Spectra properties of graphs and their quantum walks

Ada Chan

Department of Mathematics and Statistics York University August 12, 2020

WITP Seminar

Continuous-time *random* walk on a graph *G*:

$$\frac{d}{dt}p_j(t) = -\sum_{k \in V} L_{j,k}p_k(t),$$

where *L* is the Laplacian matrix of *G*.

Continuous-time quantum walk on a graph G:

$$\mathrm{i}\,rac{\mathrm{d}}{\mathrm{d}t}\langle\psi(t)|=H\langle\psi(t)|,$$

for some Hermitian matrix H associated with G.

Definition (Farhi and Gutmann, 1998)

The continuous-time quantum walk in G is given by the transition operator

$$U(t) := e^{-itA}$$

where A is the adjacency matrix of G.

Childs et. al (2002): Exponential algorithmic speedup by quantum walk

Constructed an oracular problem that can be solved exponentially faster on a quantum computer than on a classical computer.

Childs (2008): Universal computation by quantum walk

Construction of quantum gates by scattering processes.

Phenomena of the quantum walk:

- · periodic at a vertex
- perfect state transfer between two vertices
- fractional revival from between two vertices (C., Coutinho, Tamon, Vinet, Zhan 2020)
- · instantaneous uniform mixing

 $\underline{\text{Result}} \text{:} \quad \text{For each of the above phenomena, and for } \epsilon > 0,$

there exist graphs for which the phenomenon occurs within time ϵ .

Tools from algebraic graph theory:

- · spectral decomposition
- Cartesian product of two graphs

Adjacency matrix A of G:

$$A_{u,v} = \begin{cases} 1 & \text{if } u \text{ and } v \text{ are adjacent,} \\ 0 & \text{otherwise.} \end{cases}$$

Examples:

2-cube

3-cube

Example: P_2

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies A^{2j+1} = A$ and $A^{2j} = I$, for $j \ge 0$

$$\Rightarrow U(t) = e^{-itA} = \sum_{k \ge 0} \frac{(-it)^k}{k!} A^k$$

$$= \left(\sum_{j \ge 0} \frac{(-1)^j t^{2j}}{(2j)!}\right) \cdot I - i \left(\sum_{j \ge 0} \frac{(-1)^j t^{2j+1}}{(2j+1)!}\right) \cdot A$$

$$= \begin{bmatrix} \cos t & -i\sin t \\ -i\sin t & \cos t \end{bmatrix}$$

For any graph G,

$$U(t) = e^{-itA} = \left(\sum_{j\geq 0} \frac{(-1)^j t^{2j}}{(2j)!} A^{2j}\right) - i \left(\sum_{j\geq 0} \frac{(-1)^j t^{2j+1}}{(2j+1)!} A^{2j+1}\right)$$

Observe:

•
$$\overline{e^{-itA}}^T e^{-itA} = e^{itA} e^{-itA} = e^{-itA+itA} = I$$
 $U(t)$ is unitary

In the continuous-time quantum walk on G:

State: a unit vector in \mathbb{C}^n .

Initial state:
$$e_a = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
, the characteristic vector of some vertex a .

The state at time t: $U(t)e_a$.

$$U(t)$$
 is unitary: $\left(\overline{U(t)}^T U(t)\right)_{a,a} = 1 \implies \sum_{x} |(U(t)e_a)_x|^2 = 1.$

The probability of $\mathbf{a} \to x$ at time t is $|U(t)_{x,\mathbf{a}}|^2$.

Definition

We say the quantum walk is periodic at a at time τ if $U(\tau)e_a = \alpha e_a$, for some $|\alpha| = 1$.

$$U(au) = egin{bmatrix} lpha & 0 & 0 & \cdots & 0 \ 0 & * & * & \cdots & * \ 0 & * & * & \cdots & * \ dots & dots & dots & dots \ 0 & * & * & \cdots & * \ 0 & * & * & \cdots & * \ \end{pmatrix}, \qquad ext{for some } |lpha| = 1.$$

$$U(\pi) = \begin{bmatrix} \cos \pi & -i \sin \pi \\ -i \sin \pi & \cos \pi \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

 \implies P_2 is periodic at $\frac{0}{2}$ and $\frac{1}{2}$ at time π .

Definition

We say the quantum walk has fractional revival from a to b at time τ if

$$U(\tau)e_{a} = \alpha e_{a} + \beta e_{b},$$

for some $|\alpha|^2 + |\beta|^2 = 1$.

$$U(\frac{\pi}{3}) = \begin{bmatrix} \cos\frac{\pi}{3} & -i\sin\frac{\pi}{3} \\ -i\sin\frac{\pi}{3} & \cos\frac{\pi}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2}i \\ -\frac{\sqrt{3}}{2}i & \frac{1}{2} \end{bmatrix}$$

 \implies P_2 has fractional revival between 0 and 1 at time $\frac{\pi}{3}$.

Special case:
$$U(\frac{\pi}{2}) = \begin{bmatrix} \cos\frac{\pi}{2} & -\mathrm{i}\sin\frac{\pi}{2} \\ -\mathrm{i}\sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{bmatrix} = \begin{bmatrix} 0 & -\mathrm{i} \\ -\mathrm{i} & 0 \end{bmatrix}$$

We say P_2 has perfect state transfer between 0 and 1 at time $\frac{\pi}{2}$.

Definition

We say the quantum walk has perfect state transfer from a to b at time τ if

$$U(\tau)e_a = \beta e_b$$

for some $|\beta| = 1$.

$$U(\tau) = \begin{bmatrix} 0 & \beta & 0 & \cdots & 0 \\ \beta & 0 & 0 & \cdots & 0 \\ 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & * & \cdots & * \end{bmatrix}, \quad \text{for some } |\beta| = 1.$$

Observe:
$$U(2\tau) = U(\tau)^2 = \begin{bmatrix} \frac{\beta^2}{0} & 0 & 0 & \cdots & 0 \\ 0 & \frac{\beta^2}{0} & 0 & \cdots & 0 \\ 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & * & \cdots & * \end{bmatrix}$$

Perfect state transfer at time $\tau \Longrightarrow$ periodicity at time 2τ

(Tool: Spectral decomposition)

$$A = \sum_{\theta} \theta E_{\theta}$$
, where E_{θ} is the eigenprojection onto the θ -eigenspace of A .

 P_3 :

$$A = \sqrt{2} \begin{bmatrix} 1/4 & 1/4 & \sqrt{2}/4 \\ 1/4 & 1/4 & \sqrt{2}/4 \\ \sqrt{2}/4 & \sqrt{2}/4 & 1/2 \end{bmatrix} + (0) \begin{bmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix} + (-\sqrt{2}) \begin{bmatrix} 1/4 & 1/4 & -\sqrt{2}/4 \\ 1/4 & 1/4 & -\sqrt{2}/4 \\ -\sqrt{2}/4 & -\sqrt{2}/4 & 1/2 \end{bmatrix}$$

(Properties of E_{θ} 's)

$$\mathbf{0} \ \, E_{\theta}E_{\eta} = \begin{cases} E_{\theta} & \textit{if } \theta = \eta, \\ 0 & \textit{otherwise}. \end{cases}$$

$$\sum_{\theta} E_{\theta} = I$$

$$A = \sum_{\theta} \theta E_{\theta}$$

$$\implies A^{k} = \sum_{\theta} \theta^{k} E_{\theta}, \quad \forall k \ge 0$$

$$\implies U(t) = e^{-itA} = \sum_{\alpha} e^{-it\theta} E_{\theta}$$

Does P_3 have fractional revival between a and b?

$$U(t) = e^{-\sqrt{2}ti} \begin{bmatrix} 1/4 & 1/4 & \sqrt{2}/4 \\ 1/4 & 1/4 & \sqrt{2}/4 \\ \sqrt{2}/4 & \sqrt{2}/4 & 1/2 \end{bmatrix} + e^0 \begin{bmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix} + e^{\sqrt{2}ti} \begin{bmatrix} 1/4 & 1/4 & -\sqrt{2}/4 \\ 1/4 & 1/4 & -\sqrt{2}/4 \\ -\sqrt{2}/4 & -\sqrt{2}/4 & 1/2 \end{bmatrix}$$

Target:
$$U(\tau) = \begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{bmatrix}$$

Step 1. Group E_{θ} 's to get desired block diagonal form:

$$E_{\sqrt{2}}+E_{-\sqrt{2}}=\begin{bmatrix} 1/4 & 1/4 & \sqrt{2}/4\\ 1/4 & 1/4 & \sqrt{2}/4\\ \sqrt{2}/4 & \sqrt{2}/4 & 1/2 \end{bmatrix}+\begin{bmatrix} 1/4 & 1/4 & -\sqrt{2}/4\\ 1/4 & 1/4 & -\sqrt{2}/4\\ -\sqrt{2}/4 & -\sqrt{2}/4 & 1/2 \end{bmatrix}, \quad E_0=\begin{bmatrix} 1/2 & -1/2 & 0\\ -1/2 & 1/2 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

Step 2. Find a time $\tau > 0$ such that $e^{-\sqrt{2}\tau i} = e^{\sqrt{2}\tau i}$.

Answer: Yes, at
$$\tau = \frac{\pi}{\sqrt{2}}$$
, $e^{-\sqrt{2}\tau i} = e^{\sqrt{2}\tau i} = -1$ and $U(\frac{\pi}{\sqrt{2}}) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

Complete graph K_n :

spectral decomposition:

$$A = (n-1) \begin{bmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \ddots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{bmatrix} - 1 \begin{bmatrix} (n-1)/n & -1/n & \cdots & -1/n \\ -1/n & (n-1)/n & \cdots & -1/n \\ \vdots & \vdots & \ddots & \vdots \\ -1/n & -1/n & \cdots & (n-1)/n \end{bmatrix}$$

Fail Step 1 \Longrightarrow K_n has no fractional revival for $n \ge 3$.

Paths
$$P_n$$
: \longrightarrow \longrightarrow

Step 1 for P_5 :

$$U(t) = \frac{e^{t\pm}}{4} \begin{bmatrix} \frac{1}{-1} & \frac{1}{1} & \frac{1}{-1} & \frac{1}{-1} & 0 \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & -\frac{1}{1} & 0 \\ \frac{1}{0} & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} + \frac{e^{-t\pm}}{4} \begin{bmatrix} \frac{1}{-1} & \frac{1}{1} & -\frac{1}{1} & \frac{1}{1} & 0 \\ \frac{1}{-1} & \frac{1}{1} & -\frac{1}{1} & \frac{1}{0} & 0 \\ \frac{1}{0} & 0 & 0 & 0 & 0 \end{bmatrix} +$$

$$\frac{e^{-\sqrt{3}t\pm}}{12} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{\sqrt{3}}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac$$

Step 2: Find
$$au>0$$
 such that $e^{ au {
m i}}=e^{- au {
m i}}$ and $e^0=e^{\sqrt{3} au {
m i}}=e^{-\sqrt{3} au {
m i}}$. Fail!

Theorem (C., Coutinho, Tamon, Vinet, Zhan 2019)

The path P_n has fractional revival if and only if n = 2, 3, 4.

(Tool: Cartesian product $G \square H$)

The cartesian product of graphs G and H has

• vertex set: $V(G) \times V(H)$

• edges: $(u_1, v_1) \sim (u_2, v_2)$ if $u_1 \sim u_2$ and $v_1 = v_2$, or $u_1 = u_2$ and $v_1 \sim v_2$.

The adjacency matrix of $G \square H$ is

$$A_{G \square H} = A_{G} \otimes I_{|V(H)|} + I_{|V(G)|} \otimes A_{H}.$$

Recursive structure: 1-cube \square (n-1)-cube gives n-cube, for $n \ge 2$.

Transition matrix of $G \square H$:

$$\begin{array}{lcl} U_{G \,\square \, H}(t) & = & e^{-\mathrm{i} t (A_G \otimes I + I \otimes A_H)} \\ & = & \left(e^{-\mathrm{i} t A_G} \otimes I \right) \left(I \otimes e^{-\mathrm{i} t A_H} \right) \\ & = & e^{-\mathrm{i} t A_G} \otimes e^{-\mathrm{i} t A_H} \\ & = & U_G(t) \otimes U_H(t) \end{array}$$

For *n*-cubes:

$$U(t) = \begin{bmatrix} \cos t & -i \sin t \\ -i \sin t & \cos t \end{bmatrix}^{\otimes n}$$

Perfect state transfer:
$$U(\frac{\pi}{2}) = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}^{\otimes n}$$

Periodicity:
$$U(\pi) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}^{\otimes n}$$

Definition

The continuous-time quantum walk in G is instantaneous uniform mixing at time τ if

$$|U(\tau)_{u,v}|^2 = \frac{1}{|V(G)|}, \quad \forall u, v.$$

We say $U(\tau)$ is flat.

1-cube:

$$U(t) = \begin{bmatrix} \cos t & -i \sin t \\ -i \sin t & \cos t \end{bmatrix}$$

At time $au = \frac{\pi}{4}$

$$U(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix}$$

Observe: If G admits instantaneous uniform mixing then $\langle A \rangle$ contains a flat unitary matrix.

Complete graph K_n :

$$U(t) = e^{-i(n-1)t} \begin{bmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \ddots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{bmatrix} + e^{it} \begin{bmatrix} (n-1)/n & -1/n & \cdots & -1/n \\ -1/n & (n-1)/n & \cdots & -1/n \\ \vdots & \vdots & \ddots & \vdots \\ -1/n & -1/n & \cdots & (n-1)/n \end{bmatrix}$$

$$\frac{1}{\sqrt{n}} = |U(t)_{1,2}| = \frac{|e^{-i(n-1)t} - e^{it}|}{n} \le \frac{2}{n} \implies n \le 4$$

Conclusion: instantaneous uniform mixing does not occur in K_n , for $n \ge 5$.

n-cube:

$$U_{n ext{-cube}}(\frac{\pi}{4}) = \frac{1}{\sqrt{2}^n} \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix}^{\otimes n}$$

Conclusion: For $n \ge 1$,

- *n*-cube has instantaneous uniform mixing at time $\frac{\pi}{4}$.
- *n*-cube has perfect state transfer between antipodal vertices at time $\frac{\pi}{2}$.
- *n*-cube is periodic at every vertex at time π .

Nice properties of *n*-cube:

- recursive construction
- vertex transitive
- distance regular

Distance graphs of 3-cube:

 $G_1 = 3$ -cube

 G_2

Distance-regular graph: $\langle A \rangle = \text{span}\{I, A_1, A_2, A_3\}$

When $\langle A \rangle = \text{span}\{I, A_1, A_2, \dots, A_d\}$:

- lacktriangle Each A_i is a polynomial in A, they form a commuting set of symmetric matrices.
- $A_0 = I, A_1, \dots, A_d$ are simultaneously diagonalizable.
- Let E_s be the projection matrix onto their s-th common eigenspace and

$$A_r E_s = p_r(s) E_s$$
, for $r, s = 0, \dots, d$.

That is, $p_r(0), p_r(1), \dots, p_r(d)$ are eigenvalues of A_r .

Matrix of eigenvalues:

$$E_0 \begin{bmatrix} I & A_1 & & A_d \\ 1 & p_1(0) & \dots & p_d(0) \\ 1 & p_1(1) & \dots & p_d(1) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & p_1(d) & \dots & p_d(d) \end{bmatrix}$$

n-cube
$$\langle A_{n\text{-cube}} \rangle = \text{span}\{I, A_1, \dots, A_n\}$$
:

- Any graph in $\langle A_{n\text{-cube}} \rangle$ shares the same set of projection matrices E_0, E_1, \dots, E_n .
- Eigenvalues:

$$p_r(s) = \sum_{h=0}^r (-2)^h \binom{n-h}{r-h} \binom{s}{h}, \qquad s = 0, \dots, n.$$

Krawtchouk polynomials $p_r(x)$.

lacktriangledown n-cube admits instantaneous uniform mixing $\Longrightarrow \langle A_{n ext{-cube}} \rangle$ contains a flat unitary matrix

Question: What about other graphs in $\langle A_{n\text{-cube}} \rangle$?

Idea: Cheat! Find a 01-matrix M in $\langle A_{n\text{-cube}} \rangle$ satisfying

$$e^{-\mathrm{i} au M} = rac{e^{ieta}}{\sqrt{2}^n} egin{bmatrix} 1 & \pm \mathrm{i} \ \pm \mathrm{i} & 1 \end{bmatrix}^{\otimes n}, \quad ext{for some $ au$ and eta}.$$

Eigenvalues:
$$\frac{e^{i\beta}}{\sqrt{2^n}} \begin{bmatrix} 1 & \pm \mathrm{i} \\ \pm \mathrm{i} & 1 \end{bmatrix}^{\otimes n} E_s = e^{\mathrm{i}\beta} e^{\pm \mathrm{i}\pi \frac{n-2s}{4}} E_s, \quad \text{for } s=0,1,\ldots,n.$$

Let $\theta_0, \theta_1, \dots, \theta_n$ be the eigenvalues of M. Then

$$e^{-i\tau M} = e^{i\beta} \frac{1}{\sqrt{2}^n} \begin{pmatrix} 1 & \pm i \\ \pm i & 1 \end{pmatrix}^{\otimes n}$$

$$\iff e^{-i\tau \theta_s} = e^{i\beta} e^{\pm i\pi (n-2s)/4}, \quad \forall s$$

$$\iff \tau \theta_s = \pm \pi (n-2s)/4 + \beta \pmod{2\pi}, \quad \forall s$$

$$\iff \tau (\theta_s - \theta_{s-1}) = \pm \frac{\pi}{2} \pmod{2\pi}, \quad \forall s > 0$$

Example: 4-cube and
$$\tau = \frac{\pi}{4}$$

$$\tau(\theta_{\mathcal{S}} - \theta_{\mathcal{S}-1}) = \pm \frac{\pi}{2} \pmod{2\pi} \iff (\theta_{\mathcal{S}} - \theta_{\mathcal{S}-1}) = \pm 2 \pmod{8}$$

$$\begin{bmatrix} I & A_1 & A_2 & A_3 & A_4 \\ \theta_0 & 1 & 4 & 6 & 4 & 1 \\ 1 & 2 & 0 & -2 & -1 \\ \theta_2 & 1 & 0 & -2 & 0 & 1 \\ \theta_3 & 1 & -2 & 0 & 2 & -1 \\ \theta_4 & 1 & -4 & 6 & -4 & 1 \end{bmatrix}$$

Both G_1 and G_3 admit instantaneous uniform mixing at $\frac{\pi}{4}$.

Theorem

For even n and odd r, G_r admits instantaneous uniform mixing at time $\frac{\pi}{4}$.

Es

Γ ¹	8	4	8	2	8	4	8	15	0	8	0	12	0	8	0	15	8	4	8	2	8	4	8	1.
1	6	6	14	12	10	2	2	5	12	12	12	0	4	4	4	11	14	14	6	4	2	10	10	15
1	4	12	12	2	12	12	4	15	8	8	8	12	8	8	8	15	4	12	12	2	12	12	4	1
1	2	6	10	12	14	2	6	5	4	12	4	0	12	4	12	11	10	14	2	4	6	10	14	15
1	0	4	0	2	0	4	0	15	0	8	0	12	0	8	0	15	0	4	0	2	0	4	0	1
1	14	6	6	12	2	2	10	5	12	12	12	0	4	4	4	11	6	14	14	4	10	10	2	15
1	12	12	4	2	4	12	12	15	8	8	8	12	8	8	8	15	12	12	4	2	4	12	12	1
1	10	6	2	12	6	2	14	5	4	12	4	0	12	4	12	11	2	14	10	4	14	10	6	15
1	8	4	8	2	8	4	8	15	0	8	0	12	0	8	0	15	8	4	8	2	8	4	8	1
1	6	6	14	12	10	2	2	5	12	12	12	0	4	4	4	11	14	14	6	4	2	10	10	15
1	4	12	12	2	12	12	4	15	8	8	8	12	8	8	8	15	4	12	12	2	12	12	4	1
1	2	6	10	12	14	2	6	5	4	12	4	0	12	4	12	11	10	14	2	4	6	10	14	15
1	0	4	0	2	0	4	0	15	0	8	0	12	0	8	0	15	0	4	0	2	0	4	0	1
1	14	6	6	12	2	2	10	5	12	12	12	0	4	4	4	11	6	14	14	4	10	10	2	15
1	12	12	4	2	4	12	12	15	8	8	8	12	8	8	8	15	12	12	4	2	4	12	12	1
1	10	6	2	12	6	2	14	5	4	12	4	0	12	4	12	11	2	14	10	4	14	10	6	15
1	8	4	8	2	8	4	8	15	0	8	0	12	0	8	0	15	8	4	8	2	8	4	8	1
1	6	6	14	12	10	2	2	5	12	12	12	0	4	4	4	11	14	14	6	4	2	10	10	15
1	4	12	12	2	12	12	4	15	8	8	8	12	8	8	8	15	4	12	12	2	12	12	4	1
1	2	6	10	12	14	2	6	5	4	12	4	0	12	4	12	11	10	14	2	4	6	10	14	15
1	0	4	0	2	0	4	0	15	0	8	0	12	0	8	0	15	0	4	0	2	0	4	0	1
1	14	6	6	12	2	2	10	5	12	12	12	0	4	4	4	11	6	14	14	4	10	10	2	15
1	12	12	4	2	4	12	12	15	8	8	8	12	8	8	8	15	12	12	J ^p 4 ►	2	4	12	12	4

A₁₅

Nutrition Facts/Valeur nutritive per <i>n</i> -cube	
Calories/Calories	±?
:	:
Carbohydrate/Glucides	5g
Fibre/Fibres	0g
Sugars	5g
:	:

INGREDIENTS: continuous-time quantum walk, $p_r(s)$ (Krawtchouk polynomials), spectral decomposition, number theory (Lucas' Theorem, Kummer's Theorem), goos paper, snacks, teabags.

Theorem

For $k \geq 2$, let $n = 2^{k+2} - 8$. The graph $G_{2^{k+1}-1}$ admits instantaneous uniform mixing at $\pi/2^k$.

Observe:

$$\left(\frac{1}{\sqrt{2}^n}\begin{bmatrix}1&\pm\mathrm{i}\\\pm\mathrm{i}&1\end{bmatrix}^{\otimes n}\right)^2 = \begin{bmatrix}0&\pm\mathrm{i}\\\pm\mathrm{i}&0\end{bmatrix}^{\otimes n}$$

Conclusion:

$$U(au) = rac{1}{\sqrt{2}^n} egin{bmatrix} 1 & \pm \mathrm{i} \ \pm \mathrm{i} & 1 \end{bmatrix}^{\otimes n}$$
 Inst. uniform mixing $U(2 au) = egin{bmatrix} 0 & \pm \mathrm{i} \ \pm \mathrm{i} & 0 \end{bmatrix}^{\otimes n}$ perfect state transfer $U(4 au) = egin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}^{\otimes n}$ periodicity

Theorem

For $k \ge 2$, let $n = 2^{k+2} - 8$. The graph $G_{2^{k+1}-1}$ admits perfect state transfer at $\pi/2^{k-1}$.

Fractional revival in $\langle A_{n\text{-cube}} \rangle$:

$$\alpha A_0 + \beta A_n = \begin{bmatrix} \alpha & 0 & \cdots & \cdots & 0 & \beta \\ 0 & \alpha & \cdots & \cdots & \beta & 0 \\ 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & \beta & \cdots & \cdots & \alpha & 0 \\ \beta & 0 & \cdots & \cdots & 0 & \alpha \end{bmatrix} \in \langle A_{n\text{-cube}} \rangle$$

Theorem (C. Coutinho, Tamon, Vinet, Zhan 2020)

For $k \ge 4$, let $n = (2^{k-1}+1)2^{k+2}+3$ and $r = 2^{k+3}+3$. The graph G_r has fractional revival at time $\frac{\pi}{2^k}$.

Theorem

For $\epsilon>0$, there exist graphs having $\begin{cases} \textit{periodicity} \\ \textit{fractional revival} \\ \textit{perfect state transfer} \\ \textit{instantaneous uniform mixing} \end{cases}$

within time ϵ .

Perfect state transfer is monogamous

Theorem (Godsil 2011)

If G has perfect state transfer from a to b and also from a to c then a = c.

What about fractional revival?

(Tool: Cartesian product)

Suppose, at time τ , G_1 has fractional revival between a and b and G_2 is periodic at vertex u. Then $G_1 \square G_2$ has fractional revival between (a, u) and (b, u) at time τ .

Example (Zhang):

[G	P_2	$G \square P_2$					
ĺ	$\tau = \pi$	FR between a and b	periodic at 0	FR between $(a, 0)$ and $(b, 0)$					
ĺ	$\tau = \frac{2\pi}{5}$	periodic at a	FR between 0 and 1	FR between (a, 0) and (a, 1)					

Conclusion: Fractional revival is polygamous!

THANK YOU!

(Photo and drawings are obtained from Creative Commons.)