
2) Base conversion
a) B to decimal

}

expressed in decimal

2436am ⋅⋅⋅a2a1a0 = aiB
i∑ = 2 × 62 + 3× 60 = 9910+ 4 × 61



b) B to B’ am ⋅⋅⋅a2a1a0( )B = aiB
i∑ }

expressed in base B’

49310 = 100 × (1010)
10 +1001× (1010)1 +11× (1010)0

e.g. decimal to binary:

49310 = 110010000 +11+1011010

1010
1010
0000
1010
0000
1010
1100100

1001

0000
1001
0000
1001

1010

1011010

10 in binary

100 ×

= 111101101

check:  1+ 0 + 4 + 8 + 0 + 32 + 64 +128 + 256 = 493

394 in binary



mod int x
B

⎛
⎝⎜

⎞
⎠⎟ ,B

⎛
⎝⎜

⎞
⎠⎟

mod int
int x

B
⎛
⎝⎜

⎞
⎠⎟

B

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,B

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

mod(x,B)LSB

MSB

493 / 2 = 246   rem 1
246 / 2 = 123   rem 0

123 / 2 = 61   rem 1
61/ 2 = 30   rem 1
30 / 2 = 15   rem 0
15 / 2 = 7   rem 1

7 / 2 = 3   rem 1
3 / 2 = 1   rem 1
1/ 2 = 0   rem 1

49310 = 1111011012

.

.

.

.

.

.

.

.

.

.

.

.

.



am ⋅⋅⋅a1a0 = aiB
i = ai (1000)

i∑∑

3728 = (011)(1000)
10 +111(1000)1 + 010

011 000 000
111 000

010
010111011

3 7 2

Octal Binary 

Each octal digit can be replaced by the 
equivalent 3-bit binary number.

8

2

Hexadecimal Binary 

am ⋅⋅⋅a1a0 = aiB
i = ai (10000)

i∑∑

$D49 = (1101)(10000)10 + 0100(10000)1 +1001

1101  0000  0000
0100  0000

1010
100101001101

D 4 9

Each hex digit can be replaced by the 
equivalent 4-bit binary number.

16



493 /16 = 30 rem=13 or D
30 /16 = 1 rem=14 or E
1/16 = 0 rem=1

$1ED = 1 1110 1101
1 E D

Decimal —> hex  —> binary

49310 = 1111011012Recall



3) Boolean Algebra
Algebra of two-valued variables (T, F or 1,0)
 
with 3 fundamental operators: logical AND, OR, NOT



a) logical AND

A B A·B
0 0 0
0 1 0
1 0 0
1 1 1

Truth table for A·B

Other symbols:  ∧   ∩

or no symbol: A·B = AB

symbol ·

e.g.
S1 S2

Lamp is on if S1·S2 = 1



b) logical OR          (inclusive OR)

A B A+B
0 0 0
0 1 1
1 0 1
1 1 1

Truth table for A+B

Other symbols:  ∨   ∪

e.g. Lamp is on if A+B = 1

symbol +



c) logical NOT  (complement)

Other symbols:  ¬    ∼

A

A

0 1

1 0

Truth table for A

A

1= 0
0 = 1

symbol        



d) Identities
A ⋅A = A

A +1= 1

A + A = 1A ⋅A = 0

A + A = A

A ⋅1= A

A + 0 = AA ⋅0 = 0

1⋅1= 1 0 ⋅0 = 0 1+1= 1 0 + 0 = 0

0 ⋅1= 0 1⋅0 = 0 1+ 0 = 1 0 +1= 1

0 ⋅1= 0 1⋅1= 1 1+1= 1 0 +1= 1

0 ⋅0 = 0 1⋅0 = 0 0 + 0 = 0 1+ 0 = 1



e) Theorems

(i) Commutative
A ⋅B = B ⋅A
A + B = B + A

A ⋅B( ) ⋅C = A ⋅ B ⋅C( )
(ii) Associative

A + B( )+C = A + B +C( )
A B C A+B (A+B)+C (B+C) A+(B+C)
0 0 0 0 0 0 0
0 0 1 0 1 1 1

0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 1 1 0 1

1 0 1 1 1 1 1
1 1 0 1 1 1 1

1 1 1 1 1 1 1

A B A+B

0 0 0

0 1 1

1 0 1

1 1 1

A B A·B

0 0 0

0 1 0

1 0 0

1 1 1



(iii) Distributive

x ⋅ y + z( ) = x ⋅ y + x ⋅ z

(A + B) ⋅(A +C) = A + B ⋅C (A + B) ⋅(A +C) = (A + B) ⋅A + (A + B) ⋅C

= A ⋅A + B ⋅A + A ⋅C + B ⋅C

= A(1+ B +C)+ B ⋅C

= A + B ⋅C



(iii) De Morgan’s theorem

Any binary expression is unchanged if 1) complement all variables
2) replace ORs with ANDs
3) replace ANDs with ORs
4) complement entire expression

e.g.

A + B = A ⋅B = A ⋅B

A ⋅B = A + B = A + B

A ⋅B = A + B

A + B = A ⋅B

break the line
change the sign



A B A+B

0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0

A + B = A ⋅B

A + B A ⋅BA B A B A·B

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

A ⋅B = A + B

A + B A + BA B

Proof of two De Morgan relations



4) Binary gates

a) NOT

VA VF

0 5 V
5 V 0.1 V

positive logic:
0 —> ~ 0 V
1 —> ~ 5V

A F = A

VA

VF

If the input is high, the transistor turns on, grounding the output.

If the input is low, the transistor turns off, leaving the output high.

A

0 1

1 0

A



A

B
F=A+B

b) OR

VA

VB VF

VA VB VF

0 0 0
0 5V 4.4V

5V 0 4.4V
5V 5V 4.4V

positive logic:
0 —> 0V
1 —> ~5V

A high on either input turns on the respective diode, raising the output high.

If both inputs are low, the diodes are both off, so no current flows, and the output is low.

A B A+B

0 0 0

0 1 1

1 0 1

1 1 1



If either transistor turns on
(i.e. if either A or B is high)
then the output is tied to Vcc = 6 V.

If both transistors are off
(i.e. if both A and B are low)
then there is no current through R, 
so the output is low (~ zero).

R



extends easily to multiple inputs:



c) AND

VA VB VF

0 0 .6 V
0 5V .6 V

5V 0 .6 V
5V 5V 5 V

positive logic:
0 —>  ~ 0V  (<~ .6V)

1 —> ~5V

F=A·B

VA

VB

VF

V = 5 V

A low on either input turns on the respective diode, bringing the output to low.

If both inputs are high, the diodes are both off, so no current flows, and the output is high.



If both transistor turn on
(i.e. if both A and B are high)
then the output is tied to Vcc (high).

If either transistors is off
(i.e. if either A or B is low)
then there is no current through R, 
so the output is low (~ zero).



extends easily to multiple inputs:



d) NOR (NOT OR)

VA VB VF

0 0 5 V
0 5V 0.1 V

5V 0 0.1 V
5V 5V 0.1V

If either input is high, the 
respective transistor turns on, 
and the output is switched to 
ground (low).

VA

VB

VCC = 5 V

VF

If both inputs are low, both 
transistors turns off,
so no current flowa and 
the output is high.



OR

NOR gate as universal gate:

A = A + A

A + B = A + B
A + B

A + B

NOT

AND A ⋅B = A + B A + B = A ⋅B

A

B
De Morgan



e) NAND  (NOT AND)

VA VB VF

0 0 5 V
0 5V 5 V

5V 0 5 V
5V 5V 0.1V

If either input is low, the 
respective transistor turns off, 
so no current flows, and the
output is high.

VA

VB

VCC = 5 V

VF

If both inputs are high, both 
transistors turns on,
and the output is switched to
ground (low).



NAND gate as universal gate:

A = A ⋅ANOT A A

A + B = A ⋅BOR
A

B

A ⋅B = A + B
A

B

A ⋅BAND A ⋅B = A ⋅B
A ⋅BA

B



f) Exclusive OR (XOR)

A

B
F = A ⊕ B

A B F = A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

• either, but not both
A⊕ B = (A+ B) i (A i B)

A B A+B A⋅B
0 0 0 0 1 0
0 1 1 0 1 1
1 0 1 0 1 1
1 1 1 1 0 0

A i B (A+ B) i (A i B)

check:

= A i A i B + B i A i B

A⊕ B = (A+ B) i (A i B)

= A i (A+ B)+ B i (A+ B)

= 0+ A i B + B i A+0

dist.

De Morgan

A i A = 0

A⊕ B = A i B + B i A



A⊕ B = A i B + B i A

A

A⊕ B
B

B

A

A i B

A i B

- can be constructed with all NOR or all NAND gates.

Control: high —> inverter
               low  —> leave as is

A

Controllable inverter:



g) Exclusive NOR 

A⊕ B = A i B + A i B

dist.

De Morgan

A i A = 0A⊕ B = A i B + A i B

A

B
F = A⊕ B

A B
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

A⊕ BA⊕ B

= A i B i A i B

= (A+ B) i (A+ B) De Morgan

= A i A+ A i B + B i A+ B i B



A

A⊕ B

B
B

A A i B

A i B

A⊕ B = A i B + A i B



6) TTL Logic Transistor - transistor logic

DL - diode logic
RTL - resistor transistor logic
DTL - diode transistor logic)

Others:

TTL: transistor used for logic and amplification



a) two emitter transistor

If either b-e junction is on:

• minority carriers injected into base

• transistor on

• VCE low



b) basic TTL NAND gate

Q1

A B Q1=A·B Q=A·B
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

• If A and B are high VT1 is off

- Then Q1 is high

• Otherwise VT1 is on

- and Q1 is low

• VT2 is the familiar NOT gate

High output impedance (R2):
- slow to turn off (go high)
- output current limited
- reducing R2 consumes power



c) TTL NAND gate with totem pole output stage

• Output signal amplified for more speed
• Output load capacitance is charged and discharged
through active transistors instead of resistors



5 V

0,5,0
0,0,5

Low
ON

OFF

High (5) ON
High (4.4)

Low OFF
High (3.8)

—>Vb3 low

Q2 off —> Vc2 high —> Ve4 high (through R3; faster)—> Q4 on

—> Q3 off

—> OUT high

—> leaves OUT high



5 V

5
5

OFF On

.6

~.7

Q2 on —> Q3 on —> Vc3 ~ .1 V

On

~.1

—>Vb3 = .6 V —> Vc2 ~.7V —> Q4 off

Off

(because of diode)



d) TTL logic

logic 0: < 0.8 V; ideally 0; typically 0.1

logic 1: > 2.0 V; ideally 5; typically 3.6

regular TTL: 7400
Schottky TTL: 74S00

Schottky diode: semiconductor - metal
- fast, lower power

low power Schottky: 74LS00



1

7) Digital Addition
a) Binary addition 110011010

010111011

10

1

10

1

1

11

0

1

01 0

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0
1 1 0 1

A⊕ B A i B

Define addition for 
2 1-bit variables:

A B C SAB Carry 1 SABC = sum(SAB,C) Carry 2 Carry

0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 1 0 1 0 1 0 0
0 1 1 1 0 0 1 1
1 0 0 1 0 1 0 0
1 0 1 1 0 0 1 1
1 1 0 0 1 0 0 1
1 1 1 0 1 1 0 1

A⊕ B A i B A⊕ B⊕C (A⊕ B) iC

Define addition for 
3 1-bit variables:

(A⊕ B) iC + A i B



b) Half adder add 2 1-bit variables 

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0
1 1 0 1

A⊕ B A i B = A⊕ B

= A i B



c) 1-bit Full adder 

A B C SAB Carry 1 SABC = sum(SAB,C) Carry 2 Carry

0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 1 0 1 0 1 0 0
0 1 1 1 0 0 1 1
1 0 0 1 0 1 0 0
1 0 1 1 0 0 1 1
1 1 0 0 1 0 0 1
1 1 1 0 1 1 0 1

A⊕ B A i B A⊕ B⊕C (A⊕ B) iC (A⊕ B) iC + A i B

Adds column with carry from previous column

A

B

A

A

B

B

A⊕ B

A i B

A⊕ B⊕C
(A⊕ B) iC

(A⊕ B) iC + A i B



A

B

A

A

B

B

A⊕ B

A i B

A⊕ B⊕C
(A⊕ B) iC

(A⊕ B) iC + A i B

A⊕ B
A⊕ B⊕C

A i B

(A⊕ B) iC

(A⊕ B) iC + A i B



= A⊕ B

= A i B

A

B

A

A

B

B

A⊕ B

A i B

A⊕ B⊕C
(A⊕ B) iC

(A⊕ B) iC + A i B



d) Parallel Addition

A

B

1 0 1 1

1 1 1 0

SUM 1

0

0

1

0

1

1

1

1



8) Digital Subtraction

Two possible methods:

1) 1/2 subtractor and full subtractor (with borrow)

2) using 2’s complement√



a) Ones’ complement: each bit is complemented

e.g. X = 1011 —> X1 = 0100

Note: X + X1 = 1111

b) Two’s complement: add 1 to ones’ complement
procedure: leave all right bits as is up to and including first 1,
                   and complement the rest

X2 = X1 + 1 e.g. X = 1011 —> X1 = 0100  —> X2 = 0101

Since X + X1 = 1111,   X + X1 +1 = 10000 = 104 (or 24 in decimal)

X2

So, X2 = 2N - X where N is the number of bits



c) Two’s complement as negative

Recall X2 = 2N - X

—> X2 + X = 2N

—> X2 + X = 0 (ignoring the carry, or considering only N bits)

—> X2 = -X or X = -X2

So, Y - X = Y + (-X) = Y + X2 i.e. subtract X by adding X2

(and ignore the carry)

Problem: if X > Y, how to recognize negative value?



d) Subtraction using 2’s complement

X2 = 2N - X       —>        X = 2N - X2

Y - X = Y - (2N - X2)

 =    -[2N - (Y + X2)]= (Y + X2) - 2N = -(Y + X2)2  ??

but 2N  has no representation in N bits,
and Z2 is not defined if Z > 2N



Y - X = (Y + X2) - 2N = -(Y + X2)2  ??

but 2N  has no representation in N bits,
and Z2 is not defined if Z > 2N

Consider 3-bit numbers (N = 3)
e.g.   Y = 3 = 011; X = 2 = 010; X2 = 110 (=6)

3 - 2 = (3 + 6) - 8 = 1Y - X = (Y + X2) - 2N 

011 - 010 = 011
110

(1)001
- 1000 = 1

For every Y > X, Y + X2 > 2N so the carry is 1

—> If Y > X (or if the carry is 1 ),           Y - X = Y + X2        to 3 bits

(In this case, (Y + X2)2 is not defined)



Y - X = (Y + X2) - 2N = -(Y + X2)2  ??

but 2N  has no representation in N bits,
and Z2 is not defined if Z > 2N

Consider 3-bit numbers (N = 3)  if the carry is 1          Y - X = Y + X2    to 3 bits

e.g.   Y = 2 = 010; X = 3 = 011; X2 = 101 (=5)

2 - 3 = (2 + 5) - 8 = -1Y - X = (Y + X2) - 2N 

010 - 011 = 010
101
111

- 1000 = -1

Y - X = -(Y + X2)2  ?? 010 - 011 = -(111)2 = - (001)

For every Y < X, Y + X2 < 2N —> carry is 0

—> If Y < X (or if the carry is 0  ),    Y - X = -(Y + X2)2  



Y - X  = Y + X2 

= -(Y + X2)2  

e)  Positive and Negative representation
4-bit —> 24 = 16 numbers 0 to 15 (regular binary representation)

-8 to +7
-7 to +8

Options:  1) sign, magnitude: low 3 bits for magnitude, high bit for sign
—> subtraction has a conditional as above

2) 2’s complement for negative
- high bit for sign (1 negative)
- positive: low 3 bits in binary
- negative: 4-bit 2’s complement of absolute value

 if the carry is 0

if the carry is 1



2) 2’s complement for negative
- high bit for sign (1 negative)
- positive: low 3 bits in binary
- negative: 4-bit 2’s complement of absolute value

x X sign-magnitude

7 0111 0111
6 0110 0110
5 0101 0101
4 0100 0100
3 0011 0011
2 0010 0010
1 0001 0001
0 0000 0000=1000
-1 1111 1001
-2 1110 1010
-3 1101 1011
-4 1100 1100
-5 1011 1101
-6 1010 1110
-7 1001 1111
-8 1000

If X = A3A2A1A0 is a 4-bit 
representation of x, then

x =
Xb  if A3 = 0
−X2  if A3 = 1

Then, 
y − x = Y + X2 if y > x 

y − x = −(Y + X2)2 if y < x 

but −(Y + X2)2 = Y + X2

so y − x = Y + X2 without conditionals



3 - 2 = 1
0011 - 0010 = 0011

1110

(1)0001

= 1

x X sign-magnitude

7 0111 0111
6 0110 0110
5 0101 0101
4 0100 0100
3 0011 0011
2 0010 0010
1 0001 0001
0 0000 0000=1000
-1 1111 1001
-2 1110 1010
-3 1101 1011
-4 1100 1100
-5 1011 1101
-6 1010 1110
-7 1001 1111
-8 1000

y − x = Y + X2

2 - 3 = -1

0010 - 0011 = 0010
1101

1111

= -1



9) Flip Flops
• 2 stable states for storing binary information

a)  SR flip flop (NOR), S-set; R-reset (SR latch)



R = S = 0

0

0

0
1

1
0

0

0

1

0

0

1

2 possible states with R = S = 0

the state is “read” with R = S = 0



S = 1, R = 0

0

1

0
1

1
0

sets Q = 1, Q = 0



S = 0, R = 1

1

0

1
0

0
1

(re)sets Q = 0, Q = 1



S = 1, R = 1

1

1

0
0

0
0

both outputs 0
indeterminate when R, S set to 0
not allowed (not used)



S R Q Q

0 0 NC NC

1 0 1 0

0 1 0 1

1 1 X X

Truth table

no change
(data storage)

not allowed;
indeterminate when 

read with 0,0



b)  SR NAND latch



R = S = 0; R = S = 1

0
1 1

0

1

0

0

1

2 possible states with R = S = 0

the state is “read” with R = S = 0

1

1 1

1



S = 1,  R = 0;   S = 0,  R = 1

0
0 1

0
1

1

sets Q = 1, Q = 0



S = 0,  R = 1;   S = 1,  R = 0

1
1 0

1
0

0

(re)sets Q = 0, Q = 1



S = 1,  R = 1;   S = 0,  R = 0

1
0 1

1
1

0

both outputs 1
indeterminate when R, S set to 0
not allowed



S R S R Q Q

0 0 1 1 NC NC

1 0 0 1 1 0

0 1 1 0 0 1

1 1 0 0 X X

Truth table

no change
(data storage)

not allowed;
indeterminate when 

read with 0,0



S R S R Q Q

0 0 1 1 NC NC

1 0 0 1 1 0

0 1 1 0 0 1

1 1 0 0 X X



c)  Clocked (or gated) SR latch

Clock must be present (high) to enable R and S



d)  D flip-flop (data latch)

Stores state of D at last clock high.

D


