Mathematics

Quadratic equation:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Trigonometry:

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& \sin \theta=y / r \\
& \cos \theta=x / r \\
& \tan \theta=y / x
\end{aligned}
$$

Kinematics (for constant acceleration):
$v=v_{0}+a t$
$x=v_{0} t+\frac{1}{2} a t^{2}$

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a x \\
& x=v t-\frac{1}{2} a t^{2}
\end{aligned}
$$

Forces:

Newton's second law: $\quad \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}$
First condition for equilibrium: $\quad \sum \overrightarrow{\mathbf{F}}=0$
Gravity:
Gravitational force near the earth: $F=m g$
Newton's law of universal gravitation: $F=G \frac{m_{1} m_{2}}{r^{2}}$

$$
g=9.80 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

Friction:
Static: $\quad 0 \leq f_{s} \leq \mu_{s} F_{N}$ direction is always opposite to motion (or tendency to motion)
Kinetic: $f_{k}=\mu_{k} F_{N}$

Uniform Circular Motion

Period: $\quad T=\frac{2 \pi r}{v}$, where v is the speed of the object and r is the radius of the circle
Frequency: $\quad f=\frac{1}{T}$

$$
\theta(\text { in radians })=\frac{\text { Arc length }}{\text { radius }}
$$

Centripetal Acceleration:

$$
a_{c}=\frac{v^{2}}{r}
$$

Centripetal Force: $\quad F_{c}=\frac{m v^{2}}{r}$ (directed towards the centre)

Work, Energy, and Power:

Work:

Kinetic energy:

Potential energy:

\quad Gravitational (near Earth):	$\mathrm{PE}=m g h$
Work-energy theorem:	$W_{\mathrm{nc}}=\Delta \mathrm{KE}+\Delta \mathrm{PE}=E_{f}-E_{i}$
Total mechanical energy:	$E=\mathrm{KE}+\mathrm{PE}$
Conservation of mechanical energy:	$E=\mathrm{KE}+\mathrm{PE}=$ constant; $E_{f}=E_{i}$
Power (rate of doing work):	$\bar{P}=\frac{W}{t}$

Linear Momentum

Impulse:

$$
\overrightarrow{\mathbf{J}}=\overrightarrow{\overrightarrow{\mathbf{F}}} \Delta t=\Delta \overrightarrow{\mathbf{p}}=m \overrightarrow{\mathbf{v}}_{f}-m \overrightarrow{\mathbf{v}}_{i}
$$

Conservation of Momentum: $\overrightarrow{\mathbf{p}}_{i}=\overrightarrow{\mathbf{p}}_{f}$, if no external forces

Elastic collisions, $v_{2 i}=0$:

$$
v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}
$$

$$
v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}
$$

Torque and Angular Momentum

Torque:
Second condition of equilibrium:
Angular momentum:
Moment of inertia:
$\tau=F l=F r \sin \theta ; \quad l=($ lever arm $)=r \sin \theta$
$\sum \vec{\tau}=0$
$L=I \omega$ is conserved, in the absence of external torques
$I=\sum m r^{2}$

Simple Harmonic Motion

Hooke's law: \quad Restoring force $=F=-k x$
Elastic potential energy:

$$
\mathrm{PE}=\frac{1}{2} k x^{2}
$$

Displacement: $\quad x=A \cos (\omega t)$
(when $x=A$ at $t=0$)
Velocity: $v=-A \omega \sin (\omega t)$
Acceleration: $a=-A \omega^{2} \cos (\omega t)$

Frequency, Period

$$
\omega^{2}=\frac{k}{m} ; \quad f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} ; \quad T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{k}}
$$

Simple pendulum
$T=2 \pi \sqrt{\frac{L}{g}}$
Energy
$E=\mathrm{KE}+\mathrm{PE}=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}$
Fluids

Pressure:	$P=$ Force/Area
Pressure and Depth:	$P_{2}=P_{1}+\rho g h$
Continuity Equation:	$\rho_{1} v_{1} A_{1}=\rho_{2} v_{2} A_{2}$
Bernoulli's Equation:	$P+\rho g h+\frac{1}{2} \rho v^{2}=$ constant

Heat, Temperature and Kinetic Theory

Linear thermal expansion: $\quad \Delta L=\alpha L_{0} \Delta T$
Volume thermal expansion: $\quad \Delta V=\beta V_{0} \Delta T$
Heat and temperature change: $Q=c m \Delta T$
Heat required for change of phase: $\quad Q=m L$
Conduction of heat through a material: $\quad \frac{Q}{t}=\frac{k A \Delta T}{L}$
$n=\frac{N}{N_{A}}=\frac{m}{\text { mass per mole }}$
$N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$P V=n R T=\frac{2}{3} N \overline{\mathrm{KE}}$
$R=8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
$\overline{\mathrm{KE}}=\frac{1}{2} m v_{r m s}^{2}=\frac{3}{2} k T$
$0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$

Table of Constants
Phys1020 exams

Fundamental Constants

Constant	Symbol	SI value	Value in non-SI units
Gravitational Constant	G	$6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	
Avogadro's Number	N_{A}	$6.022 \times 10^{-23} \mathrm{~mol}^{-1}$	
Boltzmann's constant	k	$1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	$8.61 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
Gas Constant	R	$8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$	

Other useful physical data

Constant	Symbol	SI value	Value in non-SI units
Acceleration due to earth's gravity	g	$9.80 \mathrm{~m} / \mathrm{s}^{2}$	$980 \mathrm{~cm} / \mathrm{s}^{2}$
Standard atmospheric pressure		101.3 kPa	1.013 bar, 760 Torr
Density of air ($0{ }^{\circ} \mathrm{C}, 1 \mathrm{~atm}$)		$1.29 \mathrm{~kg} / \mathrm{m}^{3}$	$1.29 \mathrm{~g} / \mathrm{L}$
Speed of sound in air ($20^{\circ} \mathrm{C}$)		$343 \mathrm{~m} / \mathrm{s}$	
Water:			
Density (liquid)		$1000 \mathrm{~kg} / \mathrm{m}^{3}$	$1 \mathrm{~g} / \mathrm{cm}^{3}, 1 \mathrm{~g} / \mathrm{mL}$
Spec. heat capacity (liquid at $20^{\circ} \mathrm{C}$)		$4184 \mathrm{~J} /(\mathrm{kg} \mathrm{K})$	$1 \mathrm{cal} /(\mathrm{g} \mathrm{K})$
Spec. heat capacity (ice at $-10^{\circ} \mathrm{C}$)		$2030 \mathrm{~J} /(\mathrm{kg} \mathrm{K})$	$0.49 \mathrm{cal} /(\mathrm{g} \mathrm{K})$
Spec. heat capacity (steam at $100{ }^{\circ} \mathrm{C}$)		$2080 \mathrm{~J} /(\mathrm{kg} \mathrm{K})$	$0.50 \mathrm{cal} /(\mathrm{g} \mathrm{K})$
Latent heat of fusion		$3.35 \times 10^{5} \mathrm{~J} / \mathrm{kg}$	$80 \mathrm{cal} / \mathrm{g}$
Latent heat of vaporization		$2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$	$540 \mathrm{cal} / \mathrm{g}$
Earth			
Mass	M	$5.97 \times 10^{24} \mathrm{~kg}$	
Radius (equatorial)	$R_{\text {• }}$	$6.38 \times 10^{6} \mathrm{~m}$	
Orbital radius (mean)		$1.496 \times 10^{11} \mathrm{~m}$	$1 \mathrm{AU}, 149.6$ million km
Moon			
Mass		$7.35 \times 10^{22} \mathrm{~kg}$	
Radius (mean)		$1.74 \times 10^{6} \mathrm{~m}$	
Orbital radius (mean) (lunar distance)	LD or Δ_{\oplus} L	$3.85 \times 10^{8} \mathrm{~m}$	
Sun			
Mass	M	$1.988 \times 10^{30} \mathrm{~kg}$	
Radius	R 。	$6.957 \times 10^{8} \mathrm{~m}$	

Conversion factors

```
1 kcal = 4184 J
1 kWh = 3.6 MJ
1u=1 Da=1.6605 \times 10-27 kg
1 bar = 100 kPa = 760 Torr
1 L = 1000 cm 3}=1\mp@subsup{0}{}{-3}\mp@subsup{\textrm{m}}{}{3
\pi rad = 180
```

