Chapter 5

Operational Amplifiers

An operational amplifier (often op-amp or opamp) is a DC-coupled

 high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output

The 741 Op Amp was first introduced in 1968 and quickly became popular due to its ease of use.

- 1 MHz Bandwidth
- 0.5V/us Slew Rate
- 1mV Input Offset Voltage
- $200 \mathrm{~V} / \mathrm{mV}$ Gain
- 90dB CMRR
- 15V Supply voltage
- Large Input Voltage Range
- No Latch-up
- High Gain
- Short-circuit Protection
- No Frequency Compensation Required.

The internal schematic diagram for a model 741 op-amp is shown in Figure below.

1) Negative voltage feedback

$$
\begin{aligned}
& v_{\text {out }}= a_{0} v_{1} \\
&\left|a_{o}\right| \gg 1 \\
&|\beta|<1 \quad \text { (attenuation) } \\
& a_{o} \beta<0 \text { negative feedback }
\end{aligned}
$$

(a) Closed loop gain

$$
\left.\begin{array}{l}
v_{\text {out }}=a_{0} v_{1} \\
v_{1}=v_{\text {in }}+\beta v_{\text {out }}
\end{array}\right\} \quad v_{\text {out }}=a_{o}\left(v_{\text {in }}+\beta v_{\text {out }}\right) \underset{\div v_{\text {in }}}{ } \frac{v_{\text {out }}}{v_{\text {in }}}=a_{o}\left(1+\beta \frac{v_{\text {out }}}{v_{\text {in }}}\right)
$$

$$
\frac{v_{o u t}}{v_{i n}}=a_{o}\left(1+\beta \frac{v_{o u t}}{v_{i n}}\right)
$$

but the closed loop gain (or gain of the system) is

$$
a^{\prime}=\frac{v_{\text {out }}}{v_{\text {in }}} \quad \text { so } \quad a^{\prime}=a_{o}+\beta a_{o} a^{\prime}
$$

or $\quad a^{\prime}=\frac{a_{o}}{1-\beta a_{o}}$

- If $\beta a_{o} \rightarrow 1$ system unstable (oscillates)
- If $\beta a_{o}<0,\left|a^{\prime}\right|<\left|a_{o}\right|$
- If $\left|\beta a_{o}\right| \gg 1, \quad a^{\prime} \cong \frac{-1}{\beta} \quad$ indep't of a_{o}

Example

$$
\beta=\frac{-R_{1}}{R_{1}+R_{2}} \quad a^{\prime}=\frac{R_{1}+R_{2}}{R_{1}}
$$

Consider $\quad \beta=-1 \% \quad a^{\prime} \cong \frac{-1}{\beta}=100$

a_{o}	$a^{\prime}=\frac{a_{o}}{\left(1-\beta a_{o}\right)}$
5000	98.3
10,000	99.0
20,000	99.6
10^{5}	99.9

10% fluctuation in a_{0} results in < one part in 10^{4} change in a^{\prime}
b) Input impedance $\quad r_{i n}^{\prime}=\frac{v_{i n}}{i_{i n}}$

$$
\begin{aligned}
& v_{1}=v_{i n}+\beta v_{\text {out }} \\
& \text { but } \quad v_{1}=i_{i n} r_{\text {in }} \\
& \text { and } v_{\text {out }}=\frac{a_{o}}{1-a_{o} \beta} v_{i n} \\
& \text { so } \quad v_{i n}=i_{i n} r_{i n}-\frac{\beta a_{o}}{1-\beta a_{o}} v_{i n}
\end{aligned}
$$

Dividing by $i_{i n}$ gives $\quad r_{i n}{ }^{\prime}=r_{i n}-\frac{\beta a_{o}}{1-\beta a_{o}} r_{i n}{ }^{\prime}$
and solving for $r_{i n}{ }^{\prime}$

$$
r_{i n}^{\prime}=\left(1-\beta a_{o}\right) r_{i n}
$$

Input impedance is increased by $\left|\beta a_{o}\right|$
c) Output impedance

$$
r_{o u t}^{\prime}=\frac{v_{\text {out }}(\text { open })}{i_{\text {out }}(\text { short })}
$$

$$
\begin{aligned}
& v_{\text {out }}(\text { open })=\frac{a_{o}}{1-\beta a_{o}} v_{i} \\
& i_{\text {out }}(\text { short })=\frac{a_{o} v_{1}(\text { short })}{r_{\text {out }}}
\end{aligned}
$$

but when the output is zero,

$$
v_{1}=v_{i n}+\beta(0)=v_{i n}
$$

$$
\text { so, } \quad r_{o u t}^{\prime}=\frac{r_{o u}}{1-\beta a_{o}}
$$

Output impedance reduced by $\left|\beta a_{o}\right|$
d) Bandwidth

Negative feedback increases bandwidth
d) Examples offeedback

CE amplifier:
Recall, $\quad v_{\text {out }}=-i_{c} R_{C} \quad i_{c}=\beta_{t} i_{b} \quad v_{b e}=i_{b} r_{b e}$ so the gain of the transistor (for signal across be) is

$$
a_{o}=\frac{v_{\text {out }}}{v_{b e}}=-\frac{\beta_{t} R_{c}}{r_{b e}} \quad\left|a_{o}\right| \gg 1
$$

$$
\text { but } \quad v_{b e}=v_{\text {in }}-i_{c} R_{E}=v_{\text {in }}+\left(\frac{R_{E}}{R_{C}}\right) v_{\text {out }}
$$

We had $\quad v_{1}=v_{\text {in }}+\beta v_{\text {out }}$ Here $\beta=\frac{R_{E}}{R_{C}} \quad \begin{aligned} & \text { is positive, but } a_{0} \text { is negative, } \\ & \text { so feedback is negative }\end{aligned}$
so $\quad a^{\prime}=\frac{-1}{\beta}=\frac{-R_{C}}{R_{E}}$
as obtained from direct analysis of the equivalent circuit

Emitter follower:

$$
\text { Here, } v_{\text {out }}=i_{e} R_{E} \quad i_{e}=\beta_{t} i_{b} \quad v_{b e}=i_{b} r_{b e}
$$

so the gain of the transistor (for signal across be) is

$$
\begin{aligned}
& \qquad a_{o}=\frac{v_{\text {out }}}{v_{b e}}=\frac{\beta_{t} R_{E}}{r_{b e}} \gg 1 \\
& \text { but } \quad v_{b e}=v_{\text {in }}-i_{e} R_{E}=v_{\text {in }}-v_{\text {out }}
\end{aligned}
$$

We had $\quad v_{1}=v_{\text {in }}+\beta v_{\text {out }} \quad$ Here $\quad \beta=-1 \quad \begin{aligned} & \text { is negative and } a_{0} \text { is positive, } \\ & \text { so feedback is negative }\end{aligned}$

$$
a^{\prime}=\frac{-1}{\beta}=1 \quad \text { as obtained from direct analysis of the equivalent circuit }
$$

2) Difference amplifier

$$
v_{\text {out } 1}=a\left(v_{1}-v^{\prime}\right) \quad v_{\text {out } 2}=a\left(v_{2}-v^{\prime}\right)
$$

a represents the transistor gain of be signal

$$
\begin{aligned}
& v_{\text {out }}=v_{\text {out } 2}-v_{\text {out } 1}=a\left(v_{2}-v^{\prime}-v_{1}+v^{\prime}\right) \\
& v_{\text {out }}=a\left(v_{2}-v_{1}\right)
\end{aligned}
$$

- identical transistors
- inputs at dc ground; no coupling capacitors
- difference amplified $->$ common signal rejected
- R_{E} does not reduce gain

The internal schematic diagram for a model 741 op-amp is shown in Figure below.

3) Ideal operational amplifier

$\mathrm{V}_{\text {st/- }}$ omitted in most circuit diagrams
$a_{o}=$ differential (open loop) gain
$v_{\text {out }}$ in phase with v_{+}(non-inverting input) $v_{\text {out }}$ out of phase with v - (inverting input)

$$
v_{\text {out }}=a_{o}\left(v_{+}-v_{-}\right)
$$

Equivalent circuit

	Ideal	Typical
a_{o}	∞	$10^{5}-10^{9}$
a_{CM}	0	<1
CMRR	∞	$10^{5}-10^{12}$
$r_{\text {in }}$	∞	$\mathrm{M} \Omega->\mathrm{G} \Omega(\mathrm{FET})$
$r_{\text {out }}$	0	$100-1000 \Omega$

Rules (approximations) for analyzing op amp circuits

1. Current into either input is zero
2. Differential voltage is zero

$$
v_{+} \cong v_{-}
$$

4) Non-inverting amplifier
a) Voltage gain

Rule 1 $\rightarrow v_{1}=\frac{v_{\text {out }} R_{1}}{R_{1}+R_{2}}$
(current equal in both resistors)

Rule $2 \rightarrow v_{1}=v_{i n}$
so $\quad v_{\text {in }}=\frac{v_{\text {out }} R_{1}}{R_{1}+R_{2}}$

$$
a=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{R_{1}+R_{2}}{R_{1}}
$$

$$
\left(=\frac{-1}{\beta}\right)
$$

A less approximate analysis:

Still assume $i_{2} \gg i^{\prime}$, so $i_{1}=i_{2}$

$$
\text { so } \frac{v_{\text {out }}-v_{1}}{R_{2}}=\frac{v_{1}}{R_{1}}
$$

$$
\text { but } v_{\text {out }}=a_{o}\left(v_{i n}-v_{1}\right) \quad \rightarrow-v_{1}=\frac{v_{\text {out }}}{a_{o}}-v_{\text {in }}
$$

Substitute and divide through by $v_{i n}$, to give: $\quad \frac{a+\frac{a}{a_{o}}-1}{R_{2}}=\frac{-\frac{a}{a_{o}}+1}{R_{1}}$

Solve for

$$
a=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{a_{o}\left(R_{1}+R_{2}\right)}{R_{1}\left(a_{o}+1\right)+R_{2}} \quad \text { For } a_{o} \gg 1, \quad a=\frac{R_{1}+R_{2}}{R_{1}}
$$

b) Input Impedance

Recall, for negative feedback,

$$
\begin{gathered}
r_{i n}^{\prime}=\left(1-\beta a_{o}\right) r_{i n} \\
r_{i n}^{\prime} \cong-\beta a_{o} r_{i n}
\end{gathered}
$$

- effectively infinite

$$
\beta=-\frac{R_{1}}{R_{1}+R_{2}}
$$

c) Output Impedance

Recall, for negative feedback,

$$
\begin{aligned}
& r_{\text {out }}^{\prime \prime}=\frac{r_{\text {out }}}{1-\beta a_{o}} \\
& r_{\text {out }}^{\prime} \cong-\frac{r_{\text {out }}}{\beta a_{o}} \quad \sim 1 \text { or a few } \Omega
\end{aligned}
$$

$$
\beta=-\frac{R_{1}}{R_{1}+R_{2}}
$$

d) Summary non-inverting amplifier

$$
a=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{R_{1}+R_{2}}{R_{1}}
$$

typically 1 to 100

$$
r_{i n}^{\prime} \cong-\beta a_{o} r_{i n}
$$

v. high

$$
r_{\text {out }}^{\prime} \cong-\frac{r_{\text {out }}}{\beta a_{o}}
$$

v. low

d) Voltage follower

$$
v_{o u t}=v_{\text {in }} \rightarrow a=1
$$

$$
\begin{array}{ll}
R_{1}=\infty, \quad R_{2}=0 & \rightarrow a=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{R_{1}+R_{2}}{R_{1}}=1 \\
\beta=-1 & \rightarrow r_{\text {in }}^{\prime} \cong-\beta a_{o} r_{\text {in }}=a_{o} r_{\text {in }} \\
& \rightarrow r_{\text {out }}^{\prime} \cong-\frac{r_{\text {out }}}{\beta a_{o}}=\frac{r_{\text {out }}}{a_{o}}
\end{array}
$$

Buffer:

- unity gain
- high input impedance; does not load earlier circuit
- low output impedance;
- later circuit does not affect output

7) Ideal Rectifier

(a) Ideal diode (half-wave rectifier)

- $v_{\text {in }}>0 \rightarrow v_{\text {out }}>V_{t}$
\rightarrow neg. feedback
$\rightarrow \quad v_{\text {out }}=v_{\text {in }}$

- $v_{\text {in }}<0 \rightarrow v_{\text {out }}<V_{t}$
\rightarrow no feedback
$\rightarrow \quad v_{\text {out }}=0$

(b) Ideal full-wave rectifier

- positive input $\rightarrow v_{1}<0 \quad \rightarrow \quad D_{1}$ on, D_{2} off

V

- negative input $\quad \rightarrow v_{1}>0 \quad \rightarrow \quad D_{1}$ off D_{2} on

8) Comparator (discriminator)

When input exceeds a reference (or threshold), output toggles to saturation

A discriminator threshold is set above noise pulses, but below signal pulses. (Output pulse width is fixed by additional circuitry.)

9) Difference Amplifier

(a) Simple difference amplifier (finite gain using feedback)

$$
\begin{gathered}
v_{\text {out }}=\frac{R_{2}}{R_{1}}\left(v_{B}-v_{A}\right) \\
\text { if } \quad \frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}
\end{gathered}
$$

Provides noise rejection (common mode) for weak signals transmitted over long cables. (e.g.)
(b) Instrumentation amplifier

$$
a=\frac{v_{\text {out }}}{v_{A}-v_{B}}=-\frac{R_{2}}{R_{1}}\left(1+\frac{2 R}{R_{6}}\right)
$$

$$
\text { if } \quad R_{5}=R_{7}=R
$$

$$
\text { and } \frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}
$$

Difference amplifier with high input impedance

- both inputs are essentially buffered by voltage followers
- R_{8} can be arbitrarily high (even infinite)

11) Practical op amp considerations (details in the text)

(a) Offset Null

Asymmetries between the internal circuits $==>$ output saturates for both inputs grounded.

- circuit provides for null adjustment on the pinouts

The internal schematic diagram for a model 741 op -amp is shown in Figure below

(b) Bias currents

Small bias currents ($<500 \mathrm{nA}$) must flow into the op amp inputs, so the positive input cannot be grounded in the inverting amplifier. A compensating resistor approximately equal to the parallel combination of the input and feedback resistors should be used. Usually, this is very close to the input resistance.

$$
R=R_{1} / / R_{f} \cong R_{1}
$$

Similar considerations for the non-inverting amplifier suggest a compensating resistor at the non-inverting input:

$$
R=R_{1} / / R_{f} \cong R_{1}
$$

(c) Practical integrator

Because of drift or assymetry in the op amps, the capacitor in an integrator gradually acquires a dc charge, eventually saturating when the voltage reaches $V_{c c}$. This can be prevented by connecting a resistor across the capacitor which is large enough so ac operation is not appreciably affected, but small enough to prevent dc charging.

(d) Frequency response

Figure 6.17 Frequency response of the $741 \mathrm{op}-\mathrm{amp}$.

Open loop gain drops from about 6 Hz .

When the infinite gain approximation loses validity, the closed loop gain will also drop according to the more accurate gain equation:

$$
a=\frac{-a_{o} R_{2}}{R_{1}+R_{2}+a_{o} R_{1}}
$$

