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Continuous-time random walk on a graph G:

— > Ljkpx(t),
keV
where L is the Laplacian matrix of G.
Continuous-time quantum walk on a graph G:
& (| = Hiw(o)
1— =
dt ’

for some Hermitian matrix H associated with G.
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Definition (Farhi and Gutmann, 1998)
The continuous-time quantum walk in G is given by the transition operator

u(t) == e

where A is the adjacency matrix of G.

Childs et. al (2002):Exponential algorithmic speedup by quantum walk
Constructed an oracular problem that can be solved exponentially faster on a quantum computer
than on a classical computer.

Childs (2008): Universal computation by quantum walk
Construction of quantum gates by scattering processes.



Phenomena of the quantum walk: Tools from algebraic graph theory:

- periodic at a vertex - spectral decomposition
- perfect state transfer between two vertices - Cartesian product of two graphs
- fractional revival from between two vertices

(C., Coutinho, Tamon, Vinet, Zhan 2020)

- instantaneous uniform mixing

Result:  For each of the above phenomena, and for e > 0,

there exist graphs for which the phenomenon occurs within time e.



Adjacency matrix A of G:

if uand v are adjacent,

0 otherwise.
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Example: P, — o

0 1 1 .
A:{1 O}andAZ:[o ?] = A¥'=Aand A7 =1, forj>0
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For any graph G,

U(t) = oA = (Z (—(;;;'IﬁfAzj

j=0

Observe:
@ oA _ gitAl _ gitA

o e—itATe—itA _ gitAg—itA _ g—itA+itA _ |

—i tye
) (pzo (2j+1)!

U(t) is unitary

A2j+1 )
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In the continuous-time quantum walk on G:

State: a unit vector in C".

1
0

Initial state: e; = | . |, the characteristic vector of some vertex a.

The state at time t: U(t)ea.
U(t) is unitary: (WTU(t))a =1 = S lUmea = 1.

The probability of a — x at time t is |U(t)x,a|?.



Definition

We say the quantum walk is periodic at a at time T if U(T)ea = aea, for some |a| = 1.

a 0 0 0
0 * % *

U(r) = 0« v , for some |a| = 1.
0 * * *

P,: Ur) = cos —ismw} _ [—1 0]

—isinm cosm 0o 1

— P» is periodic at 0 and 1 at time =.



Definition
We say the quantum walk has fractional revival from a to b at time T if

U(r)ea = aea + Beyp,

for some |a|? + |82 = 1.

& g/i’ %0 0 0
B o+ e O 0 U(r) is symmetric
B *0 % « .

U(7) is unitary



i

=

s Cein T
COS§ —lS|n§

=

Ps: S uz) =
. H s s .,
—isinZ cos% —‘?1

= P, has fractional revival between 0 and 1 at time 7.

us . H us
cos 5 —isin3 0

Special case: uiz) = _
—isin cos 7 —-i 0

We say P, has perfect state transfer between 0 and 1 at time 7.



Definition
We say the quantum walk has perfect state transfer from a to b at time 7 if

U(T)ea = /Bebz
for some |B| = 1.
0o B 0 0
B 0 0 0
u(m) = 0 . * * ,  forsome|B| =1.
0o 0 =« N
82 0 0 0
0 p? 0
Observe: U(27) = U(1)? = 0 0 = .
0 0 + o

Perfect state transfer at time = = periodicity at time 27



0 0 1
Example: P;  s—s— A= |:0 0 1} eigenvalues V2, 0, —v/2
1 1 0

(Tool: Spectral decomposition)

A= 0Ey, where E, is the eigenprojection onto the 6-eigenspace of A.
0

P3:

/4 1/4 V2/4 12 —1/2 0 1/4 1/4 —/2/4
A=2| 1/4 1/4 \/5/4] +(0) [71/2 1/2 o} +(7J§){ 1/4 1/4 —V2/4
V2/4  V2/4 1)2 0 0 —V2/4  —\/2/4 1/2
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(Properties of Ey’s)
Q EE = {59 0=,

otherwise.
Q> E=1
0

A= 0E
[

= A=) "60"E,, Vk>0
0

— Ul =e =3 e,
0
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Does P3 have fractional revival between a and b?

a [

1/4 1/4  V2/4 1/2 1/2 0 1/4

U(t) = e— V2t { 1/4  1/4 \/5/4} e L1/2 1/2 0] eV qyg
V2/4 V2[4 12 L o o 0 —V2/4

Target:

Step 1.

Step 2.

Answer:

* *x 0
U(r) = |:* * 0]
0 0 =

Group Ey'’s to get desired block diagonal form:

E\/§+E_\/§:|:1/4 1/4 V2/4

1/4 1/4 —V2/4

1/4 1/4 \/5/4] {1/4 1/4 7\/5/4}
+ ,

V2/4 V2/4 0 1)2 —V2/4  —V2/4 1/2

Find a time 7 > 0 such that e~ V27% = gv27+,

0
_ 7\/57-1, \/éri,_ Ty — | =
Yes,att= T, e =e = 1andU(\/§)[1

N

b
1/4 —V2/4
1/4 —V2/4
—V2/4 1/2
( 1/2 1/2
Ep=|—-1/2 1)2
L 0 0



Complete graph Kp: — A X

i/n 1/n - 1/n (n—1)/n —1/n

i/n 1/n .. 1/n —1/n (n—1)/n
A=(n—1)] . . . =1 . .

1)n 1)n 1/n —1-/n —1-/n

Fail Step 1 = K, has no fractional revival for n > 3.

—1/n
—1/n

(n —-1)/n



Paths Pp:

Step 1 for Ps:

1

u(t) =< [1

e— V3t
T2

RS
lconn

~

Step 2:

—

1

cocooo

1 0 1 —1 1 —1
-1 0 | =1 1 —1 1
—1 0| + 94 -1 1 —1
1 0 —1 1 —1 1
0 0 0 0 0 0

V3 V3 2 1 1

V3 VB 2 Vs | 1 1

3 3 V3| + &4~ |-vV3 -3

3 3 2V3 — -3

Theorem (C., Coutinho, Tamon, Vinet, Zhan 2019)

The path P has fractional revival if and only if n = 2,3, 4.

Find > Osuchthate™ — e 7' and €® = eV37i = g~ V371,

Fail!
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(Tool: Cartesian product G J H)

The cartesian product of graphs G and H has
@ vertex set: V(G) x V(H)
@ edges: (uy, Vi) ~ (Ug, Vo) ifuy ~ Up and vi = Vo, Or uy = Up and vy ~ Vo.

The adjacency matrix of GO H is

Aeon =Ac ®lvw)| t1v(e) ® An-

1-cube 1-cube 0 1-cube 1-cube [J 2-cube

o 1 1 0
i 0 0 1
00—01 00 01 001 011 9 ? ? 9
101 111 ? 0 0 8
10 11 0o 1 0 0
000, 010 0o 0 1 0
o o0 0 1
100 110

Recursive structure: 1-cube O (n — 1)-cube gives n-cube, for n > 2.

o= —=-0000—=

00 —-00—=0

oo —+0—+00

o~ 20—~ 000Q




Transition matrix of GO H:

UG[I H(t) _ e—it(AG®I+l®AH)

(efitAG ® I) <I ® efitAH)
= e ila g e iAn
Ua(t) ® Un(t)

For n-cubes: on
cost —isint
() = {—i sint  cost }
0o —i]®"
Perfect state transfer: Uig) = [7i 0 }

Periodicity:  U(r) = {‘01

01%®"
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Definition

The continuous-time quantum walk in G is instantaneous uniform mixing at time t if

1
2 _
|U(T)u,v|= = VG vu, v.

We say U(T) is flat.

1-cube:
cost —isint
() = {—isint cost }

Attime r = %

T 1 1 -1
LR

Observe: If G admits instantaneous uniform mixing then (A) contains a flat unitary matrix.
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Complete graph Kp:

i/n 1/n - 1/n (n—1)/n —1/n —1/n
i/n A/n .- 1/n —1/n (n—1)/n .- —1/n
u(t) = e 0=t . | +et . . .
1/'7 1/'7 . 1)n —1'/n —1./n . (n —-1)/n
_ |e—1(n—1)[_61t| 2
L= U] = = <2 = n<4

Conclusion: instantaneous uniform mixing does not occur in Ky, for n > 5.
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n-cube:

Conclusion: Forn > 1,
@ n-cube has instantaneous uniform mixing at time 7.
@ n-cube has perfect state transfer between antipodal vertices at time 7.
@ n-cube is periodic at every vertex at time .

Nice properties of n-cube:
@ recursive construction
@ vertex transitive
@ distance regular

22
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Distance graphs of 3-cube:

Gs

Gz

3-cube

Gi =

Ffoococococoo

o-ocooocoo
corocococoo
cocorococoo
cococorocoo
ccococoroo
ccocococoro

cococococoor,

o
<

&--orocoo

~oor-oroco

~oor-ocoro

orr-ococoor

~ocococorro

orocorocor

cororoor

Eoororro

cor-orocor

orocorocor

~oococorro

orr-ococoor

~oco-ocoro

~oor-oroco

orrorooo,

A=

span{l, A1 ) A27 A3}

Distance-regular graph: (A)

1
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When (A) = span{l, A, Ao, ..., Ag}:

@ Each A is a polynomial in A, they form a commuting set of symmetric matrices.

@ Ay =1 Ay,...,Aq are simultaneously diagonalizable.
@ Let Es be the projection matrix onto their s-th common eigenspace and

ArEs = pr(S)Es, forr,s=0,...,d.

That is, pr(0), pr(1),. .., pr(d) are eigenvalues of A.

Matrix of eigenvalues: I Aq Ad
Eo 1 p1(0) ... pa(0)
g (1 m(1) .. pa(1)
g L1 pid) ... pa(d)

24/
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n-cube  (Ancube) = span{l, Ay, ..., An}:
@ Any graph in (An.cube) Shares the same set of projection matrices Eg, Eq, .. ., En.
@ Eigenvalues: ,
pr(s) = g(—z)h(’:: :) (Z) $=0,....n.
Krawtchouk polynomials pr(x).

@ n-cube admits instantaneous uniform mixing = (Ap.cube) COntains a flat unitary matrix

Question: What about other graphs in (An.cube)?

25
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Idea: Cheat!

Eigenvalues:

Find a 01-matrix M in (An.cupe) Satisfying

‘ e 1 +i1@"
e M = i , for some 7 and .
2 [+1 A

T £1]®"
elB Es _ eiﬁeiiW n—425
+i

Es, fors=0,1,...,n.

26
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Let 0o, 01, ..

., 0n be the eigenvalues of M. Then

o—iTM b L e
\/én :tl 1
— e—iT0s :elﬂej:irr(n72s)/4’ Vs

— T0s = +7(n—2s)/4 + B (mod 27),

— 71(0s—05_1) = j:g (mod 27), Vs >0

Vs

27
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Example: 4-cube and 7 = 7

T(0s — 0s_1) = £ 5 (mod2m) <= (0s — 0s_1) = +2 (mod 8)

I A A A Ay
ort 4 6 4 1
0111 2 0o -2 -1
05 |1 0o -2 0 1
o511 =2 0 2 -1
o, 11 -4 6 -4 1

Both Gy and Gz admit instantaneous uniform mixing at 7.

Theorem

For even n and odd r, G admits instantaneous uniform mixing at time 7 . J
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Faster - = Z: want s — 0g_1 = £2° (mod 24)

24-cube: 05 — 05_1 (mod 16)

Es |t o 4 0o 2 o 4 0 15 0
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Nutrition Facts/Valeur nutritive
per n-cube

Calories/Calories +?
Carbohydrate/Glucides 5g
Fibre/Fibres 0g
Sugars 5g

INGREDIENTS: continuous-time quantum walk,

pr(s) (Krawtchouk polynomials), spectral decomposition,
number theory (Lucas’ Theorem, Kummer’s Theorem),

goos paper, snacks, teabags.

Theorem

Fork > 2, let n = 2k+2 — 8. The graph Guk+1_4 admits instantaneous uniform mixing at m/2k. J

DQAC
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Observe: )

i1®” q@n
el 5] ) -le w0

Conclusion:
[ #=]®
u(ir) = Inst. uniform mixing
\@n +i 1
.1 ®n
uier) = [ ﬁ?i jal perfect state transfer
-1 01%"
ui@r) = {0 71} periodicity
Theorem

For k > 2, let n = 2k+2 — 8. The graph Gu«.1_, admits perfect state transfer at 7/2k=1.
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Fractional revival in (Ap.cupe):

a 0 0 B
0 « s 0
ahg + BAn = 0 0 00 € (An-cube)
0 0 0 0
0 B a 0
s 0 «@

Theorem (C. Coutinho, Tamon, Vinet, Zhan 2020)

Fork > 4, letn = (2k—1 4+ 1)2kt2 1 3 and r = 2¢+3 4 3. The graph G, has fractional revival at
time 2.
ok
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Theorem

periodicity
. , fractional revival
For e > 0, there exist graphs having actional reviva within time e.
perfect state transfer

instantaneous uniform mixing
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Perfect state transfer is monogamous

Theorem (Godsil 2011)
If G has perfect state transfer from a to b and also from a to ¢ then a = c. J

What about fractional revival?
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(Tool: Cartesian product)

Suppose, at time T, Gy has fractional revival between a and b and G is periodic at vertex u.

Then Gy O Gy has fractional revival between (a, u) and (b, u) at time r.

Example (Zhang):

P2 o9

G 0 1
16 vertices
36 vertices 37 vertices
G P, GOP,
T="7 FR between a and b periodic at 0 FR between (a, 0) and (b, 0)
T = ZT" periodic at a FR between 0 and 1 FR between (a, 0) and (a, 1)

Conclusion: Fractional revival is polygamous!
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THANK YOUl

(Photo and drawings are obtained from Creative Commons.)
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