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Figure 8-15. A graphical solution of the equation for eigenvalues of the first class of a
particular square well potential, [Solution of g tan g = V| mV,atf25® — &2 or ple) = q(e).]
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Figure 8-16. A graphical soluticn of the equation for eigenvalues of the second
elass of a particular square well potential, [Solution of —& cot £ = v mVya 2k — & or
rie} = qlg}]




1 .
_ Continuum
%

(1st class)

(2nd class)

(1st class)

Fy =081V,

Ep =037V,

Ey = 0.098Y,

Figure 8-17. The eigenvalues of a particular square well potential.
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Figure 8-18. The eigenfunctions for the bound eigenstates of a particular square well

potential.
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Figura B-19. The probability densities for the bound eigenstates of a particular square
well potential. .
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Figure 8-20. Hlustrating the approach to the classical limit of the probability density for
a square well potential. :
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Figure B-2[. An even parity unbound eigenfunction for a square well potential and 2
typical value of total energy. .
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Figure 8-22. An even parity unbound eigenfunction for a square well potential when

the total energy is at resonance.
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Figure 8-23. An infinite square well potential.
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Figure 8-24, The first efgenfunction for a finite square well potential.
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Figure 8-25. The first eigenfunction for an infinite square well potential.
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Figure B-26. The first few eigenvalues for an inflnite square well potenfial.
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Figure 8-29. The first few eigenfunctions for a simple harmonic oscillator potential.

RGING)
T /P(e)clsﬂiul .
z
s
&
2z
:
2
o
0 | IRIARIE | /RITRIAI I

- =4 =2 0 2 4 6
— E .
Figure 8-30. Illustrating the approach to the classical limit of the probability density for
a simple harmonic oscillator potential. Frem L. Pauling'and E. B. Wilson, Introduction to
Quantum Mechanics, McGraw-Hill Book Co., New York, 1935.




