillations
 
9) Transient response of RLC circuit (damped harmonic oscillator)
 
10) Complex impedance matching
 

Chapter 3 Band theory and diode circuits pdf
 
1) Non-linear components
     a) current-voltage characteristics; b) the ideal rectifier
2) The pn junction diode
     a) IV characteristics; b) symbol; c) equivalent circuits; d) Schockley diode equation; e) load line analysis,
 
3) Rectifier circuits
     a) half-wave rectifier; b) center-tapped full wave rectifier; c) bridge rectifier
 
4) Capacitor filters
     a) RC filter; b) L-section filter
 
5) AM diode detector
 
6) Voltage doubler / multiplier
     a) doubler;  b) Cockroft Walton generator
 
7) Semiconductors
 
8) Energy Bands
 
9) Electrons and holes
 
10) Doping; extrinsic and intrinsic semiconductors
     • n-type, p-type,
 
11) pn junction
     • band diagram, • unbiased, reverse biased, forward biased, • derivation of the Schockley diode equation, • minority carrier injection
 
12) Breakdown, Zener diodes
 
13) Zener diode regulator
 
14) Tunnel diode
 
15) Silicone controlled rectifier (SCR)
 
16) Photon emission and absorption
     • LED, • photodiode
 
Chapter 4 Bipolar transistor
 
1) Schematic
 
2) Biasing (1)
     • band diagram, • alpha and beta
 
3) Amplification
 
4) Transistor characteristics
 
5) Biasing (2)
     a) base-collector, b) base emitter, c) H-biasing, load line, operating point
 
6) Amplifier characteristics
     a) open loop gain, b) current gain, c) input impedance, d) output impedance
 
7) ac equivalent circuit for bipolar junction transistor (T-equivalent circuit)
 
8) Common Emitter Amplifier (with coupling capacitors and with and without an emitter capacitor)
     a)  voltage gain, b) input impedance, c) output impedance, d) current gain
 
10) Common Collector Amplifier (Emitter follower)
     a) voltage gain, b) input impedance, c) output impedance
 
11) Frequency response
    
 
Chapter 5 Operational Amplifiers
 
sections 1 - 4 and 7 - 11 pdf
 
1) Negative voltage feedback
     a) closed loop gain, b) input impedance, c) output impedance, d) bandwidth, e) examples (CE amp, emitter follower)
 
2) Difference amplifier (transistor)
 
3) Ideal operational amplifier
 
4) Non-inverting amp
     - special case: voltage follower (buffer)
 
5) Inverting amplifier
 
6) Mathematical operations
     a) summing amp, b) integrator, c) differentiator
 
7) Ideal diode, rectifier
 
8) Comparator
 
9) Practical difference amplifier
 
10) Practical op amps
     a) power supply, b) null, c) bias current, d) frequency dependence of gain
 

Chapter 6 Introduction to Digital Electronics pdf (sections 2 to 9) (updated April 3, 1:30 pm)
 
1) Transistor as a switch
 
2) Number systems
     a) decimal, b) base B, c) binary, d) octal, e) hexadecimal
 
3) Base conversion
     a) B to decimal, b) B to B' (octal / binary; hex / binary)
 
4) Boolean algebra
     a) logical AND, b) OR, c) NOT
     d) theorems: (i) commutative, (ii) associative, (iii) distributive, (iv) De Morgan's theorem
 
5) Binary gates
     a) OR, b) AND, c) NOT, d) NOR, e) NAND, f) XOR, g) Exclusive NOR
 
6) TTL logic
     a) two emitter transistor, b) transistor switch (NOT gate), c) TTL NAND gate d) TTL logic
 
7) Digital addition
     a) binary addition, c) half-adder, c) full adder, d) parallel addition
 
8) Digital subtraction
     a) ones' complement, b) two's complement, c) two's complement as negative, d) subtracting using 2's complement,
     e) positive and negative representations
 
9) Flip flops
     a) RS flip flop (NOR gates); b) RS flip flop (NAND gates); c) clocked RS flip flop; d) D flip flop
Lectures
. 
Phys2610 Circuit Theory
& Introductory Electronics
Winter 2019