2) Base conversion

a) B to decimal

$$
a_{m} \cdots a_{2} a_{1} a_{0}=\sum \underbrace{a_{i} B^{i}}
$$

$$
243_{6}=2 \times 6^{2}+4 \times 6^{1}+3 \times 6^{0}=99_{10}
$$

expressed in decimal
b) B to B^{\prime}

$$
\left(a_{m} \cdots a_{2} a_{1} a_{0}\right)_{B}=\sum \underbrace{a_{i} B^{i}}
$$

expressed in base B'
e.g. decimal to binary:

$$
\text { check: } 1+0+4+8+0+32+64+128+256=493
$$

$$
\begin{aligned}
& 493_{10}=100 \times(1010)^{10}+1001 \times(1010)^{1}+11 \times(1010)^{0} \\
& \begin{array}{rr}
1010 \\
1010 & 1001 \\
0000 & 1010 \\
1000 & 10000 \\
0000 & 0000 \\
\frac{1010}{1100100} & \underline{1001} \\
\hline
\end{array} \\
& 493_{10}=110010000+1011010+11=111101101
\end{aligned}
$$

LSB $\bmod (x, B)$

$$
\begin{aligned}
& \bmod \left(\operatorname{int}\left(\frac{x}{B}\right), B\right) \\
& \bmod \left(\operatorname{int}\left(\frac{\operatorname{int}\left(\frac{x}{B}\right)}{B}\right), B\right)
\end{aligned}
$$

$493_{10}=111101101_{2}$

$$
\begin{array}{rr}
493 / 2=246 & \text { rem } 1 \\
246 / 2=123 & \text { rem } 0 \\
123 / 2=61 & \text { rem } 1 \\
61 / 2=30 & \text { rem } 1 \\
30 / 2=15 & \text { rem } 0 \\
15 / 2=7 & \text { rem } 1 \\
7 / 2=3 & \text { rem } 1 \\
3 / 2=1 & \text { rem } 1 \\
1 / 2=0 & \text { rem } 1
\end{array}
$$

MSB
Octal \longrightarrow Binary
$a_{m} \cdots a_{1} a_{0}=\sum a_{i} B^{i}=\sum \stackrel{8}{a_{i}(1000)^{i}}$
$372_{8}=(011)(1000)^{\frac{10}{2}}+111(1000)^{1}+010$

011000000
111000
010
011111010
3

Each octal digit can be replaced by the equivalent 3 -bit binary number.

Hexadecimal \longleftrightarrow Binary

$$
a_{m} \cdots a_{1} a_{0}=\sum a_{i} B^{i}=\sum a_{i}(10000)^{i}
$$

$$
\$ D 49=(1101)(10000)^{10}+0100(10000)^{1}+1001
$$

> | 1101 | 0000 | 0000 |
| :---: | :---: | :---: |
| | 0100 | 0000 |
| | | 1010 |
| 1101 | 0100 | 1001 |
| D | 4 | 9 |

Each hex digit can be replaced by the equivalent 4-bit binary number.

Decimal $->$ hex $->$ binary

$$
\text { Recall } \quad 493_{10}=111101101_{2}
$$

$$
\begin{aligned}
& 493 / 16=30 \text { rem=13 or D } \\
& 30 / 16=1 \text { rem=14 or E } \\
& 1 / 16=0 \text { rem=1 } \\
& \\
& \$ 1 \mathrm{ED}=\begin{array}{rl}
1 & 1110 \\
1 & \mathrm{E}
\end{array} \mathrm{D}
\end{aligned}
$$

3) Boolean Algebra

Algebra of two-valued variables (T, F or 1,0) with 3 fundamental operators: logical AND, OR, NOT
a) logical AND

Truth table for $A \cdot B$

A	B	$A \cdot B$
0	0	0
0	1	0
1	0	0
1	1	1

symbol.

Other symbols: $\wedge \cap$
or no symbol: $A \cdot B=A B$

Lamp is on if $\mathrm{S} 1 \cdot \mathrm{~S} 2=1$
b) logical $O R$
(inclusive $O R$) symbol +

Truth table for $A+B$

A	B	$A+B$
0	0	0
0	1	1
1	0	1
1	1	1

Lamp is on if $\mathrm{A}+\mathrm{B}=1$

c) logical NOT (complement)

 symbol \bar{A}Truth table for \bar{A}

Other symbols: $\neg \quad \sim$

$$
\begin{aligned}
& \overline{1}=0 \\
& \overline{0}=1
\end{aligned}
$$

d) Identities

$$
\left.\begin{array}{lllll}
A \cdot A=A & 1 \cdot 1=1 & 0 \cdot 0=0 & A+A=A & 1+1=1
\end{array}\right) 0+0=0
$$

e) Theorems

(i) Commutative

$$
\begin{aligned}
& A \cdot B=B \cdot A \\
& A+B=B+A
\end{aligned}
$$

A	B	$A+B$
0	0	0
0	1	1
1	0	1
1	1	1

A	B	$A \cdot B$
0	0	0
0	1	0
1	0	0
1	1	1

(ii) Associative

$$
\begin{aligned}
& (A \cdot B) \cdot C=A \cdot(B \cdot C) \\
& (A+B)+C=A+(B+C) \longrightarrow
\end{aligned} \begin{array}{|c|c|c|c|c|c|c|c|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{~A}+\mathrm{B} & (\mathrm{~A}+\mathrm{B})+\mathrm{C} & (\mathrm{~B}+\mathrm{C}) & \mathrm{A}+(\mathrm{B}+\mathrm{C}) \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
\hline 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

(iii) Distributive

$$
x \cdot(y+z)=x \cdot y+x \cdot z
$$

TABLE 6 Verifying One of the Distributive Laws.

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{y}+\boldsymbol{z}$	$\boldsymbol{x y}$	$\boldsymbol{x} z$	$\boldsymbol{x}(\boldsymbol{y}+z)$	$\boldsymbol{x} \boldsymbol{y}+\boldsymbol{x} \boldsymbol{z}$
1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	1
1	0	0	0	0	0	0	1
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

$$
\begin{aligned}
(A+B) \cdot(A+C)=A+B \cdot C \quad(A+B) \cdot(A+C) & =(A+B) \cdot A+(A+B) \cdot C \\
& =A \cdot A+B \cdot A+A \cdot C+B \cdot C \\
& =A(1+B+C)+B \cdot C \\
& =A+B \cdot C
\end{aligned}
$$

Any binary expression is unchanged if

1) complement all variables
2) replace ORs with ANDs
3) replace ANDs with ORs
4) complement entire expression

$$
\begin{array}{ll}
\text { e.g. } & A \cdot B=\overline{\bar{A}+\bar{B}} \\
A+B=\overline{\bar{A} \cdot \bar{B}}
\end{array}
$$

$$
\left.\begin{array}{l}
\overline{A+B}=\overline{\overline{\bar{A} \cdot \bar{B}}}=\bar{A} \cdot \bar{B} \\
\overline{A \cdot B}=\overline{\overline{\bar{A}+\bar{B}}}=\bar{A}+\bar{B}
\end{array}\right\}
$$

break the line change the sign

Proof of two De Morgan relations

$$
\overline{A+B}=\bar{A} \cdot \bar{B}
$$

$$
\overline{A \cdot B}=\bar{A}+\bar{B}
$$

A	B	$A+B$	$\overline{A+B}$	\bar{A}	\bar{B}	$\bar{A} \cdot \bar{B}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

A	B	$A \cdot B$	$\overline{A+B}$	\bar{A}	\bar{B}	$\bar{A}+\bar{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

4) Binary gates

a) NOT

A	\bar{A}
0	1
1	0

positive logic:

$$
\begin{aligned}
& 0 \rightarrow>\sim 0 \mathrm{~V} \\
& 1->\sim 5 \mathrm{~V}
\end{aligned}
$$

If the input is high, the transistor turns on, grounding the output.
If the input is low, the transistor turns off, leaving the output high.
b) $O R$

A	B	$A+B$
0	0	0
0	1	1
1	0	1
1	1	1

V_{A}	V_{B}	V_{F}
0	0	0
0	5 V	4.4 V
5 V	0	4.4 V
5 V	5 V	4.4 V

positive logic:
$0->0 \mathrm{~V}$
$1 \rightarrow>5 \mathrm{~V}$

A high on either input turns on the respective diode, raising the output high.
If both inputs are low, the diodes are both off, so no current flows, and the output is low.

Transistor OR Gate

If either transistor turns on (i.e. if either A or B is high) then the output is tied to $\mathrm{Vcc}=6 \mathrm{~V}$.

If both transistors are off (i.e. if both A and B are low) then there is no current through R , so the output is low (\sim zero).
extends easily to multiple inputs:

c) $A N D$

Input		Output
A	B	$\mathrm{F}=\mathrm{A} . \mathrm{B}$
0	0	0
0	1	0
1	0	0
1	1	1

Diode AND Gate

V_{A}	V_{B}	V_{F}
0	0	.6 V
0	5 V	.6 V
5 V	0	.6 V
5 V	5 V	5 V

positive logic: $0 \rightarrow>\sim 0 \mathrm{~V}$ (<~ .6V) $1 \rightarrow \sim 5 \mathrm{~V}$

A low on either input turns on the respective diode, bringing the output to low.
If both inputs are high, the diodes are both off, so no current flows, and the output is high.

Transistor AND Gate

If both transistor turn on (i.e. if both A and B are high) then the output is tied to Vcc (high).

If either transistors is off (i.e. if either A or B is low) then there is no current through R , so the output is low (\sim zero).
extends easily to multiple inputs:

d) NOR (NOT OR)

V_{A}	V_{B}	V_{F}
0	0	5 V
0	5 V	0.1 V
5 V	0	0.1 V
5 V	5 V	0.1 V

If either input is high, the respective transistor turns on, and the output is switched to ground (low).

If both inputs are low, both transistors turns off, so no current flowa and the output is high.

NOR gate as universal gate:

$$
\text { NOT } \quad \bar{A}=\overline{A+A}
$$

OR
$A+B=\overline{\overline{A+B}}$

AND $A \cdot B=\overline{\bar{A}+\bar{B}}$

e) NAND (NOT AND)

A	B	Out
0	0	1
0	1	1
1	0	1
1	1	0

V_{A}	V_{B}	V_{F}
0	0	5 V
0	5 V	5 V
5 V	0	5 V
5 V	5 V	0.1 V

If either input is low, the respective transistor turns off, so no current flows, and the output is high.

If both inputs are high, both transistors turns on, and the output is switched to ground (low).

NAND gate as universal gate:

NOT $\quad \bar{A}=\overline{A \cdot A}$

OR

$$
A+B=\overline{\bar{A} \cdot \bar{B}}
$$

AND $\quad A \cdot B=\overline{\overline{A \cdot B}}$

f) Exclusive OR (XOR)

check:

A	B	$A+B$	$A \cdot B$	$\overline{A \cdot B}$	$(A+B) \cdot(\overline{A \cdot B})$
0	0	0	0	1	0
0	1	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	0

A	B	$F=A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

- either, but not both $A \oplus B=(A+B) \cdot(\overline{A \cdot B})$

$$
\begin{array}{rlr}
A \oplus B & =(A+B) \cdot(\overline{A \cdot B}) \\
& =A \cdot \overline{A \cdot B}+B \cdot \overline{A \cdot B} & \quad \text { dist. } \\
& =A \cdot(\bar{A}+\bar{B})+B \cdot(\bar{A}+\bar{B}) & \text { De Morgan } \\
& =0+A \cdot \bar{B}+B \cdot \bar{A}+0 & A \cdot \bar{A}=0
\end{array}
$$

$$
A \oplus B=A \cdot \bar{B}+B \cdot \bar{A}
$$

$A \oplus B=A \cdot \bar{B}+B \cdot \bar{A}$

- can be constructed with all NOR or all NAND gates.

Controllable inverter:

g) Exclusive NOR

A	B	$A \oplus B$	$\overline{A \oplus B}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

$$
\begin{aligned}
\overline{A \oplus B} & =\overline{A \cdot \bar{B}+\bar{A} \cdot B} \\
& =\overline{A \cdot \bar{B} \cdot \bar{A} \cdot B} \\
& =(\bar{A}+B) \cdot(A+\bar{B}) \\
& =\bar{A} \cdot A+\bar{A} \cdot \bar{B}+B \cdot A+B \cdot \bar{B}
\end{aligned}
$$

$$
\overline{A \oplus B}=\bar{A} \cdot \bar{B}+A \cdot B
$$

De Morgan

De Morgan
dist.
$A \cdot A=0$

$$
A \oplus B=A \cdot B+A \cdot B
$$

6) TTL Logic

Transistor - transistor logic

TTL: transistor used for logic and amplification
$\begin{array}{ll}\text { Others: } & \text { DL - diode logic } \\ & \text { RTL - resistor transistor logic } \\ & \text { DTL - diode transistor logic) }\end{array}$
a) two emitter transistor

If either b-e junction is on:

- minority carriers injected into base
- transistor on
- $\mathrm{V}_{\text {CE }}$ low

b) basic TTL NAND gate

- If A and B are high VT1 is off
- Then Q1 is high
- Otherwise VT1 is on
- and Q1 is low
- VT2 is the familiar NOT gate

High output impedance (R2):

- slow to turn off (go high)
- output current limited
- reducing R2 consumes power
c) TTL NAND gate with totem pole output stage

- Output signal amplified for more speed
- Output load capacitance is charged and discharged through active transistors instead of resistors

Q2 off $->$ Vc2 high $\rightarrow>$ Q4 on $->$ Ve4 high (through R3; faster) $\rightarrow>$ OUT high
$\rightarrow \mathrm{Vb} 3$ low $->\mathrm{Q} 3$ off $->$ leaves OUT high

Q 2 on $\rightarrow \mathrm{Q} 3$ on $\rightarrow \mathrm{Vc} 3 \sim .1 \mathrm{~V}$

$$
\rightarrow>\mathrm{Vb} 3=.6 \mathrm{~V} \quad->\mathrm{Vc} 2 \sim .7 \mathrm{~V} \quad \rightarrow \mathrm{Q} 4 \text { off }
$$

(because of diode)

d) TTL logic

logic $0:<0.8 \mathrm{~V}$; ideally 0 ; typically 0.1
logic $1:>2.0 \mathrm{~V}$; ideally 5; typically 3.6
regular TTL: 7400
Schottky TTL: 74S00

Schottky diode: semiconductor - metal - fast, lower power
low power Schottky: 74LS00

7) Digital Addition

a) Binary addition

Define addition for 2 1-bit variables:

A	B	Sum $A \oplus B$	Carry $A \bullet B$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Define addition for
3 1-bit variables:

A	B	C	$S_{A B}$ $A \oplus B$	Carry 1 $A \bullet B$	$S_{A B C}=\operatorname{sum}\left(S_{A B}, C\right)$ $A \oplus B \oplus C$	Carry 2 $(A \oplus B) \cdot C$	Carry $(A \oplus B) \cdot C+A \bullet B$
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	1	0	0	1	1
1	0	0	1	0	1	0	0
1	0	1	1	0	0	1	1
1	1	0	0	1	0	0	1
1	1	1	0	1	1	0	1

b) Half adder add 2 1-bit variables

A	B	Sum $A \oplus B$	Carry $A \bullet B$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

c) 1-bit Full adder

Adds column with carry from previous column

A	B	C	$S_{A B}$ $A \oplus B$	Carry 1 $A \bullet B$	$S_{A B C}=\operatorname{sum}\left(S_{A B}, C\right)$ $A \oplus B \oplus C$	Carry 2 $(A \oplus B) \cdot C$	Carry $(A \oplus B) \bullet C+A \bullet B$
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	1	0	0	1	1
1	0	0	1	0	1	0	0
1	0	1	1	0	0	1	1
1	1	0	0	1	0	0	1
1	1	1	0	1	1	0	1

Inputs			Outputs	
\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{C}_{\text {in }}$	$\boldsymbol{C}_{\text {out }}$	\boldsymbol{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

d) Parallel Addition

SUM

1

8) Digital Subtraction

Two possible methods:

1) $1 / 2$ subtractor and full subtractor (with borrow)
$\sqrt{ }$ 2) using 2 's complement
a) Ones' complement: each bit is complemented

$$
\text { e.g. } X=1011 \rightarrow X_{l}=0100
$$

$$
\text { Note: } X+X_{l}=1111
$$

b) Two's complement: add 1 to ones' complement procedure: leave all right bits as is up to and including first 1, and complement the rest

$$
X_{2}=X_{1}+1 \quad \text { e.g. } X=1011 \rightarrow X_{1}=0100 \rightarrow X_{2}=0101
$$

Since $X+X_{l}=1111, \quad X+\underbrace{X_{l}+1}_{X_{2}}=10000=10^{4}$ (or 2^{4} in decimal)

So,

$$
X^{2}=2^{N}-X
$$

where N is the number of bits

c) Two's complement as negative

$$
\begin{aligned}
& \text { Recall } X_{2}=2^{N}-X \\
& ->X_{2}+X=2^{N} \\
& \rightarrow X_{2}+X=0 \text { (ignoring the carry, or considering only } N \text { bits) } \\
& ->X_{2}=-X \text { or } X=-X_{2}
\end{aligned}
$$

So, $Y-X=Y+(-X)=Y+X_{2}$
i.e. subtract X by adding X_{2}
(and ignore the carry)

Problem: if $X>Y$, how to recognize negative value?
d) Subtraction using 2's complement

$$
\begin{aligned}
& X_{2}=2^{N}-X \quad->\quad X=2^{N}-X_{2} \\
& Y-X=Y-\left(2^{N}-X_{2}\right) \\
& \quad=\left(Y+X_{2}\right)-2^{N}=-\left[2^{N}-\left(Y+X_{2}\right)\right]=-\left(Y+X_{2}\right)_{2} ? ?
\end{aligned}
$$

but 2^{N} has no representation in N bits, and Z_{2} is not defined if $Z>2^{N}$

$$
Y-X \quad\left(=\left(Y+X_{2}\right)-2^{N}\right) \quad=-\left(Y+X_{2}\right)_{2} \quad ? ?
$$

but 2^{N} has no representation in N bits, and Z_{2} is not defined if $Z>2^{N}$

Consider 3-bit numbers ($\mathrm{N}=3$)
e.g. $\quad Y=3=011 ; X=2=010 ; X_{2}=110(=6)$

$$
\left.\begin{array}{r}
3-2=(3+6)-8=1 \\
011-010=011 \\
\frac{110}{(1) 001}
\end{array}\right\}-1000=1
$$

For every $Y>X, Y+X_{2}>2^{N}$ so the carry is 1

$$
\rightarrow>\text { If } \mathrm{Y}>\mathrm{X}(\text { or if the carry is } 1), \quad Y-X=Y+X_{2} \quad \text { to } 3 \text { bits }
$$

(In this case, $\left(Y+X_{2}\right)_{2}$ is not defined)

$$
Y-X \quad=\left(Y+X_{2}\right)-2^{N} \quad=-\left(Y+X_{2}\right)_{2} ? ?
$$

but 2^{N} has no representation in N bits, and Z_{2} is not defined if $Z>2^{N}$

Consider 3-bit numbers $(\mathrm{N}=3) \quad$ if the carry is $1 \quad Y-X=Y+X_{2}$ to 3 bits
e.g. $\quad Y=2=010 ; X=3=011 ; X_{2}=101(=5)$

$$
\begin{aligned}
& Y-X=\left(Y+X_{2}\right)-2^{N} \quad 2-3=(2+5)-8=-1 \\
& \left.010-011=\begin{array}{c}
010 \\
\frac{101}{111}
\end{array}\right\} \quad-1000=-1 \\
& Y-X=-\left(Y+X_{2}\right)_{2} ? ? \quad 010-011=-(111)_{2}=-(001)
\end{aligned}
$$

For every $Y<X, Y+X_{2}<2^{N} \rightarrow>$ carry is 0

$$
\rightarrow>\text { If } Y<X(\text { or if the carry is } 0), Y-X=-\left(Y+X_{2}\right)_{2}
$$

$$
=-\left(Y+X_{2}\right)_{2}
$$

if the carry is 0
e) Positive and Negative representation

```
4-bit -> 24 = 16 numbers 00 to 15 (regular binary representation)
-8 to +7
-7 to +8
```

Options: 1) sign, magnitude: low 3 bits for magnitude, high bit for sign
$\rightarrow>$ subtraction has a conditional as above
2) 2's complement for negative

- high bit for sign (1 negative)
- positive: low 3 bits in binary
- negative: 4-bit 2's complement of absolute value

2) 2 's complement for negative

- high bit for sign (1 negative)
- positive: low 3 bits in binary
- negative: 4-bit 2's complement of absolute value

x	X	sign-magnitude
7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	0011
2	0010	0010
1	0001	0001
0	0000	$0000=1000$
-1	1111	1001
-2	1110	1010
-3	1101	1011
-4	1100	1100
-5	1011	1101
-6	1010	1110
-7	1001	1111
-8	1000	

If $X=A_{3} A_{2} A_{1} A_{0}$ is a 4 -bit representation of x, then

$$
x=\begin{gathered}
X_{b} \text { if } A_{3}=0 \\
-X_{2} \text { if } A_{3}=1
\end{gathered}
$$

Then,

$$
\begin{array}{ll}
& y-x=Y+X_{2} \\
& y-x=-\left(Y+X_{2}\right)_{2} \quad \text { if } y>x \\
\text { but } y<x \\
& -\left(Y+X_{2}\right)_{2}=Y+X_{2} \\
\text { so } & y-x=Y+X_{2} \quad \text { with }
\end{array}
$$

without conditionals

x	X	sign-magnitude
7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	0011
2	0010	0010
1	0001	0001
0	0000	$0000=1000$
-1	1111	1001
-2	1110	1010
-3	1101	1011
-4	1100	1100
-5	1011	1101
-6	1010	1110
-7	1001	1111
-8	1000	

$$
\begin{aligned}
& \left.\begin{array}{l}
y-x=Y+X_{2} \\
3-2=1 \\
0011-0010= \\
\left.\frac{1110}{(1) 00011}\right\} \\
2-3=-1 \\
0010-0011=0 \\
\frac{1101}{1111}
\end{array}\right\}=-1
\end{aligned}
$$

9) Flip Flops

- 2 stable states for storing binary information
a) SR flip flop (NOR), S-set; R-reset (SR latch)

$$
\mathrm{R}=\mathrm{S}=0
$$

2 possible states with $\mathrm{R}=\mathrm{S}=0$
the state is "read" with $\mathrm{R}=\mathrm{S}=0$

$$
\mathrm{S}=1, \mathrm{R}=0
$$

$$
\operatorname{sets} \mathrm{Q}=1, \overline{\mathrm{Q}}=0
$$

$$
S=0, R=1
$$

(re) sets $\mathrm{Q}=0, \overline{\mathrm{Q}}=1$

$$
S=1, R=1
$$

both outputs 0
indeterminate when R, S set to 0
not allowed (not used)

Truth table

S	R	Q	$\overline{\mathrm{Q}}$
0	0	NC	NC
1	0	1	0
0	1	0	1
1	1	X	X
no change (data storage)			
not allowed; indeterminate when			

read with 0,0
b) SR NAND latch

$$
\mathrm{R}=\mathrm{S}=0 ; \overline{\mathrm{R}}=\overline{\mathrm{S}}=1
$$

2 possible states with $\mathrm{R}=\mathrm{S}=0$
the state is "read" with $\mathrm{R}=\mathrm{S}=0$

$$
\mathrm{S}=1, \mathrm{R}=0 ; \overline{\mathrm{S}}=0, \overline{\mathrm{R}}=1
$$

$\operatorname{sets} \mathrm{Q}=1, \overline{\mathrm{Q}}=0$

$$
\mathrm{S}=0, \mathrm{R}=1 ; \overline{\mathrm{S}}=1, \overline{\mathrm{R}}=0
$$

(re)sets $\mathrm{Q}=0, \overline{\mathrm{Q}}=1$

$$
\mathrm{S}=1, \mathrm{R}=1 ; \overline{\mathrm{S}}=0, \overline{\mathrm{R}}=0
$$

both outputs 1 indeterminate when R, S set to 0 not allowed

Truth table

S	R	$\overline{\mathrm{S}}$	$\overline{\mathrm{R}}$	Q	$\overline{\mathrm{Q}}$		
0	0	1	1	NC	NC		
1	0	0	1	1	0		
0	1	1	0	0	1		
1	1	0	0	X	X		
:---:							
(data storage)							

indeterminate when
read with 0,0

c) Clocked (or gated) SR latch

Clocked

Clock must be present (high) to enable R and S

Gated SR latch operation	
E/C	Action
0	No action (keep state)
1	The same as non-clocked SR latch

d) D fip-flop (data latch)

Stores state of D at last clock high.

Gated D latch truth table

E/C	\mathbf{D}		\mathbf{Q}	$\overline{\mathbf{Q}}$	Comment
	\mathbf{X}		$\mathbf{Q}_{\text {prev }}$	$\overline{\mathrm{Q}}_{\text {prev }}$	No change
1	0		0	1	Reset
1	1		1	0	Set

