
Low temperature transport in integrable quantum systems
Andrew Urichuk, Jesko Sirker, and Andreas Klümper

Abstract

The spin-1/2 XXZ chain is an integrable lattice model and exhibits an infinite
number of conserved charges some protecting its spin current for anisotropies
|∆| < 1. Temperature asymptotics are presented for zero external magnetic field
and anisotropies ∆ = cos(nπ/m) with n,m coprime by use of thermodynamic Bethe
ansatz (TBA).
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Figure: At T = 0 the spin sum rule is satisfied by the Drude weight, however at higher
temperatures it melts and forms a Lorentzian that the Drude weight sits atop.

The XXZ model and the Drude weight

The Hamiltonian of the one-dimensional Heisenberg XXZ model on N sites with
periodic boundary conditions is given by
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where σ+,−,z are Pauli matrices, ∆ = cos(γ) is the anisotropy, and h the applied
magnetic field. A non-zero spin Drude weight is determined by the spin current-
spin current correlator evaluated at infinite times
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Alternatively, the Drude weight may be determined by examining the energy cur-
vature from Kohn’s formula (Zotos (1999))
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Thermodynamic Bethe Ansatz Formalism

The TBA formalism describes the behaviour of L ‘Bethe strings’ and their holes
in terms of rapidities. The particle and hole densities ρj and ρh

j , respectively, of
the j-th Bethe string can be used to determine thermodynamic quantities. The
equilibrium state ηj =

ρh
j
ρj

are characterized by the integral equation

log ηj(θ) = −βe0(θ) +
∑
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where the kernel Kjk is characterized by the scattering of the Bethe strings. By
combining this formalism with Kohn’s formula (3) Zotos’ formula [Zotos (1999)]
yields the Drude weight in terms of the second last Bethe string η = ηL−1 as

D = −J sin γ
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the subscripts being suppressed for the η functions and the σ, which introduces a
±1 depending on the anisotropy.
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Figure: Drude weight coefficient β−1D(γ, β) for various anisotropies γ = πn/m and temperatures.
Note that the high temperature results (β = 0.4,0.1,0.03) are partly on top of each other on this
scale. D(β) is a nowhere continuous function except for at β−1 = 0.

Zero-temperature result

By use of the Wiener Hopf method it’s
straightforward to obtain leading order
corrections to the energy in terms of
the scalar flux φ. The result [Shastry
(1990)] is a smooth function that is
symmetric around the anisotropy

D(∞) =
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Figure: Drude weight coefficient at T = 0.

Low-temperature Drude weight

At finite temperatures the Drude weight exhibits a fractal dependence on the
anisotropy, which differs substantially from the zero temperature behaviour. To
understand this higher subleading temperature corrections must be obtained.

Anisotropy

0.8
0.6

0.4
0.2

0.0
0.2

0.4
0.6

0.8

Temperature

0.00

0.02

0.04

0.06

0.08

0.10

Dr
ud

e 
W

ei
gh

t

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure: First order temperature corrections at low temperatures, the uneven melting of the Drude
peak at different anisotropies is immediately apparent.

Sub-leading Low Temperature Asymptotics

The subleading temperature is characterized by one of several prefactors
depending on the anisotropy being considered. By grouping the prefactors we
note that there are curvature contributions (T 2n) and Umklapp scattering terms
(T n(2K−2)) as

D(T ) = D(0)− aT 2K−2 − b1T 2 − b2T 4K−4. (7)
With the lowest order Umklapp scattering term being responsible for the fractal
structure at low temperatures. By use of the TBA structure the prefactor was
determined to be [AU (2021)]

a(∆) =
sin
(
πK
m

)
tan(πK )

v0mK
2

[√
πT
v0

]2K−2
Γ2 (K ) Γ (1− 2K )

Γ2 (1− K )

[
Γ
(
1 + 1

2K−2

)
Γ
(
1 + K

2K−2

)]2K−2

, (8)

The energy level curvature contribution is known from field theory [Sirker (2011)],
however smoothly depends on the anisotropy
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b1 = D(0)Y4. (9)
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Figure: The different ranges of subleading and subsubleading temperature correction and
demonstrating the different curves that the prefactor a(∆) for varying values of γ = nπ
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Figure: Demonstration of the consistency of the asymptotics with numerical results up to
T ≈ 1/10 for γ = π n±

4n±±1 and γ = π n
2n−1 respectively.

Conclusions and future directions

•The method used to determine these low temperature asymptotics should be
applicable to the analysis of other thermodynamical quantities.
•The picture of the Drude peak melting into a Lorentzian seems to be naive

based on preliminary diffusion results at low temperatures.
• Low temperature results from field theory seem to only capture the temperature

corrections that depend smoothly on the anisotropy. We would like to
understand how these correction might be accounted for in the non-linear
Luttinger liquid framework.
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