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Abstract Scientists have explored how energetic particles such as solar energetic particles
and cosmic rays move through a magnetized plasma such as the interplanetary and inter-
stellar medium since more than five decades. From a theoretical point of view, this topic is
difficult because the particles experience complicated interactions with turbulent magnetic
fields. Besides turbulent fields, there are also large scale or mean magnetic fields break-
ing the symmetry in such systems and one has to distinguish between transport of particles
parallel and perpendicular with respect to such mean fields. In standard descriptions of trans-
port phenomena, one often assumes that the transport in both directions is normal diffusive
but non-diffusive transport was found in more recent work. This is in particular true for
early and intermediate times where the diffusive regime is not yet reached. In recent years
researchers employed advanced numerical tools in order to simulate the motion of those
particles through the aforementioned systems. Nevertheless, the analytical description of
the problem discussed here is of utmost importance since analytical forms of particle trans-
port parameters need to be known in several applications such as solar modulation studies
or investigations of shock acceleration. The latter process is directly linked to the question
of what the sources of high energy cosmic rays are, a problem which is considered to be
one of the most important problems of the sciences of the 21st century. The present review
article discusses analytical theories developed for describing particle transport across a large
scale magnetic field as well as field line random walk. A heuristic approach explaining the
basic physics of perpendicular transport is also presented. Simple analytical forms for the
perpendicular diffusion coefficient are proposed which can easily be incorporated in nu-
merical codes for solar modulation or shock acceleration studies. Test-particle simulations
are also discussed together with a comparison with analytical results. Several applications
such as cosmic ray propagation and diffusive shock acceleration are also part of this re-
view.
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1 Introduction

A fundamental problem in the sciences of the 20th and 21st centuries is to understand the
physics of cosmic rays. This includes both, the acceleration mechanism leading to the cre-
ation of such particles and their propagation through space. The exploration of cosmic rays
goes back to famous experimentalists such as Theodor Wulf and Victor Hess who measured
the rate of ion production via an electrometer on top of the Eiffel Tower and via balloon
flights. Such early measurements lead to the assumption that there is radiation coming from
space rather than originating in Earth’s crust. Victor Hess received the Nobel Prize of physics
in the year 1936 for the discovery of cosmic rays.

Cosmic rays consist mostly of protons, but also of alpha particles, electrons, and heavy
ions and their energy ranges from some keV up to about 1021 eV. This radiation can in-
deed be dangerous for humanity. For air crews and astronauts, for instance, the radiation
can cause damage to their tissue even leading to cancer. Furthermore, cosmic particles can
damage electronic devices leading to their malfunction and even some crashes of satellites
are believed to be related to the influence of these particles. The danger of cosmic radiation
would be a significant problem during a manned mission to Mars.

After the discovery of cosmic radiation by Wulf and Hess, the question arose quickly
where these particles are coming from. It is believed that the mechanism leading to the
creation of cosmic particles is diffusive shock acceleration sometimes called centrifugal
mechanism of acceleration or Fermi acceleration. Candidates for particle accelerators are
coronal mass ejection driven shocks, supernova shocks, and active galactic nuclei. In such
acceleration sites one finds propagating shock waves similar in comparison to the shock
wave associated with an atomic explosion. In astrophysics, however, the shock waves have
moving magnetic inhomogeneities. If an electrically charged particle crosses the shock front
and encounters a moving change in the magnetic field, it can get reflected back at increased
velocity. The same process can occur while the reflected particle crosses the front again.
Multiple reflections of this type will increase the particle’s energy significantly.

After leaving the acceleration site, cosmic particles propagate through space. However,
the space between planets, stars, and even galaxies is filled with a magnetized plasma. There-
fore, one finds turbulent magnetic fields which influence the motion of the particles. If those
fields would be absent, the electrically charged particles would perform a perfect helical
motion due to the interaction with large scale or mean magnetic fields. The turbulent fields
lead to diffusion along and across that background field making it very difficult to predict
the motion of particles through space. Therefore, the motion of cosmic particles as well as
their acceleration are described by complicated transport equations (see, e.g., Schlickeiser
2002; Zank 2014).

In magnetized plasmas one finds chaotic electric and magnetic fields associated with the
turbulent motion of the fluid. Due to the turbulent behavior of magnetic fields, for instance,
magnetic field lines are stochastic curves. This means that if a field line goes through a
particular point, one can only estimate the probability to find that field line somewhere
else. To study the stochastic behavior of magnetic field lines in turbulence is done in the
theory of field line random walk (FLRW). Energetic particles such as protons, electrons, and
heavy ions are electrically charged. Therefore, they interact with turbulent magnetic fields as
described by the Newton-Lorentz equation. Originally the interaction of energetic particles
and magnetic turbulence was described in the pioneering work of Jokipii (1966). It was
shown there that one needs to distinguish between diffusion of particles along and across
the mean magnetic field, as both processes behave very differently. Parallel diffusion, for
instance, is caused by pitch-angle scattering over an extended period of time. Perpendicular
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diffusion, on the other hand, is often assumed to be associated with the random walk of
chaotic magnetic field lines. However, this random walk alone cannot explain all aspects
of cross field diffusion. If particles follow random walking magnetic field lines, this would
either lead to an energy independent perpendicular mean free path (if the parallel motion is
assumed to be unperturbed) or to sub-diffusive transport (if the parallel motion is assumed to
be diffusive). It was shown via test-particle simulations that such results are unrealistic since
often perpendicular transport is diffusive rather than sub-diffusive. Furthermore, in general
the perpendicular mean free path shows a non-trivial energy-dependence.

The understanding of the motion of energetic particles through a plasma itself is an in-
teresting and fundamental problem of plasma physics, space science, as well as astronomy
and astrophysics. However, there are several applications of results obtained from studies of
particle transport. Analytical forms of the different diffusion coefficients are frequently used
to explore the following problems:

1. In the theoretical investigation of the acceleration of particles at shock waves one usually
solves a diffusive transport equation in order to compute the cosmic ray spectrum. Such
transport equations contain diffusion coefficients in the different directions of space. The
corresponding equation is then either solved analytically or numerically (see, e.g., Zank
et al. 2004; Dosch and Shalchi 2010; Li et al. 2012; Ferrand et al. 2014; Hu et al. 2017).

2. Energetic particles such as solar energetic particles or cosmic rays propagate through
the solar system, the Milky Way, or external galaxies. Like shock acceleration scenarios
their motion is described via diffusive transport equations containing again the different
diffusion parameters. In order to understand how the charged particles propagate in the
different systems, one needs to understand their diffusion process (see, e.g., Bieber et al.
1994; Shalchi and Schlickeiser 2005; Buffie et al. 2013).

3. In solar modulation studies one explores how the cosmic ray flux is altered by solar ac-
tivity. This is related because the flux of energetic particles strongly depends on the solar
wind. The interaction is either described by the pitch-angle dependent Fokker-Planck
equation or the aforementioned diffusive transport equation. Therefore, analytical forms
of diffusion coefficients are also highly relevant in investigations of solar modulation
(see, e.g. Hitge and Burger 2010; Engelbrecht and Burger 2010, 2014; Wawrzynczak
and Alania 2010; Alania et al. 2011; Potgieter and Nndanganeni 2013; Potgieter 2013;
Manuel et al. 2014; Potgieter et al. 2014; Ahluwalia and Ygbuhay 2015; Shen and Qin
2018).

In general, the equation of particle motion in the different scenarios described above can
be very complicated. Often the transport can be well described by Parker’s famous transport
equation (see Parker 1965)1
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Here we have used the momentum of the particle p, the plasma bulk velocity u, and the
components of the spatial diffusion tensor κij . On the left hand side we find variation in time
and convection whereas on the right hand side we have the terms of spatial diffusion, energy
gains, as well as a source term. A more general version of this equation with momentum
diffusion as well as adiabatic deceleration can be found in Schlickeiser (2002, Eq. (12.3.23)).

1Note that ∂f
∂ lnp

= p
∂f
∂p

leads to a slightly different form of the transport equation which can often be found
in the literature.
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In the rest frame of the moving plasma we have u = 0 and Eq. (1.1) turns into a usual
diffusion equation. Assuming axi-symmetry with respect to the mean magnetic field allows
us to use a diffusion tensor of the following form

κ =
⎛

⎝
κ⊥ κA 0

−κA κ⊥ 0
0 0 κ‖

⎞

⎠ , (1.2)

where we have used the parallel diffusion coefficient κ‖, the perpendicular diffusion coeffi-
cient κ⊥, and the drift coefficient κA. In the current review article we focus on the perpen-
dicular diffusion coefficient and treat the parallel diffusion coefficient as a variable entering
non-linear theories for perpendicular transport. The drift coefficient is not further discussed
in this review but it was explored in Engelbrecht et al. (2017) and its importance in solar
modulation studies was emphasized in Engelbrecht and Burger (2015).

Problematic in analytical studies of particle transport is that turbulent magnetic fields
have to be evaluated along the true particle trajectory. Due to the chaotic nature of the particle
motion, however, this is not possible without employing approximations. The original work
of Jokipii (1966) employed a perturbation theory approach in which the magnetic fields are
evaluated along the unperturbed particle orbit corresponding to a perfect helical motion. This
approach is usually called quasi-linear theory (QLT). From a more mathematical point of
view this approach is questionable because true particle orbits decorrelate from unperturbed
orbits if time passes and strictly speaking the quasi-linear approximation cannot be justified.
However, quasi-linear theory was somewhat successful with reproducing observed parallel
diffusion coefficients in interplanetary space as shown in the famous work of Bieber et al.
(1994). However, even in the context of parallel transport, there are problems associated
with this theory. For instance, quasi-linear theory cannot explain pitch-angle scattering at
pitch-angles close to 90◦ (see, e.g., Shalchi 2009a for a review). Furthermore, there seems
to be a non-linear contribution to pitch-angle scattering related to perpendicular scattering
and the transverse structure of the turbulence (see again Shalchi 2009a).

While quasi-linear theory is somewhat successful with describing transport of particles
along the mean magnetic field, it fails for perpendicular transport in almost all cases.2 Over
years several alternative theories were developed such as non-linear closure approximation
of Owens (1974) and the Bieber and Matthaeus (1997) model. Over time the performance
of computers was improved drastically leading to an alternative tool to compute particle
orbits and transport parameters of energetic particles interacting with turbulence (see, e.g.,
Giacalone and Jokipii 1994, 1999; Michałek and Ostrowski 1996; Mace et al. 2000, and Qin
et al. 2002a, 2002b). In such simulations one is still required to specify a certain turbulence
configuration as it is necessary in analytical theories but apart from this, the obtained results
are exact. However, the simulations do not provide analytical forms for particle diffusion
coefficients as needed in the various applications listed above.

As test-particle simulations became available, they were used to test the validity and
accuracy of analytical theories derived previously. It was shown that in particular for per-
pendicular transport previous approaches fail and in some cases there was complete dis-
agreement between simulations and analytical results. A major step forward in the theory

2It will be pointed out in the current review article that quasi-linear theory can be obtained as limiting pro-
cess for very long parallel mean free paths and very small Kubo numbers. The Kubo number is defined via
K = (�‖δBx)/(�⊥B0) where we have used the turbulence correlation scales in parallel and perpendicular di-
rections, the turbulent magnetic field, and the mean field. More details about the Kubo number can be found
in Sect. 3.2 of this review.
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of perpendicular transport was the development of the so-called non-linear guiding cen-
ter (NLGC) theory of Matthaeus et al. (2003). The latter theory is based on a series of
assumptions and approximations leading to a non-linear integral equation for the perpendic-
ular diffusion coefficient. The theory was the first analytical approach which showed good
agreement with simulations. However, there were at least two problems associated with this
theory:

1. As NLGC theory was developed, it was already known from simulations that perpen-
dicular transport is sub-diffusive if the turbulence lacks transverse complexity. However,
NLGC theory provides a finite perpendicular diffusion coefficient for this type of turbu-
lence which contradicts the sub-diffusive result. Later it was shown that NLGC theory
also fails for three-dimensional turbulence and small and intermediate Kubo numbers.

2. The agreement between NLGC theory and simulations was achieved only by incorporat-
ing a factor a2 = 1/3. The physics and the reason for this value remained unclear.

Therefore, it was concluded that NLGC theory was a major step forward in the analytical
description of perpendicular transport, but this theory cannot be the final solution of the
problem.

In order to further improve our understanding of perpendicular transport, several al-
ternative theory have been developed in more recent years. The unified non-linear trans-
port (UNLT) theory provided an integral equation similarly compared to NLGC theory
(see Shalchi 2010). However, UNLT theory has several strengths compared to previous ap-
proaches. Most important is that UNLT theory provides a vanishing perpendicular diffusion
coefficient for turbulence without transverse structure as seen in test-particle simulations.
Furthermore, the theory contains the Matthaeus et al. (1995) theory of random walking mag-
netic fields lines. Therefore, UNLT theory can be understood as unified theory for magnetic
field lines and perpendicular particle transport. Furthermore, the theory works for three-
dimensional turbulence in the small Kubo number regime (see Hussein et al. 2015). Then,
on the other hand, the theory still requires the correction parameter a2 = 1/3 if turbulence
with large Kubo numbers is considered.

A further improvement of our understanding was achieved via the time-dependent ver-
sion of UNLT theory developed in Shalchi (2017) and Lasuik and Shalchi (2017). This
theory is mathematically more complicated because it provides an integro-differential equa-
tion for perpendicular transport. This improved version of UNLT theory describes time-
dependent phenomena such as ballistic and sub-diffusive transport, but it was also the first
theory which explained the recovery of diffusion and that this effect is entirely due to the
transverse complexity of turbulence. Unfortunately, time-dependent UNLT theory still re-
quires the parameter a2 in some cases. Therefore, further improvements of non-linear ana-
lytical theories of perpendicular transport are required.

Besides the development of systematic analytical theories such as NLGC and UNLT
theories, there were also attempts to describe perpendicular transport based on heuristic ar-
guments. The most famous work in this context is the article published by Rechester and
Rosenbluth (1978) with the focus on energetic particle transport in fusion plasmas. In the
latter paper the importance of magnetic fields lines as well as the suppression of perpen-
dicular transport to a sub-diffusive level due to parallel diffusion was discussed. However,
due to Coulomb collisions and exponential field line separation, perpendicular transport
can be restored. However, in space and astrophysical plasmas, Coulomb collision should
be irrelevant and magnetic field lines should not separate exponentially. Therefore, it was
often stated that Rechester and Rosenbluth (1978) does not apply in astrophysical scenar-
ios (see, e.g., Matthaeus et al. 2003 for a brief discussion of this matter). However, in
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Shalchi (2015a) a Rechester & Rosenbluth type of diffusion coefficient was derived from
UNLT theory indicating that there is at least some connection between Rechester and Rosen-
bluth (1978) and energetic particle transport in space plasmas. In Shalchi (2019a) a heuris-
tic approach for perpendicular transport was developed providing different formulas for the
perpendicular diffusion coefficient. This finally provided an explanation of the parameter
a2 used in previous analytical theories. Furthermore, this heuristic approach explained how
systematic theories could be improved in the future which could lead to a complete under-
standing of perpendicular transport.

It is the purpose of this review article to discuss developments in the analytical theory of
perpendicular diffusion over the past 50 years. This also includes a brief review of heuris-
tic approaches and test-particle simulations. It will be shown that perpendicular diffusion
depends on the properties of the turbulent magnetic fields but also on parallel diffusion.
Therefore, this review will start with a discussion of various turbulence models which were
proposed in the literature over the past view decades (Sect. 2) followed by a review of theo-
ries developed for field line random walk (Sect. 3) a process that often controls perpendicu-
lar transport. Thereafter, the reader will find a short discussion of parallel particle transport
(Sect. 4). However, parallel diffusion itself is complicated and still subject of current re-
search. The main focus of this review is on perpendicular diffusion of energetic particles
(Sect. 5) with the emphasis on the unified non-linear transport theory including a discussion
of different transport regimes (Sect. 6), time-dependent transport (Sect. 7), simple analytical
forms (Sect. 8), and a recently developed heuristic approach (Sect. 9). Thereafter, there is
a discussion of numerical tools used in transport theory as well as a comparison between
simulations and analytical theory (Sect. 10). Although not the central point of this review,
the reader can also find some applications of the results discussed in this review (Sect. 11)
such as particle propagation through interplanetary and interstellar spaces as well as the
role of perpendicular diffusion in the theory of diffusive shock acceleration. At the end of
this article there will be a summary, a conclusion, and a short outlook (Sect. 12) discussing
unsolved problems and possible future projects.

2 Analytic Models for Magnetic Turbulence

In analytical theories for perpendicular diffusion the components of the so-called spectral
tensor are required as input as shown in Sect. 5. In the following we discuss different models
which were proposed in the past. It needs to be emphasized that the theoretical study of
turbulence is an ongoing field of research. Therefore, the models discussed in the following
are not supposed to be the final solution to the problem. Instead they should be understood
as examples sometimes motivated by solar wind observations or theoretical work. After
presenting these models, fundamental turbulence scales such as integral scales and the ultra-
scale are discussed.

2.1 Correlation and Spectral Tensors

Especially in astrophysics and space science we deal with magnetic turbulence. The knowl-
edge of the properties of these stochastic magnetic fields is important in several applications
such as the theory of field line random walk and cosmic ray propagation. We consider a
physical system where the total magnetic field is a position of a mean field B0 and a turbu-
lent component δBn

B(x, t) = B0ez + δB(x, t). (2.1)
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Whereas the mean field is assumed to be constant, the turbulent field is a stochastic quan-
tity depending on space and time. We can describe magnetic turbulence via the magnetic
correlation tensor in the configuration space whose components are defined as

Rnm(x,x0, t, t0) = 〈
δBn(x, t)δB∗

m(x0, t0)
〉
. (2.2)

The brackets used here denote the ensemble average and δB∗
m corresponds to the complex

conjugate of the turbulent magnetic field component δBm. The functions Rnm describe how
the magnetic field at position x and time t is related to the magnetic field at position x0 and
time t0. Therefore, the functions Rnm are also called the two-point-two-time correlations.
Alternatively, we can describe turbulence in the Fourier space. The magnetic fields in con-
figuration and wave vector space are linked to each other via a usual Fourier transformation

δBn(x, t) =
∫

d3kδBn(k, t)eix·k. (2.3)

Therewith, the two-point-two-time correlations defined via Eq. (2.2) can be written as

Rnm(x,x0, t, t0) =
∫

d3k

∫
d3k′〈δBn(k, t)δB∗

m

(
k′, t0

)〉
eix·k−ix0·k′

. (2.4)

It has to be noted that here x and x0 are well-defined positions in space. An example for a
well-defined orbit would be a space probe measuring magnetic fields via a magnetometer.
In this case the trajectory of the probe is uncorrelated to the magnetic field. The situation is
different in the theory of field line random walk and energetic particle transport where the
position vectors are stochastic quantities somehow related to the magnetic fields. This will
require special techniques as discussed later in this review.

If the turbulence is homogeneous, the correlations discussed here must only depend on
the distance between the two considered points. Furthermore, if the turbulence is stationary,
we can apply the same argument on time meaning that

Rnm(x,x0, t, t0) = Rnm(x − x0, t − t0). (2.5)

Therefore, we require

〈
δBn(k, t)δB∗

m

(
k′, t0

)〉= Pnm(k,�t)δ
(
k − k′) (2.6)

where we have used the Dirac delta and the time-difference �t = t − t0. Eq. (2.6) defines
the components of the spectral tensor Pnm. This tensor is a very fundamental quantity in
the theory of turbulence and energetic particle transport as we shall see later. By employing
Eq. (2.6), we derive from Eq. (2.4)

Rnm(x, t) =
∫

d3kPnm(k,�t)eik·(x−x0) (2.7)

clearly showing that now the turbulence is indeed homogeneous and stationary. Usually we
set x0 = 0 and t0 = 0 for convenience so that we find

Rnm(x, t) =
∫

d3kPnm(k, t)eix·k. (2.8)

Here we still allow the spectral tensor to be time-dependent.
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Table 1 The dynamical correlation function �(k, t) controls the time-dependence of magnetic turbulence
(see, e.g., Eq. (2.9) of the current review). This table shows the different models commonly used in the
literature. The damping model of dynamical turbulence as well as the random sweeping model were discussed
in Bieber et al. (1994). Various plasma wave propagation models including damping, on the other hand, were
discussed in Schlickeiser (2002). In this table we have used the Alfvén speed vA, the plasma wave frequency
ω, the damping parameter γ , as well as the free parameter α

Model Dynamical correlation function

Magnetostatic turbulence �(k, t) = 1

Undamped shear Alfvén waves �(k, t) = e±ivAk‖t

General wave propagation model with damping �(k, t) = eiωt−γ t

Damping model of dynamical turbulence �(k, t) = e−αvAkt

Random sweeping model �(k, t) = e−(αvAkt)2

Often we assume the same temporal behavior of all tensor components meaning that we
write (see, e.g., Edwards 1964; Bieber et al. 1994 for more details)

Pnm(k, t) = Pnm(k)�(k, t) (2.9)

where we used the static tensor components Pnm(k) and the so-called dynamical correla-
tion function �(k, t). The latter function contains all information about the turbulence dy-
namics. This includes, for instance, wave propagation effects. Over the past three decades
scientists developed a more complete understanding of the time scales of turbulence (see,
e.g., Matthaeus et al. 1990; Tu and Marsch 1993; Zhou et al. 2004; Oughton et al. 2006).
Based on this improved understanding, Shalchi et al. (2006) have formulated the so-called
non-linear anisotropic dynamical turbulence (NADT) model for the dynamical correlation
function. Some examples of models for dynamical turbulence are listed in Table 1. In some
articles perpendicular diffusion was explored for dynamical turbulence (see, e.g., Shalchi
et al. 2004b, 2006; Shalchi 2014; Hussein and Shalchi 2016) but it seems that dynamical
turbulence effects are less important for perpendicular transport.3 Therefore, we focus on
static turbulence where, by definition �(k, t) = 1, throughout this review. However, it has
to be emphasized that dynamical turbulence can be very important for parallel diffusion
(see, e.g., Bieber et al. 1994; Shalchi et al. 2006). As shown later in this review, the per-
pendicular diffusion coefficient depends upon the parallel diffusion coefficient. Therefore,
dynamical turbulence effects do indeed have an influence on perpendicular diffusion but
this influence occurs only indirectly via the parallel diffusion coefficient.4 In most analytical
considerations presented in this review, the parallel diffusion coefficient is only an input pa-
rameter in theories for perpendicular transport and thus, we do not have to worry too much
about dynamical turbulence effects. In the context of parallel transport the magnetostatic
approximation can often be justified by considering particles moving much faster than the
Alfvén speed. An example are galactic cosmic rays propagating through the interplanetary
space.

In studies of particle transport one also often assumes that the turbulence is axi-
symmetric with respect to the mean magnetic field B0 = B0ez. However, there are several

3It has to be noted that Rappazzo et al. (2012) and Ruffolo and Matthaeus (2015) have explored dynamical
changes of connectivity by using numerical and analytical tools, respectively. The authors found that the field
line diffusion coefficient is altered which can have an influence on perpendicular particle transport.
4When trapping effects are included, this may not be strictly correct (for example see Giacalone et al. 2000;
Ruffolo et al. 2003; Chuychai et al. 2005; Tooprakai et al. 2016; Rappazzo et al. 2017).
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studies who dealt with cases where turbulence is no longer axi-symmetric. Ruffolo et al.
(2008), for instance, studied perpendicular diffusion of energetic particles in two-component
asymmetric turbulence. Furthermore, we often neglect magnetic helicity but this effect and
its importance in particle transport theory was also explored in some previous work (see,
e.g., Dung and Schlickeiser 1990; Tautz and Lerche 2011). As shown in Matthaeus and
Smith (1981), the components of the spectral tensor have the following form

Pnm(k) = g(k‖, k⊥)

(
δnm − knkm

k2
⊥

)
(2.10)

for axi-symmetry and vanishing magnetic helicity. In Eq. (2.10) we have used the Kronecker
delta δnm and n,m = x, y. Furthermore, we set Pnm = 0 if n = z and/or m = z meaning that
we consider the reduced case δBz = 0 corresponding to incompressible turbulence. The
theories for field line random walk and perpendicular particle transport discussed in this
review were derived for this case but it is usually assumed that those theories are valid as
long as δBz < B0. Since we usually deal with axi-symmetric cases, we employ cylindrical
coordinates (k⊥, � , k‖) rather than Cartesian coordinates (kx , ky , kz) in the spectral function
g(k‖, k⊥). The relations between these two sets of coordinates are

k⊥ =
√

k2
x + k2

y kx = k⊥ cos�

� = arccot(kx/ky) ⇐⇒ ky = k⊥ sin� (2.11)

k‖ = kz kz = k‖.

The form given by Eq. (2.10) automatically satisfies the solenoidal constraint ∇ · δB = 0
corresponding to k · δB = 0. In order to show this we consider

∑

n

knPnm = g(k‖, k⊥)

(∑

n

knδnm −
∑

n

k2
nkm

k2
⊥

)
= 0. (2.12)

In the next few subsections, we discuss different models for the function g(k‖, k⊥). This
will include models with reduced dimensionality, superpositions thereof, but also full three-
dimensional turbulence models.

2.2 Slab Turbulence

One of the simplest models for magnetic turbulence is the slab model. Physically this model
is motivated in terms of shear Alfvén waves propagating along the mean field and it was
often employed in early studies of particle diffusion (see, e.g., Jokipii 1966). In slab turbu-
lence the stochastic magnetic field depends only on the coordinate along the mean field, i.e.,
δB(x) = δB(z). Therefore, the components of the magnetic correlation tensor are given by

P slab
nm (k) = gslab(k‖)

δ(k⊥)

k⊥
δnm (2.13)

for n,m = x, y. Clearly this is a special case of the form given by Eq. (2.10). Due to the
Dirac delta δ(k⊥) in Eq. (2.13), all wave vectors are aligned parallel with respect to the
mean magnetic field. Figure 1 shows flux surfaces for slab turbulence. In this case there is
no transverse structure of the turbulence. Transverse complexity, however, is an important
feature in the theory of perpendicular diffusion as we shall see later.
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Fig. 1 Flux surfaces for the slab
model where the magnetic
turbulence does not have
transverse structure at all.
Reprinted with permission from
The American Astronomical
Society—Matthaeus et al. (2003)

Different models have been discussed in the literature for the model spectrum gslab(k‖).
Figure 2 shows a measured spectrum as obtained in the heliosphere via magnetometer mea-
surements performed by the Helios 2 space probe. Figure 2 shows the spectrum as a func-
tion of frequency. A comprehensive discussion of the relation between frequency and wave
number is given in Bieber et al. (1996). Assuming that one has pure slab turbulence, for
instance, this relation is vswk‖ = 2πf (see equation (11) of Bieber et al. 1996 for the case
� = 0) where vsw is the solar wind speed. In general one expects to find three different
ranges of spectral scales as explained nicely in Zhou and Matthaeus (2005):

1. The energy range: The energy containing scales control the overall dynamics of turbu-
lence and are responsible for energy transport. Those are the largest scales corresponding
to small wave numbers or frequencies. Figure 2 indicates that in the energy range the
spectrum scales like ∝ k−1.

2. The inertial range: It is assumed that the dynamics of the scales of the inertial range
are not influenced by the low-frequency scales of external energy sources nor are they
influenced by the high-frequency dissipation and magnetic diffusivity scales. This is the
fundamental reason for the universal nature of the inertial range. According to Fig. 2 we
find that the spectrum scales like ∝ k−5/3 as predicted in the famous work of Kolmogorov
(1941).

3. The dissipation range: The energy of the turbulence is transferred through the inertial
range to the small scales where dissipation takes place. The turnover from the inertial
range to the dissipation range is characterized by a sudden change of the spectral index.
In Fig. 2, for instance, we can clearly see a change from a Kolmogorov behavior to a
steeper spectrum with ∝ k−2.85.

As also discussed in Zhou and Matthaeus (2005), there could also be what they call a far-
dissipation range where the spectrum should decrease exponentially with wave number.
Matthaeus et al. (2007), on the other hand, discussed in more detail the largest scales of
magnetic turbulence and discussed the possibility of having different sub-regimes in the
energy range.

Important for perpendicular diffusion are the large scales of the energy range (see, e.g.,
Shalchi et al. 2010; Qin and Shalchi 2012). Therefore, this part of the spectrum cannot be
neglected. Furthermore, the intermediate scales of the inertial range are at least somewhat
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Fig. 2 The measured turbulence
spectrum in the heliosphere as
obtained by the Helios 2 mission.
As discussed in Bieber et al.
(1996), frequency and wave
number k are directly
proportional to each other.
Clearly, we can see the three
ranges of the spectrum: for small
wave numbers we find ∝ k−1

(energy range), for intermediate
wave numbers we find a
Kolmogorov spectrum ∝ k−1.7

(inertial range), and for large
wave numbers, we find a steep
spectrum ∝ k−2.85 (dissipation
range). Reprinted with
permission from NASA
Conference
Publication—Denskat and
Neubauer (1982)

important. They are not directly relevant for perpendicular transport but essential for parallel
diffusion. As shown later in this review perpendicular diffusion depends on parallel transport
meaning that there in an indirect influence of the inertial range. A slab spectrum which takes
into account energy and inertial ranges has been presented in Bieber et al. (1994) where the
following model has been used

gslab(k‖) = 1

2π
C(s)δB2

slab�‖
[
1 + (k‖�‖)2

]−s/2
. (2.14)

In this form it is assumed that the spectrum is perfectly flat for the small wave numbers of
the energy range. The characteristic scale �‖ at which the turnover from the energy range to
the inertial range occurs is called the bendover scale. For larger wave numbers the Bieber
et al. spectrum decreases with ∝ k−s

‖ where the inertial range spectral index s is often set
to s = 5/3 as originally obtained in Kolmogorov (1941). It has to be pointed out that the
original work of Kolmogorov dealt with a purely hydrodynamic system and the considered
turbulent field is the velocity field. Here we consider magnetic turbulence which can be
different. However, as shown in Fig. 2, there are indications that one can indeed find a
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Kolmogorov spectrum in real astrophysical scenarios. This is at least true in the context of
solar wind turbulence.

It is convenient to introduce the notation

δB2
n :=

∫
d3kPnn(k) (2.15)

where δBn is the total turbulent magnetic field strength in the n-direction. Any type of
turbulence model described by the corresponding spectral tensor has to be normalized so
that

δB2 = δB2
x + δB2

y + δB2
z

=
∫

d3k
[
Pxx(k) + Pyy(k) + Pzz(k)

]
(2.16)

where we used the total turbulent magnetic field δB . The quantity δB2 corresponds to the
total magnetic energy density except some numerical factors.5 Often in this review, the slab
model is just an example, we consider the incompressible case where δBz = 0 and, thus,
Pzz = 0. If the slab model (2.13) and spectrum (2.14) are used in condition (2.16), it follows
that6

δB2
slab = 8π

∫ ∞

0
dk‖gslab(k‖)

= 4C(s)δB2
slab�‖

∫ ∞

0
dk‖

[
1 + (k‖�‖)2

]−s/2

= 2
√

π�( s−1
2 )

�( s
2 )

C(s)δB2
slab (2.17)

where we solved the k‖-integral with the help of Gradshteyn and Ryzhik (2000). Therefore,
we find for the normalization function

C(s) = �( s
2 )

2
√

π�( s−1
2 )

(2.18)

where we have used gamma functions. For a Kolmogorov spectrum, for instance, we have
C(s = 5/3) ≈ 0.1188.

2.3 Two-Dimensional Turbulence

Another popular model for magnetic turbulence is the two-dimensional (2D) model. This
model can be understood as the opposite compared to the slab model discussed in the previ-
ous subsection. By definition we assume here that δB(x) = δB(x, y). A detailed motivation

5The energy density of a magnetic field is given by w = B2/(2μ0) in SI units and w = B2/(8π) in cgs or
Gaussian units.
6In this review we do not delve too much into the theory of delta distributions but it should be noted for
clarity that in cylindrical coordinates we have

∫∞
0 dk⊥δ(k⊥) = 1. If the Dirac delta involving the parallel

wave number is integrated, on the other hand, we have
∫+∞
−∞ dk‖δ(k‖) = 1. Both relations are frequently

used in this review.
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for two-dimensional modes is given by Bieber et al. (1996). Although the focus in the latter
paper as well as in this review is on space and astrophysical plasmas, it should be noted
that two-dimensional modes are also well-known in studies of tokamak plasmas (see, e.g.,
Zweben et al. 1979).

In the case of two-dimensional turbulence, the components of the spectral tensor are

P 2D
nm (k) = g2D(k⊥)

δ(k‖)
k⊥

(
δnm − knkm

k2
⊥

)
(2.19)

if n,m = x, y and Pnz = Pzm = Pzz = 0. In this particular model the magnetic field vector
as well as the spatial dependence are two-dimensional meaning that they are contained in
the plane perpendicular with respect to the mean field. Equation (2.19) is a special case
of Eq. (2.10) meaning that the solenoidal constraint is automatically satisfied. Again we
need to specify the model spectrum g2D(k⊥). As for the slab model, we employ a form
which contains energy and inertial ranges. The following form was proposed in Shalchi and
Weinhorst (2009)

g2D(k⊥) = 2D(s, q)

π
δB2

2D�⊥
(k⊥�⊥)q

[1 + (k⊥�⊥)2](s+q)/2
. (2.20)

The latter spectrum contains the characteristic scale �⊥ denoting again the turnover from the
energy to the inertial range. In the inertial range the spectrum scales like ∝ k−s

⊥ whereas in
the energy range it scales like ∝ k

q

⊥. In order to determine D(s, q), we employ the normal-
ization condition (2.16). Using Eqs. (2.19) and (2.20) in that condition allows us to derive
(see again Gradshteyn and Ryzhik 2000 for the solution of the occurring integral)

δB2
2D = 2π

∫ ∞

0
dk⊥g2D(k⊥)

= 4D(s, q)δB2
2D�⊥

∫ ∞

0
dk⊥

(k⊥�⊥)q

[1 + (k⊥�⊥)2](s+q)/2

= 4D(s, q)δB2
2D

�( s−1
2 )�(

q+1
2 )

2�(
s+q

2 )
(2.21)

where we assumed that q > −1 and s > 1. Otherwise the k⊥-integral would not be conver-
gent. This means that spectrum (2.20) is only correctly normalized if these restrictions for
the two spectral indices are satisfied. Furthermore, it follows that the normalization function
in the spectrum has the following form

D(s, q) = �(
s+q

2 )

2�( s−1
2 )�(

q+1
2 )

(2.22)

where we have used again gamma functions. Equation (2.22) is related to Eq. (2.18) via
D(s, q = 0) = C(s). Spectrum (2.20) is visualized in Fig. 3 for different values of the energy
range spectral index q . For most calculations involving two-dimensional modes, we set s =
5/3 and q = 3. The possible values of the energy range spectral index were discussed in the
work of Matthaeus et al. (2007). The latter authors computed different scales of turbulence
such as integral scales and the ultra-scale for different spectra. Requiring that those scales are
finite, the work of Matthaeus et al. (2007) leads to the assumption that q > 1 (see Sect. 2.10
for the calculation of integral and ultra-scales) in the model spectrum given by Eq. (2.20).
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Fig. 3 The turbulence spectrum
of the two-dimensional modes as
given by Eq. (2.20) for different
values of the energy range
spectral index q . As examples we
have shown the spectrum for
q = −0.5 (dotted line), q = 0
(dashed line), and q = 3 (solid
line). The diamonds indicate the
corresponding grid used in
test-particle simulations (see
Sect. 10 and specifically Eq.
(10.8) of this review)

It has to be mentioned that for q = 0, the two-dimensional spectrum of Eq. (2.20) becomes
identical to the slab spectrum (2.14). This type of spectrum was very popular a few decades
ago (see, e.g., Bieber et al. 1994; Shalchi et al. 2004a) but motivated by Matthaeus et al.
2007, spectra with q > 1 are now favored. It has to be emphasized that spectrum (2.20)
is a particular case satisfying the various physical requirements discussed in general terms
by Matthaeus et al. (2007). In the latter article one can find alternative forms of spectra
satisfying those requirements.

2.4 Two-Component Turbulence

Above we have considered the slab and the two-dimensional models as examples. It is often
assumed that turbulence in the solar wind can be approximated by a two-component model
in which a superposition of slab and two-dimensional modes is considered. This type of tur-
bulence approximation is motivated and supported by analytical investigations, simulations,
and solar wind observations (see, e.g., Matthaeus et al. 1990, 1996; Zank and Matthaeus
1993; Oughton et al. 1994; Bieber et al. 1996; Dasso et al. 2005; Shaikh and Zank 2007;
Hunana and Zank 2010; Zank et al. 2017). In Fig. 4 we show magnetic correlations obtained
via solar wind observations. The data shown there was published in Matthaeus et al. (1990)
and is based on magnetometer measurements made aboard the International Sun/Earth Ex-
plorer 3 (ISEE-3) spacecraft also known as International Cometary Explorer (ICE). We
can clearly see the cross structure supporting the idea of having a superposition of slab and
two-dimensional modes.

Therefore, we superpose the magnetic field associated with slab modes and the field asso-
ciated with two-dimensional modes and assume that these two are uncorrelated. Therefore,
within the slab/2D composite model, the components of the spectral tensor are written as

P comp
nm (k) = P slab

nm (k) + P 2D
nm (k) (2.23)

where the slab and two-dimensional tensors are given by Eqs. (2.13) and (2.19), respectively.
For the spectra we can still employ Eqs. (2.14) and (2.20). The quantities δB2

slab and δB2
2D

therein are the magnetic energy densities associated with slab and two-dimensional modes.
Often we replace them by the so-called slab fraction δB2

slab/δB
2 and the two-dimensional

fraction δB2
2D/δB2, respectively. Here we have used the total turbulent magnetic field δB =√

δB2
slab + δB2

2D . Realistic values in the solar wind at 1 AU heliocentric distance should be

δB2
slab/δB

2 = 0.2 and δB2
2D/δB2 = 0.8 as discussed in Bieber et al. (1994) as well as Bieber
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Fig. 4 A contour plot of the
magnetic correlation function of
solar wind fluctuations as a
function of distance parallel and
perpendicular with respect to the
mean magnetic field. The
separations in r‖ and r⊥ are in

units of 1010 cm. Reprinted with
permission from The American
Geophysical Union—Matthaeus
et al. (1990)

Fig. 5 Flux surfaces for the
slab/2D model where the
magnetic turbulence does have
considerable transverse
complexity. Reprinted with
permission from The American
Astronomical Society, Matthaeus
et al. (2003)

et al. (1996). Compared to the slab model we now generated turbulence with transverse
structure because the total turbulent magnetic field is now

δB(x, y, z) = δBslab(z) + δB2D(x, y). (2.24)

Figure 5 shows flux surfaces for two-component turbulence.

2.5 Noisy Slab Turbulence

So far we have considered models with reduced dimensionality and superpositions thereof.
One can also find a variety of full three-dimensional models in the literature. One example
is the so-called noisy slab model. The idea is to consider the slab model and include some
noise so that the model becomes three-dimensional. This idea was originally developed
in Weinhorst and Shalchi (2010) but was also used in Ruffolo and Matthaeus (2013) in
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the context of two-dimensional turbulence (see next subsection). The noisy slab model, as
discussed in the following, was formulated the first time in Shalchi (2015a). In this case the
components of the spectral tensor are given by

P ns
nm(k) = gslab(k‖)

2�⊥
k⊥

(1 − k⊥�⊥)

(
δnm − knkm

k2
⊥

)
(2.25)

where �⊥ denotes a characteristic scale describing the correlation of magnetic fields across
the mean field. In Eq. (2.25) we have employed the Heaviside step function (x) which is
defined so that

(x) =
{

0 for x < 0
1 for x > 0.

(2.26)

Therefore, (1 − k⊥�⊥) = 0 for k⊥�⊥ > 1 meaning that there is a cut-off at k⊥ = 1/�⊥.
For the model spectrum gslab(k‖) one can employ the same form as used above for pure
slab turbulence (see, e.g., Eq. (2.14) of this review). Due to the step function in Eq. (2.25),
the wave vectors are no longer aligned perfectly parallel with respect to the mean field.
However, the idea here is that the parameter �⊥ is large so that the width of the distribution
of wave numbers in the perpendicular direction is small.

The noisy slab model is useful to study the importance of transverse complexity in the
theory of perpendicular diffusion as shown throughout this paper. In the limit �⊥ → ∞ one
can obtain the usual slab model from the more general noisy slab model. Mathematically
this is due to the function �⊥(1 − k⊥�⊥) behaving like a Dirac delta for �⊥ → ∞. Further-
more, the weak transverse complexity allows one to study field line random walk and field
line separation by using higher-order perturbation theory and to drop some approximations
usually required in this field (see Shalchi 2019b).

2.6 Noisy Reduced MHD Turbulence

The idea of broadening a model with reduced dimensionality can also be used for two-
dimensional turbulence. Ruffolo and Matthaeus (2013) called this model the Noisy Reduced
MHD (NRMHD) model. In this case the components of the magnetic correlation tensor have
the following form

P nr
mn(k) = g2D(k⊥)

�‖
2k⊥


(
1 − |k‖|�‖

)(
δmn − kmkn

k2
⊥

)
(2.27)

where we have employed the Heaviside step function (x) as defined in Eq. (2.26). The
function g2D(k⊥) is the usual two-dimensional model spectrum discussed before in this
review. In transport theory the NRMHD model is useful in order to study particle transport
in large Kubo number turbulence. Considering the limit �‖ → ∞ would restore the two-
dimensional model discussed in Sect. 2.3.

2.7 The Gaussian Correlation Model

Above we discussed different models for magnetic turbulence. Those models were either
models with reduced dimensionality or extensions thereof. In the past full three-dimensional
models were discussed as well. The simplest model would be the isotropic model but there
are also more complicated models such as the anisotropic models used by Lerche and
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Schlickeiser (2001) and Zimbardo et al. (2006). An alternative model for three-dimensional
turbulence is the Gaussian model. This is not very realistic in the context of astrophysics and
space science but is often used in theoretical studies of fusion plasmas (see, e.g., Spatschek
2008 for a review). Special care is required since the Gaussian model must not be used to
study parallel transport. As will be demonstrated in Sect. 4 of this review, the inertial range,
which is neglected in the Gaussian model, controls pitch-angle scattering and parallel spa-
tial diffusion for intermediate particle energies. Therefore, the Gaussian model is unrealistic
in the context of particle transport in space plasmas. However, due to its three-dimensional
structure, it can be used for the analytical exploration of field line random walk and it can be
used to determine the relation between the parallel and perpendicular diffusion coefficients
if non-linear theories are considered.

In the following we use a generalized Gaussian decorrelation model which contains a
general behavior in the energy range of the spectrum in the perpendicular direction. For the
incompressible case the components of the spectral tensor are given by Eq. (2.10). For the
model spectrum we now consider the form

gGauss(k‖, k⊥) = E(q)�‖�2
⊥δB2

x (�⊥k⊥)q−1

× e− 1
2 (�‖k‖)2− 1

2 (�⊥k⊥)2
(2.28)

with the normalization function

E(q) = 2(3−q)/2

(2π)3/2�((q + 1)/2)
. (2.29)

The function E(q) can easily be obtained by combining Eq. (2.28) with the normalization
condition (2.16). In Eq. (2.28) we have used the energy range spectral index q , the total
magnetic field strength in the x-direction δBx , as well as the bendover scales in the parallel
and perpendicular direction �‖ and �⊥, respectively. For the case q = 3 we can easily recover
the Gaussian correlation model which was used elsewhere (see, e.g., Neuer and Spatschek
2006). In this case we have

E(q = 3) = 1

(2π)3/2�(2)
= 1

(2π)3/2
(2.30)

for the normalization function.

2.8 Goldreich-Sridhar Turbulence

In the famous paper Goldreich and Sridhar (1995), the authors explored strong Alfvénic tur-
bulence. Their investigations focused on the case where oppositely directed Alfvén waves
carry equal energy fluxes. As explicitly stated in Goldreich and Sridhar (1995), this pre-
cludes the application to the solar wind in which the outward flux significantly exceeds the
ingoing one. Therefore, we use the ideas of Goldreich and Sridhar to approximate interstel-
lar turbulence in the current review whereas interplanetary turbulence is usually modeled
via two-component turbulence.

Furthermore, the work of Goldreich & Sridhar is based on incompressible magnetohy-
drodynamics. In the context of field line and particle transport, this corresponds to the case
δBz = 0 considered before in this review. Therefore, our considerations are based on the
spectral tensor given by Eq. (2.10). In the following our aim is to develop a spectral function
g(k‖, k⊥) which exhibits all the aspects of turbulence described in Goldreich and Sridhar
(1995). In order to do this we perform the following steps:



   23 Page 18 of 134 A. Shalchi

1. The inertial range of the spectrum exhibits a so-called critical balance between linear
wave periods and non-linear turnover time scales. In terms of parallel and perpendicular
wave numbers, this critical balance condition can be written as

|k‖| ∝ k
2/3
⊥ �−1/3 (critical balance) (2.31)

where � is the outer scale of turbulence. In order to estimate the spectrum g(k‖, k⊥) we
take into account the critical balance condition via

gGS(k‖, k⊥) ∝ e−(|k‖|k−2/3
⊥ �1/3). (2.32)

The exponential here was not used in the original work of Goldreich and Sridhar (1995)
but it is one of the simplest ways to incorporate the critical balance condition and was
originally used in Cho et al. (2002).

2. The one-dimensional spectrum is assumed to be proportional to k
−5/3
⊥ corresponding to

Kolmogorov (1941) but in the perpendicular direction. Therefore, we assume

gGS(k‖, k⊥) ∝ kν
⊥e−(|k‖|k−2/3

⊥ �1/3) (2.33)

and determine the exponent ν by requiring

k⊥
∫ +∞

−∞
dk‖gGS(k‖, k⊥) ∝ k

−5/3
⊥ . (2.34)

After some straightforward algebra we derive ν = −10/3.
3. The work of Goldreich & Sridhar focused on the inertial range of the spectrum. The

parameter � used above can be used as a cut-off in the spectrum. This can be incorporated
via a Heaviside step function so that

gGS(k‖, k⊥) = Ck
−10/3
⊥ e−(|k‖|k−2/3

⊥ �1/3)(k⊥� − 1) (2.35)

with the normalization constant C.
4. The remaining step is the normalization of the spectrum. For the incompressible case the

normalization condition yields

δB2 =
∫

d3kgGS(k‖, k⊥). (2.36)

Using the spectrum given by Eq. (2.35) therein allows us to derive

C = 1

6π
�−1/3δB2 (2.37)

and the remaining constant in Eq. (2.35) is known.

Finally we arrive at a spectral function in accordance with the work of Goldreich and Sridhar
(1995), namely

gGS(k‖, k⊥) = 1

6π
δB2�−1/3k

−10/3
⊥

× e−�1/3|k‖|k−2/3
⊥ (k⊥� − 1). (2.38)
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Although this might be a useful form for certain applications, the main problem here is that
the critical balance condition was derived for the inertial range of the spectrum. Field line
and perpendicular particle transport, however, are controlled by the large scales of the energy
range. Therefore, it is questionable whether the critical balance condition really matters in
this field of research. Nevertheless, we still consider the spectrum given by Eq. (2.38) as an
example throughout this review.

Cho et al. (2002) have proposed a form for the spectral tensor which is almost identical
compared to the form discussed above. However, they considered the compressible case
(δBz �= 0) and, thus, the components of the spectral tensor are now given by

P Cho
nm (k) = gCho(k‖, k⊥)

(
δnm − knkm

k2

)
(2.39)

where n,m = x, y, z. Since we now consider the compressible case, this is not longer a
special case of Eq. (2.10). Furthermore, Cho et al. (2002) altered the spectrum slightly and
proposed

gCho(k‖, k⊥) = δB2

12π
E

−4/3
B �−1/3k

−10/3
⊥

× e−(�1/3|k‖|)/(E4/3
B

k
2/3
⊥ )(k⊥� − 1). (2.40)

The factors in this model were chosen to satisfy the normalization constraint (2.16) which
includes, in this case, a non-vanishing δBz. Furthermore, we have used the ratio of the tur-
bulent and the mean field EB ≡ δB/B0 also known as the Alfvénic Mach number.

Problematic in Eqs. (2.38) and (2.40) is that the energy containing range is neglected
because there in no turbulent magnetic field for k⊥ < 1/�⊥. The large scales of the energy
range are crucial in the theory of field line random walk and perpendicular transport of
energetic particles and should not be neglected. However, one can combine Eq. (2.40) with
some ideas discussed above in the context of two-dimensional turbulence. Thus, in Shalchi
(2013a) the following generalization was presented

gGS(k‖, k⊥) = D(s, q)

2π
�3δB2

× (k⊥�)q−s

[1 + (k⊥�)2](s+q)/2
e−�2−s |k‖|k1−s

⊥ (2.41)

which is only valid for s = 5/3. Compared to Eq. (2.40), the latter spectrum takes into
account a more general behavior at large scales corresponding to the energy range. The
normalization function D(s, q) is defined in Eq. (2.22) and the parameter q corresponds
again to the energy range spectral index. Sun and Jokipii (2011) used a very similar spectrum
in their test-particle simulations but set q = 0.

In order to understand the relation between Eq. (2.41) and other spectra used in the
literature, one can integrate the spectrum over all parallel wave numbers and we find the
reduced perpendicular spectrum

gGS
⊥ (k⊥) = k⊥

∫ +∞

−∞
dk‖gGS(k‖, k⊥). (2.42)
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Using spectrum (2.41) in the latter equation, and after some straightforward algebra, we
deduce

gGS
⊥ (k⊥) = D(s, q)

π
�δB2 (k⊥�)q

[1 + (k⊥�)2](s+q)/2
(2.43)

in agreement with the Shalchi & Weinhorst spectrum7 given by Eq. (2.20) if this is also
integrated over all parallel wave numbers.

2.9 Further Turbulence Effects

Above, we have focused on incompressible cases where δBz = 0. To explore compressible
turbulence can become relevant in scenarios where the turbulent field exceeds the mean
field. In particular in strong isotropic turbulence, the perpendicular motion of particles can
be different and perpendicular and parallel diffusion coefficients can become identical in
some limits (see, e.g., Shalchi and Dosch 2009; Plotnikov et al. 2011, as well as Subedi
et al. 2017 for theoretical approaches to describe particle transport in isotropic turbulence).
A further discussion of this matter can be found in Sect. 12.2.3 of this review.

Furthermore, the effect of intermittency (effects of dynamically produced coherent struc-
tures) can be included as it was done in the papers by le Roux (2011) and Pucci et al. (2016).
It was shown that intermittency can have an influence on parallel and perpendicular diffusion
coefficients of energetic particles.

2.10 Magnetic Correlations in Configuration Space

So far we described magnetic turbulence based on spectral tensors because the components
of those tensors enter transport theories as we shall see later in this review. Of course one can
go back to Sect. 2.1 and can try to compute the two-point correlation functions in configura-
tion space. As an illustrative example we consider the slab model. By combining Eq. (2.13)
with Eq. (2.8) we find

Rxx(z) =
∫

d3kPxx(k)eix·k

= 4π

∫ ∞

0
dk‖gslab(k‖) cos (zk‖). (2.44)

With spectrum (2.14) this becomes

Rxx(z) = 4C(s)�‖δB2
x

∫ ∞

0
dk‖

cos (zk‖)
[1 + (k‖�‖)2]s/2

= 4
√

π

�(s/2)
C(s)δB2

x

( |z|
2�‖

) s−1
2

Ks−1
2

( |z|
�‖

)
(2.45)

where we solved the corresponding integral with the help of Gradshteyn and Ryzhik (2000)
and used modified Bessel functions of second kind Kν(x). A strong simplification can be

7There is a factor 2 between the spectra of Eqs. (2.20) and (2.43) because the former spectrum is for the
incompressible case and the latter spectrum for the compressible case.
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achieved if we consider s = 2 which is close to the more realistic value s = 5/3. In this case
the parallel wave number integral in the first line of Eq. (2.45) yields

Rxx(z) = δB2
x e

−|z|/�‖ (2.46)

corresponding to an exponential decay of the correlation function. Although this is a special
case, the model (2.46) can be useful in order to make simple estimations and to understand
the meaning of certain quantities such as the integral scale discussed in the next subsection.
An analytical treatment of correlation functions was presented in Shalchi (2008) where the
reader can also find results for other turbulence models. Detailed studies of two-point cor-
relations in the solar wind via measurements can also be found in the literature (see, e.g.,
Matthaeus et al. 2005).

2.11 Integral Scales and the Ultra-Scale

There are several important length scales in the theory of magnetic turbulence. We have
already used two of them, namely the parallel and perpendicular bendover scales �‖ and �⊥,
respectively. In the following we discuss so-called integral scales in the different directions
of space as well as the ultra-scale.

If we deal with axi-symmetric and magnetostatic turbulence, we can define the parallel
integral scale L‖ via

δB2
xL‖ =

∫ ∞

0
dzRxx(x = y = 0, z) (2.47)

where we used z = 0 for the initial position. We can understand the integral scale as a
characteristic length scale over which the turbulent magnetic field decorrelates. Therefore,
the parameter L‖ is often called the parallel correlation length. This becomes clearer if
we consider Eq. (2.46) as an example. In this case the magnetic field decorrelates over the
characteristic scale �‖. Using this in Eq. (2.47) shows that L‖ = �‖ and that L‖ is indeed a
characteristic scale for the decorrelation of the magnetic field. However, in the general case,
these two scales are not equal as shown below.

Using the Fourier representation (2.8) and assuming static turbulence allows us to derive
from Eq. (2.47)

δB2
xL‖ =

∫
d3kPxx(k)

∫ ∞

0
dzeik‖z. (2.48)

A very useful relation involving Dirac’s delta is given by (see, e.g., Zwillinger 2012)

∫ +∞

−∞
dzei(k′−k)z = 2πδ

(
k′ − k

)
(2.49)

which is frequently used throughout this review. Using this in Eq. (2.48) allows us to derive

δB2
xL‖ = π

∫
d3kPxx(k)δ(k‖). (2.50)

For slab turbulence, for instance, we need to employ Eq. (2.13) to derive

δB2
xL‖ = 2π2gslab(k‖ = 0). (2.51)
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Table 2 Parallel and perpendicular integral scales as well as the ultra-scale for different turbulence mod-
els used in this review. These quantities are defined in Eqs. (2.50), (2.55), and (2.62), respectively. For
the Goldreich-Sridhar model we employ the form given by Eq. (2.38) corresponding to the incompressible
case

Turbulence model Parallel integral
scale

Perpendicular integral scale Ultra-scale Restriction

Slab L‖ = 2πC(s)�‖ L⊥ = ∞ LU = ∞ NA

Two-dimensional L‖ = ∞ L⊥ = 2�(q/2)�(s/2)
�((q+1)/2)�((s−1)/2)

�⊥ LU =
√

s−1
q−1 �⊥ q > 1

Noisy slab L‖ = 2πC(s)�‖ L⊥ = ∞ LU = ∞ NA

NRMHD L‖ = π�‖ L⊥ = 2�(q/2)�(s/2)
�((q+1)/2)�((s−1)/2)

�⊥ LU =
√

s−1
q−1 �⊥ q > 1

Gaussian L‖ =
√

π
2 �‖ L⊥ = 23/2 �(q/2)

�((q+1)/2)
�⊥ LU = 1√

q−1
�⊥ q > 1

Goldreich-Sridhar L‖ = π
4 � L⊥ = 8

5 � LU = 1
2 � NA

For the spectrum given by Eq. (2.14), the parallel integral scale is then

L‖ = 2πC(s)�‖ (2.52)

meaning that the integral scale and the bendover scale are directly proportional to each
other but not identical. For s = 2, however, we have C(s = 2) = 1/(2π) and the two scales
becomes equal. In Table 2 we show the relations between the scales �‖ and L‖ for the
turbulence models considered in this review together with other scales. These relations will
be useful because the scales listed there control the diffusion coefficients of field lines and
energetic particles in some limits as will be shown later in this review.

Similar compared to the previous paragraph we now consider the perpendicular integral
scale L⊥ which can be defined via8

δB2
xL⊥ =

∫ ∞

0
dxRxx(x, y = z = 0) (2.53)

for the axi-symmetric case. Using again the Fourier representation (2.8) yields

δB2
xL⊥ =

∫
d3kPxx(k)

∫ ∞

0
dxeikxx (2.54)

and with Eq. (2.49) this becomes

δB2
xL⊥ = π

∫
d3kPxx(k)δ(kx). (2.55)

Using Eq. (2.10) therein gives us

δB2
xL⊥ = 2π

∫ +∞

−∞
dk‖

∫ ∞

0
dkyg(k‖, ky). (2.56)

8In Shalchi (2014) the perpendicular integral scale was defined in a slightly different way so that the integral
scale is only half compared to what we derive in this review article.
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Since our aim is to rewrite the latter equation by using cylindrical coordinates we rename
ky → k⊥ to find

δB2
xL⊥ = 2π

∫ +∞

−∞
dk‖

∫ ∞

0
dk⊥g(k‖, k⊥)

= 2
∫

d3kPxx(k)k−1
⊥ . (2.57)

As an example we now evaluate this for the two-dimensional model defined via Eq. (2.19).
We derive

δB2
xL⊥ = 2π

∫ ∞

0
dk⊥g2D(k⊥)k−1

⊥ . (2.58)

By using spectrum (2.20) and the integral transformation x = k⊥�⊥, we obtain

L⊥ = 8D(s, q)�⊥
∫ ∞

0
dx

xq−1

(1 + x2)(s+q)/2
. (2.59)

The latter integral can be solved for q > 0 (see, e.g., Gradshteyn and Ryzhik 2000)

∫ ∞

0
dx

xq−1

(1 + x2)(s+q)/2
= �(

q

2 )�( s
2 )

2�(
q+s

2 )
. (2.60)

Using this in Eq. (2.59) and after employing Eq. (2.22), we find for the perpendicular integral
scale

L⊥ = 2�(
q

2 )�( s
2 )

�(
q+1

2 )�( s−1
2 )

�⊥. (2.61)

As for the slab model, the integral scale is directly proportional to the bendover scale. How-
ever, the integral scale defined here is only finite for q > 0. One could argue that this ex-
cludes spectra with q ≤ 0. Alternatively, one could allow such spectra but then one needs
to introduce a cut-off in the two-dimensional spectrum. A detailed discussion of this matter
can be found in Matthaeus et al. (2007).

In the theory of wandering magnetic field lines, another important scale occurs, namely
the so-called ultra-scale LU . The latter scale is defined via (see, e.g., Matthaeus et al. 2007)

L2
UδB2

x =
∫

d3kPxx(k)k−2
⊥ . (2.62)

In this review the ultra-scale will be important in the non-linear/Bohmian transport regime
of magnetic field line random walk (see Sects. 3.7–3.9). For the two-dimensional turbulence
model, defined via Eq. (2.19), the ultra-scale becomes

L2
UδB2

x = π

∫ ∞

0
dk⊥g2D(k⊥)k−2

⊥ . (2.63)

For the spectrum (2.20), with δB2
2D = 2δB2

x , and by using the integral transformation x =
k⊥�⊥, we deduce

L2
U = 4D(s, q)�2

⊥

∫ ∞

0
dx

xq−2

(1 + x2)(s+q)/2
. (2.64)
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Fig. 6 The fundamental scales
of magnetic turbulence for the
two-dimensional model as given
by Table 2. Shown are the ratios
LU /L⊥ (dotted line), LU/�⊥
(solid line), and L⊥/�⊥ (dashed
line) versus the energy range
spectral index q . Here we have
used the bendover scale �⊥ , the
integral scale L⊥ as well as the
ultra-scale LU

The latter integral can be solved for q > 1 (see, e.g., Gradshteyn and Ryzhik 2000)

∫ ∞

0
dx

xq−2

(1 + x2)(s+q)/2
= �(

q−1
2 )�( s+1

2 )

2�(
q+s

2 )
(2.65)

and we obtain

LU =
√

s − 1

q − 1
�⊥ (2.66)

where we have used Eq. (2.22) and the relation (see, e.g., Abramowitz and Stegun 1974)

�(z + 1) = z�(z) (2.67)

to get rid of the gamma functions. Obviously the ultra-scale is directly proportional to the
bendover scale �⊥ but also depends on the inertial range spectral index s and the energy
range spectral index q . It has to be emphasized that the ultra-scale is only finite for the
spectrum used here if q > 1 corresponding to an increasing spectrum in the energy range
(see, e.g., Fig. 3 of this review). Often one uses the values s = 5/3 and q = 3 leading to
LU = �⊥/

√
3. In this case the ultra-scale is slightly smaller than the perpendicular bendover

scale (see Fig. 6 for other values of q).

3 The Random Walk of Magnetic Field Lines

In magnetized plasmas magnetic field lines are stochastic curves due to the turbulent aspects
of magnetic fields described in the previous section. In the theory of field line random walk
(FLRW) we study the statistics of magnetic field lines by computing the mean square dis-
placement of different field line realizations. In principle on can also obtain the field line
distribution function indicating the probability to find a magnetic field line at a certain posi-
tion in space. The concepts of field line random walk and field line separation are depicted in
Fig. 7 of this review. To study the random walk of magnetic field lines is important because
the properties of magnetic field lines in turbulence are often controlling the perpendicular
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Fig. 7 The concepts of field line
random walk (FLRW) and field
line separation. In the theory of
FLRW we study the statistics of a
single field line described by the
distance of the unperturbed field
line and the turbulent field line
�x(z) = x(z) − x(0). In the
theory of field line separation, on
the other hand, we study the
distance s between two stochastic
magnetic field lines. The latter
effects occurs only in turbulence
with transverse structure whereas
the FLRW occurs also in slab
turbulence

transport of energetic particles as will be demonstrated later in this review article. Most of
the following presentations are based on the work of Taylor and McNamara (1971), Kadomt-
sev and Pogutse (1974), Salu and Montgomery (1977), and in particular on Matthaeus et al.
(1995).

3.1 Fundamental Equations

Magnetic field lines in turbulence are stochastic curves which need to be described by meth-
ods of statistical physics. Therefore, we are not able to compute individual field lines but
rather work with field line mean square displacements 〈(�x)2〉 where �x = x(z) − x(0).
The mean square displacement increases with increasing distance z from the initial position
since there is an increase of the uncertainty to find the field line at a certain position of space.
Furthermore, a running field line diffusion coefficient can be defined via

dFL(z) := 1

2

d

dz

〈
(�x)2

〉
. (3.1)

It has to be emphasized that in the theory of random walking magnetic field lines, the vari-
able is position z and not time as in particle diffusion theory. Furthermore, the field line
diffusion coefficient has length units whereas usual diffusion coefficients have the dimen-
sion [L]2/[T ]. Especially in static turbulence the concept of field line random walk (FLRW)
could be confusing because there is no motion of field lines as the term diffusion suggests.
Instead diffusion really means an increase of the uncertainty to find the field line at a certain
point of space. This also means that for the axi-symmetric case there is only one diffusion
coefficient namely the one defined in Eq. (3.1). In particular there is no parallel or perpen-
dicular diffusion coefficient as in particle transport theory. The whole concept of FLRW
suggests that it would be more appropriate to talk about field line meandering rather than
field line diffusion.

The quantity defined in Eq. (3.1) is called a running diffusion coefficient because, in
general, it is a function of position z. If

dFL(z → ∞) → κFL = const., (3.2)
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Table 3 Different transport
processes of magnetic field lines.
The parameter α is defined via
Eq. (3.3). The same
differentiation can be made if the
transport of energetic particles is
discussed

Parameter α Process

α < 1 Sub-diffusion
α = 1 Normal diffusion
1 < α < 2 Super-diffusion
α = 2 Ballistic transport

we call the considered process normal or Markovian diffusive. In this case the mean square
displacement is directly proportional to |z|. In general we can assume

〈
(�x)2

〉∝ |z|α (3.3)

and the field lines can be characterized as listed in Table 3. Non-diffusive transport is also
called anomalous diffusion and corresponds to processes with α �= 1. In the context of field
line and energetic particle transport anomalous diffusion has received attention in the litera-
ture (see, e.g., Zimbardo et al. 1995, 2006, 2012; Zimbardo 2005; Perri and Zimbardo 2007,
2009a,b; Shalchi and Kourakis 2007a; Perri et al. 2015).

In the following we review different analytical theories which were developed in the
past in order to compute field line diffusion coefficients and mean square displacements.
We consider a scenario where the turbulent magnetic field is perpendicular with respect to
the mean field. In the solar wind, for instance, magnetic fluctuations have been found to be
about 90% transverse in terms of fluctuation energy (see Belcher and Davis 1971). Based on
MHD equations Matthaeus et al. (1996) found theoretically that large scale magnetic fields
can organize turbulence fluctuations to be mostly transverse. Therefore, the total magnetic
field vector is given by

B(x) = δBx(x)ex + δBy(x)ey + B0ez (3.4)

where we assumed that the mean field B0 is constant and points into the z-direction. For the
case considered here, the field line equations have the form

dx = δBx

B0
dz and dy = δBy

B0
dz (3.5)

and the spectral tensor is given by Eq. (2.10). After integrating the first field line equation,
the displacement in the x-direction can be written as the following integral equation

�x(z) = 1

B0

∫ z

0
dz′δBx

[
x
(
z′)] (3.6)

where we used z = 0 as initial position. Thus, we find for the field line mean square dis-
placement

〈(
�x(z)

)2〉= 1

B2
0

∫ z

0
dz′

∫ z

0
dz′′〈δBx

[
x
(
z′)]δB∗

x

[
x
(
z′′)]〉 (3.7)

where δB∗
x is the complex conjugate magnetic field. By employing the Fourier representation

(2.3), we derive

〈(
�x(z)

)2〉 = 1

B2
0

∫
d3k

∫
d3k′

×
∫ z

0
dz′

∫ z

0
dz′′〈δBx(k)δB∗

x

(
k′)eik·x(z′)−ik′·x(z′′)〉. (3.8)
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We can clearly see that a complicated correlation function occurs on the right hand side of
this formula. This correlation function is not trivial since the vectors x(z′) and x(z′′) denote
the stochastic magnetic field line as a function of position. The field lines depend on the
magnetic field and, thus, field lines and field vectors are correlated in the general case. To
proceed, we distinguish between two different cases:

1. The slab model: here the exponential function in the brackets 〈. . .〉 depends only on the
variable z. In this case, we have k · x(z) = k‖z, and the ensemble average in Eq. (3.8) can
be evaluated without using further assumptions or approximations.

2. Models with transverse complexity: for non-slab models the exponential function in the
brackets 〈. . .〉 can depend on all components of the field line vector x(z) = (x(z), y(z), z).
In this case, the field line equation (3.8) is a non-linear equation. Thus, further assump-
tions and approximations have to be used in order to simplify Eq. (3.8).

Before we investigate these two cases in more detail, we discuss the importance of the so-
called Kubo number and explore the limit z → 0.

3.2 The Role of the Kubo Number in the Theory of Field Line Diffusion

The behavior of magnetic field lines is linked to the spectral tensor discussed before in this
review. However, one can make some general estimations without specifying this tensor. In
the following we assume that the magnetic field is given by

δBx(x) = δBxf

(
x

�⊥
,

y

�⊥
,

z

�‖

)
(3.9)

where �⊥ and �‖ are characteristic length scales for the decorrelation of the magnetic field
such as the bendover scales. Therewith the field line equation (3.5) can be written as

dx

�⊥
= dz

�‖
�‖
�⊥

δBx

B0
f

(
x

�⊥
,

y

�⊥
,

z

�‖

)

= dz

�‖
Kf

(
x

�⊥
,

y

�⊥
,

z

�‖

)
(3.10)

where we have used the Kubo number (see Kubo 1963)

K = �‖
�⊥

δBx

B0
. (3.11)

If we express all positions along the mean field in terms of �‖ and all positions across the
mean field in terms of �⊥, the Kubo number K is the only quantity controlling the FLRW.
Therefore, we conclude that the Kubo number is crucial in the quantitative description of
field line transport.

3.3 The Initial Free-Streaming Regime

Equation (3.8) provides a formula for the field line mean square displacement which can be
employed for arbitrary position z. In the limit z → 0 we also expect x, y → 0 and, thus, we
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can derive from Eq. (3.8)

〈(
�x(z)

)2〉 = 1

B2
0

∫
d3k

∫
d3k′

×
∫ z

0
dz′

∫ z

0
dz′′〈δBx(k)δB∗

x

(
k′)〉. (3.12)

By using Eq. (2.6), corresponding to the assumption of homogeneous turbulence, this can
be simplified to

〈(
�x(z)

)2〉= z2

B2
0

∫
d3kPxx(k) = δB2

x

B2
0

z2 (3.13)

where we have used Eq. (2.15) as well. If we compare this with the general form given
by Eq. (3.3) we find α = 2. According to Table 3 this corresponds to ballistic field line
random walk. In the following we refer to this limit as the initial free-streaming regime.
This behavior is found for short distances regardless what the form of the spectral tensor is.
The initial ballistic regime can also be seen in Fig. 8 of this review.

3.4 Field Line Random Walk for Slab Turbulence

The slab model is a very special model of turbulence and it is not sufficient to approximate
real turbulence in most cases. In the following it is used because it allows for an exact de-
scription of FLRW. This is not the case for other turbulence models. For pure slab geometry
Eq. (3.8) becomes

〈(
�x(z)

)2〉 = 1

B2
0

∫
d3k

∫
d3k′〈δBx(k)δB∗

x

(
k′)〉

×
∫ z

0
dz′

∫ z

0
dz′′eik‖z′−k′‖z′′

. (3.14)

By employing again Eq. (2.6) and by using the slab model given by Eq. (2.13), we find for
the mean square displacement of the field lines

〈(
�x(z)

)2〉 = 2π

B2
0

∫ +∞

−∞
dk‖gslab(k‖)

×
∫ z

0
dz′

∫ z

0
dz′′eik‖(z′−z′′). (3.15)

The two integrals over z′ and z′′ can easily be evaluated and we find

〈(
�x(z)

)2〉= 4π

B2
0

∫ +∞

−∞
dk‖gslab(k‖)

1 − cos(k‖z)
k2

‖
. (3.16)

Taking the second derivative of the latter equation yields

d2

dz2

〈(
�x(z)

)2〉= 4π

B2
0

∫ +∞

−∞
dk‖gslab(k‖) cos(k‖z). (3.17)
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Now we compute the running diffusion coefficient defined in Eq. (3.1). However, we con-
centrate on the limit z → ∞. Therefore, we integrate Eq. (3.17) over all z to find

dFL(z → ∞) = 2π

B2
0

∫ +∞

−∞
dk‖gslab(k‖)

∫ ∞

0
dz cos(k‖z) (3.18)

where dFL(z = 0) = 0 due to Eq. (3.13). To continue we employ the relation (2.49) to find
the following result

dFL(z → ∞) = 2π2

B2
0

∫ +∞

−∞
dk‖gslab(k‖)δ(k‖)

= 2π2

B2
0

gslab(k‖ = 0). (3.19)

It is important to interpret this result in the right way. In reality there should not be any
turbulence for k‖ = 0. However, in reality the limit z → ∞ is not permitted either. Therefore,
the limit z → ∞ really means that we consider large but not too large distances whereas
k‖ = 0 corresponds to the largest scales where we find turbulence. A detailed discussion of
this matter, in the context of particle transport, can be found in Shalchi (2005b).

For the model spectrum of Eq. (2.14) the field line diffusion coefficient becomes

κFL = πC(s)�‖
δB2

slab

B2
0

. (3.20)

Characteristic here is the scaling with δB2
slab/B

2
0 . Alternatively, we can go back to Eq. (3.19)

and combine this more general form with the parallel integral scale derived in Eq. (2.51).
This allows us to write

κFL = L‖
δB2

x

B2
0

(3.21)

which does not require to specify the slab spectrum. It has to be emphasized that the calcula-
tions presented here for slab turbulence did not require any assumptions or approximations
and, thus, the obtained results are exact. Equation (3.21) shows the importance of the parallel
integral scale in the theory of random walking magnetic field lines.

3.5 Quasi-Linear Theory of Field Line Random Walk

For non-slab models, Eq. (3.8) is a non-linear equation. One way of simplifying this is the
application of perturbation theory. In the theories of field lines and energetic particles, this
approach is usually called quasi-linear theory (QLT) which was developed by Jokipii (1966)
and Jokipii and Parker (1969). Within QLT, we replace the field lines on the right hand side
of Eq. (3.8) by the unperturbed field lines x(z) = y(z) = 0. Therewith, Eq. (3.8) becomes

〈(
�x(z)

)2〉= 1

B2
0

∫
d3kPxx(k)

∫ z

0
dz′

∫ z

0
dz′′eik‖(z′−z′′) (3.22)

where we assumed again homogeneous turbulence. This form is very similar compared to
Eq. (3.15) and, thus, we employ the same steps as before. The integrals over z′ and z′′ can
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easily be solved and we find

〈(
�x(z)

)2〉= 2

B2
0

∫
d3kPxx(k)

1 − cos(k‖z)
k2

‖
. (3.23)

Again we consider the second derivative of the latter equation to obtain

d2

dz2

〈(
�x(z)

)2〉= 2

B2
0

∫
d3kPxx(k) cos(k‖z). (3.24)

The running diffusion coefficient is defined in Eq. (3.1). Therefore, to obtain this quantity,
we integrate Eq. (3.24). After employing again relation (2.49) we find in the limit z → ∞
the following result

κFL = π

B2
0

∫
d3kPxx(k)δ(k‖). (3.25)

We can easily see that for slab turbulence this agrees with Eq. (3.19). Obviously, quasi-linear
theory is exact in this case. However, Eq. (3.25) can be evaluated for arbitrary turbulence
described by Pxx(k). Using Eq. (2.50) leads to Eq. (3.21) for the field line diffusion co-
efficient meaning that Eq. (3.21) corresponds to the quasi-linear diffusion coefficient for
arbitrary turbulence. With the help of Table 2 we can easily determine the quasi-linear field
line diffusion coefficients for other turbulence models simply by combining the formulas
listed there with Eq. (3.21). It has to be emphasized, however, that QLT does not work for
field line diffusion in the general case.

Quasi-linear theory can be understood as lowest order perturbation theory (see, e.g.,
Shalchi 2019b for a higher order perturbation approach). Of course the question arises what
the perturbing parameter is in this case. According to Eq. (3.10) it is the Kubo number. If the
latter number is small, the field lines are close to the unperturbed field line x(z) = y(z) = 0.
This means that the smaller the Kubo number is, the more accurate QLT should be. For
slab turbulence, for instance, we have �⊥ → ∞ and, thus K = 0 meaning that quasi-linear
theory is exact. For two-dimensional turbulence, on the other hand, we have �‖ → ∞ and,
thus K = ∞. One would expect that in this case QLT fails completely. Therefore, non-linear
tools need to be developed in order to describe the random walk of magnetic field lines for
cases where the Kubo number is not small.

3.6 Corrsin’s Independence Hypothesis

Equation (3.8) is exact and, thus, we use it as starting point for developing a non-linear
approach. Problematic here is the complicated correlation function involving magnetic field
components as well as the field line x(z) itself. A strong simplification can be achieved
by employing Corrsin’s independence hypothesis (see Corrsin 1959) which can be written
as

〈
δBn(k)δB∗

m

(
k′)eik·x(z′)−ik′·x(z′′)〉≈ 〈

δBn(k)δB∗
m

(
k′)〉〈eik·x(z′)−ik′·x(z′′)〉. (3.26)

The widespread use of the Corrsin hypothesis in transport theory is discussed in detail in
Tautz and Shalchi (2010). In the theory of FLRW this approximation was already used by
Lerche (1973) but at this point it was not called the Corrsin hypothesis. With the Corrsin
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approximation, Eq. (3.8) becomes

〈(
�x(z)

)2〉 = 1

B2
0

∫
d3k

∫
d3k′

×
∫ z

0
dz′

∫ z

0
dz′′〈δBx(k)δB∗

x

(
k′)〉〈eik·x(z′)−ik′·x(z′′)〉 (3.27)

corresponding to a significant simplification. Assuming homogeneous turbulence enables us
to use Eq. (2.6) and, thus, we obtain

〈(
�x(z)

)2〉 = 1

B2
0

∫
d3kPxx(k)

×
∫ z

0
dz′

∫ z

0
dz′′〈eik·[x(z′)−x(z′′)]〉. (3.28)

To further simplify this, we compute the second derivative of the latter equation. To deter-
mine the first derivative, we employ the Leibniz integral rule

d

dz

∫ b(z)

a(z)

dtf (z, t) = f
[
z, b(z)

] d

dz
b(z)

− f
[
z, a(z)

] d

dz
a(z)

+
∫ b(z)

a(z)

dt
∂

∂z
f (z, t) (3.29)

to find

d

dz

〈(
�x(z)

)2〉 = 1

B2
0

∫
d3kPxx(k)

×
[∫ z

0
dz′′〈eik·[x(z)−x(z′′)]〉

+
∫ z

0
dz′〈eik·[x(z′)−x(z)]〉

]
(3.30)

which can be written as

d

dz

〈(
�x(z)

)2〉= 2

B2
0

∫
d3kPxx(k)�

∫ z

0
dz′〈eik·[x(z)−x(z′)]〉. (3.31)

To continue we assume that the characteristic function depends only on the position-
difference meaning that

〈
eik·[x(z)−x(z′)]〉= 〈

eik·[x(z−z′)−x(0)]〉. (3.32)

We now employ the integral transformation ξ = z − z′ to derive

∫ z

0
dz′〈eik·[x(z)−x(z′)]〉=

∫ z

0
dξ
〈
eik·[x(ξ)−x(0)]〉. (3.33)
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Using the latter relation in Eq. (3.31) yields

d

dz

〈(
�x(z)

)2〉= 2

B2
0

∫
d3kPxx(k)�

∫ z

0
dz′〈eik·�x(z′)〉 (3.34)

where we have used �x(z′) = x(z′)−x(0). Now it is straightforward to calculate the second
derivative. We find

d2

dz2

〈(
�x(z)

)2〉= 2

B2
0

∫
d3kPxx(k)�〈eik·�x(z)

〉
. (3.35)

For a Gaussian distribution of field lines, we have9

�〈eik·�x〉= cos(k‖z)e− 1
2 〈(�x)2〉k2⊥ (3.36)

where we assumed again axi-symmetry. Finally we find the following second-order ordinary
differential equation for the field line mean square displacement

d2

dz2

〈
(�x)2

〉= 2

B2
0

∫
d3kPxx(k) cos(k‖z)e− 1

2 〈(�x)2〉k2⊥ . (3.37)

This equation corresponds to the integral equation derived in Shalchi and Kourakis (2007b)
by using a slightly different approach based on the same set of assumptions. In Shalchi and
Kourakis (2007c) it was shown that the FLRW is mainly controlled by the large scales
of the energy range and in Shalchi and Qin (2010) the equation derived here was suc-
cessfully tested by comparing results with simulations performed for two-component tur-
bulence. In Figs. 8 and 9 we show examples for a comparison of analytical theory and
simulations confirming the validity of the non-linear tools discussed above. In the fol-
lowing Eq. (3.37) is discussed in more detailed by considering special cases and lim-
its.

3.7 FLRW in Two-Dimensional Turbulence

Equation (3.37) can be used for an arbitrary spectral tensor Pnm(k). In the following we
consider the two-dimensional model as an example and follow the considerations presented
in Shalchi (2011c). In this case we employ Eq. (2.19) and therewith Eq. (3.37) becomes

σ ′′ = 2π

B2
0

∫ ∞

0
dk⊥g2D(k⊥)e− 1

2 σk2⊥ (3.38)

where we have used σ = 〈(�x)2〉 for convenience. Now we multiply the latter equation by
the derivative σ ′ to find

σ ′σ ′′ = 2π

B2
0

∫ ∞

0
dk⊥g2D(k⊥)σ ′e− 1

2 σk2⊥ . (3.39)

9If the field lines obey a Gaussian statistics, the field line distribution function is f (x, y; z) =
exp [−(x2 + y2)/(2〈(�x)2〉)]/(2π〈(�x)2〉) for the axi-symmetric case. The characteristic function is then
computed via 〈exp (ixkx + iyky)〉 = ∫

dx
∫

dy exp (ixkx + iyky)f (x, y; z) yielding Eq. (3.36).
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Fig. 8 The running field line
diffusion coefficient normalized
with respect to the slab bendover
scale �‖ for two-component
turbulence versus the parallel
position z/�‖ . Shown is the
analytical result in the limit
z → ∞ (dotted line), the result
obtained by solving Eq. (3.37)
numerically (dashed line), and
the simulations performed by
Shalchi and Qin (2010) which is
represented by the solid line. All
results shown here were obtained
for an energy range spectral
index of q = 1.5, �⊥/�‖ = 0.1,

δB2
slab

/B2
0 = 0.2 and

δB2
2D

/B2
0 = 0.8

Fig. 9 The field line diffusion
coefficient for NRMHD
turbulence (see Sect. 2.6). Shown
is κFL/�⊥ versus the magnetic
field ratio δB/B0 for �⊥ = �‖ .
The solid line represents the
analytical result obtained by
solving Eq. (3.47) numerically
and the dots represent the
simulations performed by Shalchi
and Hussein (2014)

This can be written as

d

dz

(
σ ′)2 = −8π

B2
0

∫ ∞

0
dk⊥g2D(k⊥)k−2

⊥
d

dz
e− 1

2 σk2⊥ . (3.40)

Next we integrate this and use σ ′(z = 0) = 0 to obtain

d2
FL(z) = 2π

B2
0

∫ ∞

0
dk⊥g2D(k⊥)k−2

⊥
[
1 − e− 1

2 σk2⊥
]
. (3.41)

For large distances the exponential will damp out and we find normal diffusion with the field
line diffusion coefficient given by

κFL =
√

2π

B0

[∫ ∞

0
dk⊥g2D(k⊥)k−2

⊥

]1/2

. (3.42)
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With the ultra-scale LU defined via Eq. (2.63), this result can be written as

κFL = √
2LU

δBx

B0
(3.43)

showing the relevance of the ultra-scale in the theory of FLRW. For spectrum (2.20) the
ultra-scale is given by Eq. (2.66) leading to the following field line diffusion coefficient

κFL =
√

2(s − 1)

q − 1
�⊥

δBx

B0
. (3.44)

The latter formula provides the field line diffusion coefficient for pure two-dimensional
turbulence. It has to be emphasized that a diffusion approximation was not used in order
to derive this formula. An alternative approach, where the diffusion approximation is used,
will be presented in the next subsection.

3.8 The Diffusion Approximation

Equation (3.37) allows for a z-dependent description of FLRW by solving this second-order
differential equation either analytically or numerically. However, this can be difficult or at
least time-consuming. A strong simplification can be achieved by combining Eq. (3.37) with
a diffusion approximation. In the context of FLRW diffusion approximation means that we
assume that field lines behave diffusively for all distances z. This means in particular that the
initial free-streaming regime is ignored. We also loose the ability to describe FLRW for non-
diffusive cases. Mathematically the diffusion approximation corresponds to the assumption
that

〈
(�x)2

〉= 2κFL|z| ∀z. (3.45)

Using this on the right hand side of Eq. (3.37) yields

d2

dz2

〈
(�x)2

〉= 2

B2
0

∫
d3kPxx(k) cos(k‖z)e−κFLk2⊥|z|. (3.46)

After integrating this over all z, we obtain the following equation for the field line diffusion
coefficient

κFL = 1

B2
0

∫
d3kPxx(k)

κFLk
2
⊥

k2
‖ + (κFLk

2
⊥)2

(3.47)

as derived in Matthaeus et al. (1995). This results can also be written as

κFL = 1

B2
0

∫
d3kPxx(k)� 1

κFLk
2
⊥ + ik‖

(3.48)

which is very similar compared to equation (13) of Kadomtsev and Pogutse (1979).
Equation (3.47) can still be evaluated for any given spectral tensor Pnm but it is much sim-

pler compared to Eq. (3.37). However, it is less accurate because it is based on the diffusion
approximation and less general because it only works for cases where field line random walk
is indeed diffusive. Furthermore, Eq. (3.47) can also not describe the initial free-streaming
regime as well as the turnover to the diffusive regime.
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In the following we employ the slab/2D model as an example. With Eqs. (2.13), (2.19),
and (2.23), Eq. (3.47) can easily be evaluated and we find

κFL = 2π

B2
0

∫ +∞

−∞
dk‖

∫ ∞

0
dk⊥gslab(k‖)δ(k⊥)

κFLk
2
⊥

k2
‖ + (κFLk

2
⊥)2

+ π

B2
0

∫ +∞

−∞
dk‖

∫ ∞

0
dk⊥g2D(k⊥)δ(k‖)

κFLk
2
⊥

k2
‖ + (κFLk

2
⊥)2

. (3.49)

To continue we use10

f (b) =
∫ ∞

0
dx

ax2

b2 + (ax2)2
δ(x) = πδ(b) (3.50)

leading to

κFL = 2π2

B2
0

∫ +∞

−∞
dk‖gslab(k‖)δ(k‖)

+ π

B2
0

∫ ∞

0
dk⊥g2D(k⊥)

1

κFLk
2
⊥

. (3.51)

With the field line diffusion coefficient obtained for pure slab turbulence κslab given by
Eq. (3.19), and with the parameter

κ2
2D = π

B2
0

∫ ∞

0
dk⊥g2D(k⊥)k−2

⊥ , (3.52)

this becomes

κFL = κslab + κ2
2D

κFL
(3.53)

corresponding to a quadratic formula for the parameter κFL. It can easily be solved by

κFL = 1

2

[
κslab +

√
κ2

slab + 4κ2
2D

]
(3.54)

where we excluded the negative solution. For pure slab turbulence, we have κ2D = 0 and we
get the expected result κFL = κslab . For pure two-dimensional geometry, on the other hand,
we have κslab = 0 and we find κFL = κ2D . Thus, the parameter κ2D , defined in Eq. (3.52),
can be identified with the diffusion coefficient for pure two-dimensional turbulence. Com-
paring Eq. (3.52) with Eq. (3.42) leads to the conclusion that there is a factor

√
2 between

both diffusion coefficients. Equation (3.42) was derived without employing the diffusion
approximation and, thus, it is more accurate. Keeping in mind that

√
2 ≈ 1.4 leads to the

assumption that the diffusion approximation should work well in the theory of FLRW but
small discrepancies can occur. The factor

√
2 resulting from the diffusion approximation,

was originally discovered in Shalchi (2011c) for two-dimensional turbulence but it was also
found in Shalchi (2019b) for small Kubo number turbulence.

10It is not possible to prove this relation without delving deeply into the theory of delta distributions. However,

one can easily show that f (b → 0) → ∞ and f (b �= 0) = 0. Furthermore, we have
∫+∞
−∞ dbf (b) = π so that

it is clear that f (b) = πδ(b).
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If the ultra-scale, given by Eq. (2.63), is used in Eq. (3.52), we find

κ2D = LU

δBx

B0
. (3.55)

For spectrum (2.20) the ultra-scale is provided by Eq. (2.66) leading to the following field
line diffusion coefficient

κ2D =
√

s − 1

q − 1
�⊥

δBx

B0
. (3.56)

First we note that the field line diffusion coefficient is directly proportional to the bendover
scale �⊥. Furthermore, there is also a direct proportionality to the magnetic field ratio which
is different compared to the quasi-linear scaling.

More theoretical work has been done in the recent years. Ruffolo et al. (2006), for in-
stance, dropped the assumption of axi-symmetry and developed a non-linear theory for
FLRW based on the ideas of Matthaeus et al. (1995). Furthermore, one can study mag-
netic field lines in different turbulence configurations. Besides the often discussed slab, two-
dimensional, and two-component models, one can study FLRW in full three-dimensional
turbulence. Ruffolo and Matthaeus (2013), for instance, studied field lines in noisy reduced
magnetohydrodynamic turbulence whereas Shalchi and Kolly (2013) explored FLRW in
Goldreich-Sridhar turbulence and Sonsrettee et al. (2016) studied the FLRW in isotropic
turbulence with varying mean field. Ruffolo et al. (2004) and Shalchi (2019b) have investi-
gated the separation of two magnetic field lines showing that this process has to be described
by non-linear tools in the general case.

3.9 The Non-Linear Regime of FLRW

From Eq. (3.47) one can easily recover quasi-linear theory by considering the limiting pro-
cess κFLk

2
⊥ → 0 together with the relation (see, e.g., Zwillinger 2012)

lim
ξ→0

ξ

ξ 2 + x2
= πδ(x). (3.57)

As discussed before the resulting quasi-linear scaling should be valid in the small Kubo
number limit and the field line diffusion coefficient is then given by Eq. (3.21). The question
naturally arises what one would obtain for large Kubo numbers K . To explore this further,
we now consider the case κFLk

2
⊥ → ∞ which allows us to simplify Eq. (3.47) to

κ2
FL = 1

B2
0

∫
d3kPxx(k)k−2

⊥ . (3.58)

We like to emphasize that at this point we did not specify the spectral tensor Pnm(k) but
we can easily see that Eq. (3.58) is identical compared to Eq. (3.52) if the two-dimensional
model is used. This is no surprise since the two-dimensional model corresponds to the case
of K = ∞. In general one can use the ultra-scale defined via Eq. (2.62) to write Eq. (3.58)
as

κFL = LU

δBx

B0
. (3.59)

The latter result is valid for arbitrary turbulence but requires that we consider large Kubo
numbers. We can see that the diffusion coefficient is directly proportional to the ultra-scale
and the magnetic field ratio. In this non-linear regime the field line diffusion coefficient is,
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therefore, directly proportional to the Kubo number K whereas in the quasi-linear regime
it is proportional to K2. The regime obtained here for large Kubo numbers is also known
as the Bohmian regime of FLRW or as the Kadomtsev and Pogutse (1979) limit. The limit
discussed here is sometimes described as being incorrect. The percolation theory developed
by Gruzinov et al. (1990) was applied to the FLRW by Isichenko (1991) and a different
scaling compared to Eq. (3.59) was obtained by these authors (see Sect. 3.10 for more de-
tails). Shalchi and Qin (2010) performed simulations for field line random walk and they
confirmed the validity of the non-linear or bohmian regime described above (see, e.g., Fig. 8
of this review for an example). Furthermore, Fig. 9 shows a comparison between analytical
theory and simulations. As demonstrated, there is very good agreement for small, interme-
diate, and large values of the Kubo number. It seems that the Corrsin approximation, which
is the only approximation used during the derivation of Eq. (3.37), works well. We conclude
that the percolation model probably applies to the limit of extremely high Kubo numbers as
already stated in Ghilea et al. (2011).

3.10 Scaling Laws in the Theory of FLRW

The results derived so far can also be obtained by using simple scaling arguments (see,
e.g., Hauff et al. 2010). First we consider the definition of a field line diffusion coefficient
via Eq. (3.1). The latter diffusion coefficient consists of a perpendicular position squared
divided by a parallel position. Therefore, a scaling independent diffusion coefficient can be
defined as κFL�‖/�2

⊥. Motivated by the considerations presented above, we assume that this
diffusion coefficient depends only on one single parameter and that is the Kubo number K .
Assuming a power-law dependence leads to the following proportionality

κFL�‖
�2

⊥
∝ Kγ . (3.60)

Using Eq. (3.11) to replace the Kubo number therein yields the following form

κFL ∝
(

δBx

B0

)γ

�
γ−1
‖ �

2−γ

⊥ . (3.61)

For certain values of γ we can recover the formulas derived before. For γ = 2, for instance,
we obtain the quasi-linear scaling and for γ = 1 the Bohmian regime.

If we consider models with reduced dimensionality, this can be simplified further. For
slab turbulence, for instance, the field line diffusion coefficient must not depend on the per-
pendicular scale �⊥. Therefore, we need to set γ = 2 automatically leading to the correct
quasi-linear scaling κFL ∝ �‖δB2

x /B
2
0 . For two-dimensional turbulence, on the other hand,

the field line diffusion coefficient must not depend on the parallel scale �‖. Thus, we need
to set γ = 1 in Eq. (3.61) automatically leading to κFL ∝ �⊥δBx/B0 corresponding to Bohm
diffusion. Note that LU ∝ �⊥ in most cases. It is interesting that we automatically arrive
at the correct results just by performing simple considerations based on dimensional argu-
ments.

The percolation theory discussed in the previous subsection can also be obtained from
Eq. (3.61) by setting γ = 0.7 leading to

κFL ∝
(

δBx

B0

)0.7

�−0.3
‖ �1.3

⊥ . (3.62)

Therefore, we conclude that the scaling argument applied here does indeed contain most
cases of FLRW discussed in the literature. Of course such dimensional arguments do not
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provide the numerical factors in the equations for the field line diffusion coefficient nor do
they work for anomalous transport.

4 Parallel Transport of Energetic Particles

In the current review article we focus on the transport of energetic particles across the mean
magnetic field. However, perpendicular transport strongly depends on the parallel particle
motion as will be shown in Sects. 5–9. Therefore, it is necessary to discuss parallel diffusion
but we only focus on basic ideas because parallel transport itself is very complicated (see
Shalchi 2009a).

4.1 Equations of Motion and Unperturbed Orbits

As a first step we briefly discuss the equation which describes the motion of energetic par-
ticles through turbulence. Thereafter, we solve this equation for the unperturbed case. This
is a simple classical mechanics problem but the solution is briefly summarized in order to
explain the used notation. Unperturbed orbits and the quantities used below are frequently
used throughout this review.

The fundamental equation describing the motion of charged particles through purely
magnetic turbulence is the Newton-Lorentz equation

dp
dt

= q

c
v × B(x) (4.1)

where the total magnetic field is given by B(x) = δB(x) + B0ez as in previous sections. Fur-
thermore, we have used the electric charge of the energetic particle q , the particle velocity
v, the relativistic momentum p, as well as the speed of light c. In Eq. (4.1), as well as during
the whole review paper, we employ cgs or Gaussian units rather than SI units.

First we consider the case that there is no turbulence and that the mean magnetic field is
constant and points into the z-direction. In this case Eq. (4.1) simplifies drastically to

dv
dt

= �v × ez (4.2)

where we have replaced the relativistic momentum by p = mγ v and used the fact that the
speed of the particle v and therewith the Lorentz factor γ are constant if there are no electric
fields. Furthermore, we used the gyrofrequency given by11

� = qB0

mcγ
. (4.3)

Equation (4.2) can be written as the following partly coupled system of linear differential
equations

v̇x = �vy,

v̇y = −�vx,

v̇z = 0.

(4.4)

11Here we kept the electric charge q in the equation as it is. This means that for negatively charged particles
such as electrons, the gyrofrequency is negative. This just means that the particle reverses its direction of
rotation compared to the positive case.
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The latter system can easily be solved by

vx(t) = v
√

1 − μ2 cos (�0 − �t),

vy(t) = v
√

1 − μ2 sin (�0 − �t), (4.5)

vx(t) = vμ,

where we have used the pitch-angle cosine μ = vz/v which is constant in the unperturbed
case. The pitch-angle indicates the angle between velocity vector v and the mean magnetic
field B0 = B0ez. Furthermore, we have used the gyrophase �(t) = �0 − �t and the initial
gyrophase �0. Obviously the parallel motion occurs with constant velocity. The particle
trajectory can easily be obtained by integrating Eq. (4.6) over time and we derive

x(t) = x(0) + v

�

√
1 − μ2

[
sin (�0) − sin (�0 − �t)

]
,

y(t) = y(0) − v

�

√
1 − μ2

[
cos (�0) − cos (�0 − �t)

]
, (4.6)

z(t) = z(0) + vμt.

It is convenient to define the parameters

RL := v

�
= pc

qB0
(4.7)

as well as

xc = x(0) + RL

√
1 − μ2 sin (�0),

yc = y(0) − RL

√
1 − μ2 cos (�0);

(4.8)

Therewith, the first two lines of Eq. (4.7) can be written as

[
x(t) − xc

]2 + [
y(t) − yc

]2 = [
RL

√
1 − μ2

]2
(4.9)

corresponding to the equation of a circle with center (xc, yc) and radius RL

√
1 − μ2. The

orbits found here correspond to a helical motion across the mean magnetic field. Therefore,
RL

√
1 − μ2 is the so-called gyroradius or Larmor radius whereas the parameter RL is this

radius at μ = 0. However, since RL is a characteristic quantity in transport theory, even if
there is turbulence, we just call RL the Larmor radius although this is not strictly correct.

Of course we are more interested in the case that there is turbulence. From Eq. (4.1)
we can easily derive the corresponding equations of motion. Since we focus on parallel
transport in the current section, we only consider the z-component of this equation which
can be written as

μ̇ = �

v

(
vx

δBy

B0
− vy

δBx

B0

)
. (4.10)

Therefore, the pitch-angle cosine μ is no longer conserved if the particle moves through
turbulence. Since the pitch-angle depends on stochastic magnetic fields, we find pitch-angle
scattering which needs to be described by statistical methods and transport equations. Fur-
thermore, the process of pitch-angle scattering is eventually leading to a diffusive motion
along the mean magnetic field as discussed in the following.
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4.2 Transport Equations

The motion of energetic particles is described by transport equations. As explained in detail
in the book Schlickeiser (2002), there is the following hierarchy of transport equations:

1. The relativistic Vlasov equation describing the particle motion in phase-space,
2. The Fokker-Planck equation which is an equation for the ensemble averaged particle

distribution function,
3. The diffusive transport equation which is obtained from the Fokker-Planck equation by

averaging over pitch-angle.

The general Fokker-Planck equation of cosmic ray transport is complicated and contains
several terms such as stochastic acceleration and perpendicular diffusion (see, e.g., Skilling
1975; Schlickeiser 2002; Zank 2014). For some applications one can neglect such terms and
consider the two-dimensional version of the Fokker-Planck equation

∂f

∂t
+ vμ

∂f

∂z
= ∂

∂μ

[
Dμμ(μ)

∂f

∂μ

]
(4.11)

where we have used time t , the particle position along the mean magnetic field z, the pitch-
angle cosine μ, the particle speed v, and the pitch-angle Fokker-Planck coefficient Dμμ.
The right hand side of this equation corresponds to a pitch-angle scattering term which is
important in the theory of parallel diffusion as discussed below. Equation (4.11) has the
form specified by Sturm-Liouville theory and the pitch-angle Fokker-Planck coefficient can
be computed via

Dμμ =
∫ ∞

0
dt
〈
μ̇(t)μ̇(0)

〉
. (4.12)

A justification of this form will be provided in Sect. 5.4. The time-derivative μ̇ is, in prin-
ciple, given by Eq. (4.10). However, μ̇ depends on stochastic fields and stochastic particle
properties such as velocities. Therefore, the calculation of Dμμ via Eqs. (4.10) and (4.12) is
not straightforward and requires special techniques such as perturbation theory.

The solution of Eq. (4.11) provides the particle distribution function f = f (μ, z, t).
Furthermore, it describes a pitch-angle isotropization process meaning that the solution
f (μ, z, t) becomes independent of μ for t → ∞ as shown, for instance, in the numeri-
cal work of Lasuik and Shalchi (2017). For certain applications, one could be interested in
the pitch-angle averaged particle distribution

M(z, t) = 1

2

∫ +1

−1
dμf (μ, z, t) (4.13)

indicating the probability to find the particle at position z at time t . In the following we
derive a differential equation for M(z, t). First we average Eq. (4.11) over all μ to find the
exact relation

∂M

∂t
+ v

2

∫ +1

−1
dμμ

∂f

∂z
= 0 (4.14)

where we have used

Dμμ(μ = ±1) = 0 (4.15)
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for the pitch-angle Fokker-Planck coefficient.12 To continue we define the current density

J (z, t) = v

2

∫ +1

−1
dμμf (μ, z, t)

= v

4

∫ +1

−1
dμ
(
1 − μ2

) ∂f

∂μ

(4.16)

allowing us to derive from Eq. (4.14)

∂M

∂t
+ ∂J

∂z
= 0 (4.17)

corresponding to a one-dimensional continuity equation. Now we integrate the Fokker-
Planck equation (4.11) from −1 to μ to find

∂

∂t

∫ μ

−1
dνf + v

∂

∂z

∫ μ

−1
dννf = Dμμ

∂f

∂μ
. (4.18)

Dividing this by Dμμ and using this in the current density (4.16) yields

J = v

4

∫ +1

−1
dμ
(
1 − μ2

)[ 1

Dμμ

∂

∂t

∫ μ

−1
dνf + v

Dμμ

∂

∂z

∫ μ

−1
dννf

]
. (4.19)

Now we consider the late-time limit t → ∞. Since we expect a pitch-angle isotropization
process, we can assume that

f (μ, z, t → ∞) → M(z, t). (4.20)

In this limit the current density, given by Eq. (4.19), becomes

J = v

4

∫ +1

−1
dμ

(1 − μ2)(μ + 1)

Dμμ

∂M

∂t

+ v2

8

∫ +1

−1
dμ

(1 − μ2)(μ2 − 1)

Dμμ

∂M

∂z

= −v

4

∫ +1

−1
dμ

(1 − μ2)

Dμμ

[
∂J

∂z
+ v(1 − μ2)

2

∂M

∂z

]
(4.21)

where in the last step we have employed the continuity equation (4.17). In the late-time limit
the current density J tends to zero faster than the distribution M . Therefore, we can neglect
the first term on the right hand side of Eq. (4.21) yielding

J = −v2

8

∫ +1

−1
dμ

(1 − μ2)2

Dμμ

∂M

∂z
. (4.22)

We now define the parallel spatial diffusion coefficient via

κ‖ = v2

8

∫ +1

−1
dμ

(1 − μ2)2

Dμμ(μ)
(4.23)

12This follows from Eqs. (4.12) and (4.10) together with vx ∝
√

1 − μ2 and vy ∝
√

1 − μ2.
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allowing us to write Eq. (4.22) as

J = −κ‖
∂M

∂z
(4.24)

corresponding to Fick’s first law (see Fick 1855). In this context J is also called the diffusion
flux. Using Eq. (4.24) in the continuity equation (4.17) allows us to derive

∂M

∂t
= κ‖

∂2M

∂z2
(4.25)

corresponding to Fick’s second law. This is a usual diffusion equation or heat transport equa-
tion. Obviously, due to pitch-angle scattering, the particle motion becomes a diffusive mo-
tion along the mean magnetic field. Equation (4.23) provides a relation between the parallel
spatial diffusion coefficient and the pitch-angle Fokker-Planck coefficient. This formula is
one of the most fundamental and important relations in the transport theory of energetic par-
ticles. It allows for the calculation of the parallel diffusion coefficient κ‖ if the pitch-angle
Fokker-Planck coefficient Dμμ is known. This relation was derived the first time in Jokipii
(1966) and later, in a more systematic way, in Earl (1974).

4.3 The Pitch-Angle Fokker-Planck Coefficient

The calculation of the pitch-angle Fokker-Planck coefficient is problematic. One way of
computing the parameter Dμμ is the application of QLT (see again Jokipii 1966 or Schlick-
eiser 2002 for a review) similar compared to the QLT of random walking magnetic field
lines. For magnetostatic slab turbulence, for instance, the quasi-linear pitch-angle Fokker-
Planck coefficient is given by (see, e.g., Shalchi 2009a)

Dμμ = 2π2v2(1 − μ2)

B2
0R2

L

∫ ∞

0
dk‖gslab(k‖)

× [
δ(vμk‖ + �) + δ(vμk‖ − �)

]
. (4.26)

This equation can be obtained by combining Eqs. (4.10) and (4.12). Furthermore, the ve-
locities vx and vy as well as the magnetic fields were evaluated along the unperturbed orbit
given by Eqs. (4.6) and (4.7), respectively.

The Dirac delta in Eq. (4.26) describes the interaction between the turbulence and parti-
cles. Very clearly we can identify the so-called gyro-resonance condition

vμ

�
= 1

k‖
(gyro-resonance) (4.27)

meaning that only if the particles hit the resonance one finds scattering. As a consequence,
high energy particles interact with the larger turbulence scales whereas low energy particles
interact with smaller scales. This means, for instance, that the small scales of the dissipation
range, which are neglected in spectrum (2.14), are essential for the scattering of low energy
particles such as solar energetic particles. Of course, the form given by Eq. (4.26) is only
valid for the very special case of magnetostatic slab turbulence. More complete forms for
the pitch-angle Fokker-Planck coefficient were derived in the past. In Bieber et al. (1994)
and Teufel and Schlickeiser (2003), for instance, the influence of dynamical turbulence and
dissipation effects was explored. The book of Schlickeiser (2002) contains detailed deriva-
tions of the quasi-linear pitch-angle Fokker-Planck coefficient incorporating plasma wave
propagation effects.
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For the spectrum given by Eq. (2.14) the Fokker-Planck coefficient (4.26) becomes

Dμμ = 2π2v2

v|μ|B2
0R2

L

(
1 − μ2

)
gslab

(
k‖ = �

v|μ|
)

= πC(s)v�‖δB2
slab

|μ|B2
0R2

L

(
1 − μ2

)[
1 +

(
��‖
v|μ|

)2]−s/2

(4.28)

where we have used the relation (see, e.g., Zwillinger 2012)

δ(ax) = 1

|a|δ(x) (4.29)

for Dirac’s delta. To continue it is convenient to define the parameter

R := RL

�‖
≡ v

��‖
(4.30)

sometimes called the dimensionless rigidity. Using this in Eq. (4.28) allows us to write

Dμμ = πC(s)v

�‖
δB2

slab

B2
0

(
1 − μ2

)|μ|s−1Rs−2
(
1 + μ2R2

)−s/2
(4.31)

corresponding to the quasi-linear pitch-angle Fokker-Planck coefficient for magnetostatic
slab turbulence.

However, like for field lines, the quasi-linear approximation is problematic and does
not work in the general case. In particular QLT does not work for pitch-angles close to
90◦ corresponding to μ = 0. The latter problem is known as the 90◦ problem of scattering
theory and it was attempted to be solved by incorporating non-linear effects (see, e.g., Völk
1973, 1975; Jones et al. 1973, 1978; Owens 1974; Goldstein 1976). A more systematic
approach is provided by the so-called second-order quasi-linear theory (SOQLT) developed
in Shalchi (2005a). In this theory orbit fluctuations are estimated by employing the quasi-
linear approximation itself. The corrected orbits are then used in the formula for Dμμ leading
to resonance broadening. The second-order theory agrees well with simulations for cases
where QLT fails completely such as parallel diffusion in isotropic turbulence (see, e.g.,
Tautz et al. 2008). Furthermore, perpendicular diffusion can lead to resonance broadening
and can therefore influence the pitch-angle Fokker-Planck coefficient (see Shalchi et al.
2004c). In Qin and Shalchi (2009) the pitch-angle Fokker-Planck coefficient was extracted
from test-particle simulations. This approach is difficult because in analytical theories one
needs to know the parameter Dμμ as a function of μ corresponding to the pitch-angle cosine.
However, due to pitch-angle scattering itself, the parameter μ is changing if time passes.
Therefore, one needs to find a parameter regime where pitch-angle scattering is so weak that
μ is almost constant over an extended period of time. The little changes of μ can then be
used in order to compute Dμμ numerically for that given μ. In the considered parameter
regime it was shown that pitch-angle scattering around μ ≈ 0 is indeed strong and that the
aforementioned second-order theory works well. In the current review we abstain from a
detailed discussion of non-linear pitch-angle scattering and parallel diffusion. A detailed
review of this matter can be found in Shalchi (2009a). It has to be emphasized, however,
that parallel transport is far from being straightforward and the quasi-linear approximation
as well as the simple gyro-resonance picture fail in the general case.
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4.4 A Simple Formula for the Parallel Diffusion Coefficient

As noted in the previous subsection, the calculation of the pitch-angle Fokker-Planck coeffi-
cient itself is difficult due to the importance of non-linear and dynamical turbulence effects.
To obtain a simple formula for the parallel mean free path we perform the following steps:

1. We employ quasi-linear theory but keep in mind that the theory is not valid in the general
case.

2. We employ the slab model and keep in mind that two-dimensional modes do exist and can
contribute to the parallel diffusion coefficient via non-linear interactions. Alternatively,
the slab/2D model can be replaced by a full three-dimensional turbulence model. In the
latter case the 90◦ problem becomes significant.

3. We consider magnetostatic turbulence. This approximation should be valid if we consider
particles moving much faster than the Alfvén speed.

4. We employ Eq. (4.23) to obtain the parallel spatial diffusion coefficient.

Using the first three assumptions enables us to employ Eq. (4.31) for the pitch-angle Fokker-
Planck coefficient. Since s > 1 we can clearly see that Dμμ(μ = 0) = 0 which is, of
course, an unrealistic result. It would even contradict the original assumption of a pitch-
angle isotropization process which requires that the particles can be scattered through 90◦
pitch-angles. Fortunately, this behavior does not cause a singularity if Eq. (4.31) is used
in Eq. (4.23) and even leads to a useful result for the parallel diffusion coefficient. Fur-
thermore, it is slightly more convenient to compute the parallel mean free path defined
via λ‖ = 3κ‖/v. An explanation for this relation is given in Sect. 5.4 of this review. Us-
ing Eq. (4.31) in Eq. (4.23), and solving the corresponding μ-integral, yields (see, e.g.,
Gradshteyn and Ryzhik 2000 for the solution of the occurring integrals)

λ‖ = 3�‖
8πC(s)

B2
0

δB2
slab

R2−s

×
[

2

2 − s
2F1

(
1 − s

2
,− s

2
,2 − s

2
,−R2

)

− 2

4 − s
2F1

(
2 − s

2
,− s

2
,3 − s

2
,−R2

)]
(4.32)

where we have used the Gaussian hypergeometric function 2F1(a, b; c; z). Formula (4.32)
has the following asymptotic properties

λ‖ ≈ 3�‖
16πC(s)

B2
0

δB2
slab

{
8

(2−s)(4−s)
R2−s for R � 1

R2 for R � 1.
(4.33)

Clearly we can see how the parallel mean free path increases with rigidity. A simple formula
which has the same asymptotic properties was given by Shalchi (2009a), namely

λ‖ ≈ 3�‖
16πC(s)

B2
0

δB2
slab

R2

[
1 + 8

(2 − s)(4 − s)
R−s

]
(4.34)

which is visualized in Fig. 10 together with Eq. (4.32) as well as the asymptotic limits (4.33).
Equation (4.34) can be used for simple estimations of the parallel mean free path. It needs

to be emphasized, however, that Eq. (4.32) and its asymptotic forms, are a very special case.
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Fig. 10 The quasi-linear parallel
mean free path for magnetostatic
slab turbulence. Shown is the
exact formula as given by Eq.
(4.32) which is represented by
the solid line. Also shown are the
asymptotic limits as given by Eq.
(4.33) represented by the dotted
lines, as well as approximation
(4.34) represented by the dashed
line

As pointed out before in this review, the slab model with the spectrum used here as well as
the magnetostatic approximation does not work in the general case (see again Bieber et al.
1994; Schlickeiser 2002; Shalchi et al. 2006). Furthermore, quasi-linear theory fails in a lot
of cases such as three-dimensional turbulence (see, e.g., Shalchi 2009a; Tautz et al. 2008).

4.5 A Subspace Approximation to the Solution of the Fokker-Planck Equation

It will be shown later in this review that one needs to know certain moments of the Fokker-
Planck equation in analytical theories for perpendicular transport. Therefore, this matter will
be discussed in the following. Equation (4.11) is difficult to solve analytically for the general
case. Therefore, often an isotropic pitch-angle Fokker-Planck coefficient is used

Dμμ = (
1 − μ2

)
D. (4.35)

A detailed discussion of the analytical form of Dμμ and the validity of the isotropic regime
can be found in Shalchi et al. (2009) based on the aforementioned second-order quasi-linear
theory. It was shown in the latter article that Eq. (4.31) is valid for |μ| � δB/B0 whereas the
isotropic form is accurate for |μ| � δB/B0. In Eq. (4.35) the parameter D does not depend
on μ but it is a complicated function of turbulence and particle properties (see again Shalchi
et al. 2009). For the isotropic form the parallel spatial diffusion coefficient can very easily be
computed by using Eq. (4.23). Then this diffusion coefficient and the corresponding parallel
mean free path are given by

κ‖ = v2

6D
and λ‖ = v

2D
(4.36)

where we have used again λ‖ = 3κ‖/v.
In order to solve Eq. (4.11), we employ the Fourier transform

f (z,μ, t) =
∫ +∞

−∞
dk‖F(k‖,μ, t)eik‖z (4.37)

so that the Fokker-Planck equation (4.11) becomes

∂F

∂t
+ ivμk‖F = D

∂

∂μ

[(
1 − μ2

)∂F

∂μ

]
. (4.38)
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To continue we expand the solution of the latter equation in a series of Legendre polynomials

F(μ, t) =
∞∑

n=0

Cn(t)Pn(μ) (4.39)

where the coefficients Cn are functions of time. Using Eq. (4.39) in differential equation
(4.38) yields

∑

n

ĊnPn + ivμk‖
∑

n

CnPn = D
∑

n

Cn

∂

∂μ

[(
1 − μ2

)∂Pn

∂μ

]
(4.40)

where Ċn denotes the time-derivative of the coefficient Cn. Two well-known relations for
Legendre polynomials are given by (see, e.g., Abramowitz and Stegun 1974)

∂

∂μ

[(
1 − μ2

)∂Pn

∂μ

]
= −n(n + 1)Pn (4.41)

as well as

μPn = n + 1

2n + 1
Pn+1 + n

2n + 1
Pn−1. (4.42)

Therewith, Eq. (4.40) can be written as

∑

n

ĊnPn + ivk‖
∑

n

Cn

(
n + 1

2n + 1
Pn+1 + n

2n + 1
Pn−1

)
= −D

∑

n

Cnn(n + 1)Pn. (4.43)

We now multiply this equation by the Legendre polynomial Pm, integrate over μ, and use the
orthogonality relation of Legendre polynomials (see again Abramowitz and Stegun 1974)

∫ +1

−1
dμPnPm = 2

2m + 1
δnm (4.44)

to derive

Ċm = −Dm(m + 1)Cm − ivk‖
m

2m − 1
Cm−1 − ivk‖

m + 1

2m + 3
Cm+1. (4.45)

Equation (4.45) corresponds to an infinite set of coupled differential equations. As an exam-
ple we consider the case m = 0 and we find

Ċ0 = −1

3
ivk‖C1. (4.46)

For m = 1, on the other hand, we have

Ċ1 = −2DC1 − ivk‖C0 − 2

5
ivk‖C2. (4.47)

In the following we employ a two-dimensional subspace approximation. This means we set

Cm = 0 for m ≥ 2 (4.48)

so that only the coefficients C0 and C1 are used. In Lasuik and Shalchi (2019) one can
find the solution obtained by employing one- and three-dimensional subspace approxima-
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tions. It was shown there that the one-dimensional solution is not useful whereas the three-
dimensional solution is too complicated for most applications. Therefore, the two-dimension-
al solution provides a good compromise in terms of accuracy as well as analytical tractabil-
ity. Within the two-dimensional subspace approximation expansion (4.39) reduces to

F(μ, t) = C0 + μC1. (4.49)

In this case Eqs. (4.46) and (4.47) can be combined to find the second-order differential
equation

C̈0 = −2DĊ0 − 1

3
v2k2

‖C0. (4.50)

Using the ansatz

C0 = beωt (4.51)

leads to the quadratic equation

ω2 + 2Dω + 1

3
v2k2

‖ = 0. (4.52)

Thus, the two eigenvalues ω± can be determined to be

ω± = −D ±
√

D2 − v2k2
‖/3. (4.53)

The coefficient C0 can now be written as the linear combination

C0 = b+eω+t + b−eω−t (4.54)

and from Eq. (4.46) we derive

C1 = − 3

ivk‖

(
b+ω+eω+t + b−ω−eω−t

)
. (4.55)

The solution F(μ, t) can, therefore, be expressed as

F(μ, t) = b+eω+t + b−eω−t

− 3μ

ivk‖

(
b+ω+eω+t + b−ω−eω−t

)
. (4.56)

In order to find the coefficients b±, we can employ the initial condition

f (z,μ, t) = 2δ(z)δ(μ − μ0). (4.57)

This form simply means that the particle has its initial position at z = 0 and the initial
pitch-angle cosine μ0. Using this in the inverse Fourier transform of Eq. (4.37) yields

F(μ, t = 0) = 1

2π

∫ +∞

−∞
dzf (z,μ, t = 0)e−ik‖z

= 1

π

∫ +∞

−∞
dzδ(z)δ(μ − μ0)e

−ik‖z

= 1

π
δ(μ − μ0). (4.58)
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Together with the expansion (4.39) we obtain

∑

n

Cn(t = 0)Pn(μ) = 1

π
δ(μ − μ0). (4.59)

Multiplying this by Pm and integrating over μ leads to

Cm(t = 0) = 2m + 1

2π
Pm(μ0) (4.60)

where we have used again orthogonality relation (4.44). For m = 0 and m = 1 this gives

C0(t = 0) = 1

2π
(4.61)

as well as

C1(t = 0) = 3μ0

2π
. (4.62)

Using the latter two formulas in Eqs. (4.54) and (4.55) yields the following system of equa-
tions

b+ + b− = 1

3π

b+ω+ + b−ω− = − ivk‖μ0

2π
,

(4.63)

which has the solutions

b± = ∓ ivk‖μ0 + ω∓
2π(ω+ − ω−)

. (4.64)

Using this and Eq. (4.53) in Eq. (4.56) provides the two-dimensional subspace approxima-
tion to the solution F(μ, t). Of course, our solution is based on expansion (4.49). One can
easily demonstrate by using Eqs. (4.13) and (4.16) together with the orthogonality relation
(4.44) that the function C0(t) corresponds to the Fourier transform of the pitch-angle av-
eraged distribution function M(z, t) and C1(t) corresponds to the Fourier transform of the
current density or diffusion flux J (z, t).

In the theory of perpendicular diffusion one needs to know the quantity 〈μ0μe−ik‖z〉
as shown in Sect. 7 of this review. First we need to define the meaning of the ensemble
average in particle transport theory. Since the particle distribution function derived above is
a function of μ0, μ, and z, we understand the ensemble average used here as

〈A〉 = 1

4

∫ +1

−1
dμ

∫ +1

−1
dμ0

∫ +∞

−∞
dzA(z,μ, t)f (z,μ, t). (4.65)

Therefore, we need to evaluate the following quantity

〈
μ0μe−ik‖z

〉 = 1

4

∫ +1

−1
dμ0

∫ +1

−1
dμ

×
∫ ∞

−∞
dzμ0μe−ik‖zf (z,μ, t). (4.66)
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Replacing f (z,μ, t) by Eq. (4.37) therein leads to

〈
μ0μe−ik‖z

〉 = 1

4

∫ +1

−1
dμ0μ0

∫ +1

−1
dμμ

∫ ∞

−∞
dk′

‖F
(
k′

‖,μ, t
)

×
∫ ∞

−∞
dze

i(k′‖−k‖)z
. (4.67)

With the help of Eq. (2.49) this becomes

〈
μ0μe−ik‖z

〉= π

2

∫ +1

−1
dμ0μ0

∫ +1

−1
dμμF(k‖,μ, t). (4.68)

We now replace F(k,μ, t) by Eq. (4.39), and use P1(μ) = μ to show that

〈
μ0μe−ik‖z

〉= π

2

∫ +1

−1
dμ0μ0

∫ +1

−1
dμ

∞∑

n=0

CnPnP1 (4.69)

which, due to the orthogonality of Legendre polynomials (4.44), reduces to

〈
μ0μe−ik‖z

〉= π

3

∫ +1

−1
dμ0μ0C1. (4.70)

To solve the remaining integral we employ Eq. (4.55) with Eq. (4.64) to derive13

〈
μ0μe−ik‖z

〉= ω+eω+t − ω−eω−t

3(ω+ − ω−)
. (4.71)

The latter formula contains the two parameters ω± given by Eq. (4.53). We shall see later
how Eq. (4.71) is used in analytical theories for perpendicular diffusion. In such theories,
depending on how they are derived, one needs to know the complex conjugate of Eq. (4.71).
If ω+ and ω− are real, taking the complex conjugate does not change the result. If they are
complex, on the other hand, we have ω+ = ω∗− and ω− = ω∗+. Therefore, we can easily see
that

〈
μ0μeik‖z

〉 = ω∗+eω∗+t − ω∗−eω∗−t

3(ω∗+ − ω∗−)

= ω−eω−t − ω+eω+t

3(ω− − ω+)

= ω+eω+t − ω−eω−t

3(ω+ − ω−)

= 〈
μ0μe−ik‖z

〉
. (4.72)

This result was originally derived in Shalchi et al. (2011) by using a slightly different ap-
proach.

13Please note that Eq. (4.71) is the correct solution of the problem considered here. Equation (98) of Lasuik
and Shalchi (2019), where this result was also derived, has the wrong sign.
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The same calculations performed above can easily be repeated to compute (see Lasuik
and Shalchi 2019 for details)

〈
e±ik‖z

〉= ω+eω−t − ω−eω+t

ω+ − ω−
(4.73)

corresponding to the characteristic function. This result can be further simplified by consid-
ering limits. We find

〈
e±ik‖z

〉≈
⎧
⎨

⎩
e

−κ‖k2‖ t for v2k2
‖ � 3D2

cos (
vk‖t√

3
)e−Dt for v2k2

‖ � 3D2.
(4.74)

The first line therein corresponds to the characteristic function of a diffusion equation. How-
ever, this form is only valid for smaller wave numbers. The second line, on the other hand,
corresponds to a damped unperturbed orbit. The conditions found here can be rewritten in
terms of the parallel mean free path. We find the diffusive result for λ2

‖k
2
‖ � 3/4 and the

damped unperturbed result for λ2
‖k

2
‖ � 3/4. We conclude that the shorter the parallel mean

free path is, the more important the diffusive solution is.
The pitch-angle averaged function (see, e.g., Eq. (4.13)) can be obtained via

M(z, t) = 1

2π

∫ +∞

−∞
dk‖

〈
e±ik‖z

〉
e−ik‖z. (4.75)

As an example we consider the limit λ‖ → 0 so that we can employ the first line of
Eq. (4.74). We can easily derive

M(z, t) = 1

2π

∫ +∞

−∞
dk‖ cos (zk‖)e

−κ‖k2‖ t

= 1√
4πκ‖t

e
− z2

4κ‖ t (4.76)

corresponding to a Gaussian solution. The result obtained here is the diffusive solution that
one would expect in this case. However, it has to be emphasized that it is only correct in the
limit λ‖ → 0.

We can also compute the velocity correlation function based on this method. We find
after some algebra

〈
vz(t)vz(0)

〉 = v2〈μμ0〉

= v2

3

[
ω+eω+t − ω−eω−t

ω+ − ω−

]

k‖=0

= v2

3
e−2Dt

= v2

3
e−vt/λ‖ . (4.77)

It has to be emphasized that this form was derived from the Fokker-Planck equation but an
isotropic pitch-angle Fokker-Planck coefficient was used. For other forms different velocity
correlation functions can be obtained (see Shalchi 2011a).
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Also useful is to determine the second moment 〈z2〉 because it controls the parallel spatial
diffusion coefficient. After the same calculations performed above for the other quantities,
we find (see Lasuik and Shalchi 2019 for a detailed derivation and Shalchi 2006a for an
alternative derivation of this result)

〈
z2
〉 = −2π

[
d2C0

dk2
‖

]

k‖=0

= v2t

3D
− v2

6D2

(
1 − e−2Dt

)

= 2κ‖t − 6κ2
‖

v2

(
1 − e−vt/λ‖). (4.78)

We can easily see that asymptotically

〈
z2
〉≈

{
1
3 v2t2 for vt � λ‖
2κ‖t for vt � λ‖.

(4.79)

This means that for early times parallel transport is ballistic (unperturbed) whereas for late
times diffusion is restored. Therefore, Eq. (4.78) contains the important features of parallel
transport. Furthermore, we can easily learn that the turnover from the ballistic to the diffusive
regime occurs around the characteristic time vt ≈ λ‖ meaning that the particles travel about
a parallel mean free path before they become diffusive. This fact will be useful for a heuristic
discussion of perpendicular transport as we shall see later.

4.6 Modeling Parallel Diffusion

In test-particle simulations one usually obtains parallel and perpendicular diffusion coeffi-
cients as a function of time (see Sect. 10 of this review). In the current review we consider
theories in which the parallel diffusion coefficient occurs as input parameter. In the fol-
lowing we discuss a simple model for time-dependent parallel transport which has only the
parallel mean free path and magnetic rigidity as input parameters. In the previous subsection
the second moment was computed and Eq. (4.78) was obtained. In the following we define
the running parallel diffusion coefficient via

d‖(t) := 1

2t

〈
(�z)2

〉
. (4.80)

Usually a time-dependent or running diffusion coefficient is defined via the time-derivative
of the corresponding mean square displacement. However, our aim is to compare the parallel
diffusion coefficient calculated analytically with test-particle simulations. In principle it is
not difficult to compute a running diffusion coefficient defined via time-derivatives from
such numerical data. However, as well known, calculating derivatives of noisy data leads to
an even stronger noise and this would make the aforementioned comparison difficult. Thus,
we define the running parallel diffusion coefficient via Eq. (4.80) and keep in mind that for
diffusive parallel transport, both definitions become equal anyway.

By using the parallel spatial diffusion coefficient in the late-time limit

κ‖ := d‖(t → ∞), (4.81)
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and combining this with Eqs. (4.78) and (4.80), yields

d‖(t) = κ‖ − 3κ2
‖

v2t

(
1 − e−v2t/(3κ‖)

)
. (4.82)

In Sect. 10 the form (4.82) will be compared with test-particle simulations. In order to do
this, it is convenient to define the following dimensionless quantities:

T := �t,

R := v

��
,

K‖ := κ‖
��2

,

D‖ := d‖
��2

,

(4.83)

where � is a characteristic length scale of turbulence (see Sect. 2 for more details), R is the
dimensionless rigidity used before in Eq. (4.30), and � is the gyrofrequency defined via
Eq. (4.3). With this set of parameters, Eq. (4.82) can be written as

D‖(T ) = K‖ − 3K2
‖

R2T

(
1 − e−R2T/(3K‖)

)
. (4.84)

If the dimensionless rigidity R and parallel diffusion coefficient K‖ are specified, Eq. (4.84)
can easily be used in order to plot D‖ versus time T . Equation (4.84) was originally derived
in Arendt and Shalchi (2018) and is compared with simulations in Figs. 16 and 17 of this
review.

Alternatively, one can express the parallel position in terms of the parallel bendover scale
�‖ and the dimensionless time τ = vt/�‖ so that Eq. (4.78) becomes

〈z2〉
�2

‖
= 2

3

λ‖
�‖

τ − 2

3

λ2
‖

�2
‖

(
1 − e−τ�‖/λ‖). (4.85)

The latter form has the advantage that only one parameter controls the solution, namely
λ‖/�‖.

5 Perpendicular Transport of Energetic Particles

In the previous sections we reviewed turbulence models, analytical theories for the random
walk of magnetic field lines, and discussed parallel transport. These are three important
ingredients in the theory of particle transport across the mean magnetic field. In the follow-
ing we discuss quasi-linear transport, compound sub-diffusion, and the non-linear guiding
center theory.

5.1 The FLRW Limit

One of the first descriptions of perpendicular transport was entirely based on the effect of
field line random walk (see Jokipii 1966). This approach is simple but does not work in
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the general case as shown later. As an approximation we assume that FLRW is diffusive
for all distances meaning that we neglect the initial ballistic regime entirely. Thus, we can
employ Eq. (3.45). As a simple model for the perpendicular transport of energetic particles
we assume that the particle follows a single magnetic field line while it moves with constant
velocity in the parallel direction meaning that

zp = vμt (5.1)

where we have used the pitch-angle cosine μ as before. Furthermore, if particles follow field
lines, the perpendicular mean square displacement of particle trajectories and field lines are
the same. Therefore, we can combine Eqs. (3.45) and (5.1) to find

〈
(�x)2

〉
p

= 2vtκFL|μ|. (5.2)

This corresponds to a diffusive motion of the particle where the diffusion coefficient is given
by

D⊥(μ) = v|μ|κFL. (5.3)

Compared to the parameter κ⊥ used so far in this review, the Fokker-Planck coefficient
D⊥(μ) allows for a pitch-angle dependent description of perpendicular transport. The two
parameters are related to each other via (see, e.g., Schlickeiser 2002 for a detailed derivation)

κ⊥ = 1

2

∫ +1

−1
dμD⊥(μ) (5.4)

corresponding to a simple pitch-angle average. Solving the latter integral for the form given
by Eq. (5.3) yields for the perpendicular diffusion coefficient

κ⊥ = v

2
κFL. (5.5)

We can clearly see that the perpendicular diffusion coefficient of the energetic particles is
directly proportional to the diffusion coefficient of magnetic field lines. The only property of
the particles entering this simple equation is their speed v. Alternatively, one can compute
the perpendicular mean free path via

λ⊥ = 3

v
κ⊥ = 3

2
κFL. (5.6)

Obviously the latter quantity does not depend on any particle property. This means that
the perpendicular mean free path does even not depend on particle energy, momentum, or
rigidity. Later in this review paper we will argue that this behavior can typically be found
for high particle energies.

For slab turbulence the field line diffusion coefficient is given by Eq. (3.21) or even
Eq. (3.20) if spectrum (2.14) is used. Thus we have

λ⊥ = 3

2
L‖

δB2
x

B2
0

= 3π

2
C(s)�‖

δB2
slab

B2
0

(5.7)

allowing for a straightforward calculation of the perpendicular mean free path.
The result obtained here was obtained by combining the simple model that particles

follow diffusive magnetic field lines. One can develop and apply a systematic quasi-linear
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approach as it was originally done in Jokipii (1966). For slab turbulence this would lead to
exactly the same result, namely Eq. (5.7). The original work of Jokipii (1966), however, also
allows the case δBz �= 0 leading to another term in the quasi-linear perpendicular diffusion
coefficient. This term is basically a gyro-resonant term which is negligible in most cases.

5.2 Compound Sub-Diffusion

Real particles do not perform an unperturbed motion in the parallel direction as assumed in
the previous paragraph. Therefore, we now assume a diffusive parallel motion. However, we
still assume that the particle is tied to a single magnetic field line as before. First we start
with some simple considerations. If a typical particle moves diffusively, we can use

zp =√
2tκ‖ (5.8)

instead of Eq. (5.1). Here we have used the parallel diffusion coefficient of the particle κ‖.
Combining Eqs. (3.45) and (5.8) yields

〈
(�x)2

〉
p

= 2κFL

√
2tκ‖ (5.9)

corresponding to a sub-diffusive motion since the mean square displacement is directly pro-
portional to

√
t . This type of transport is called compound sub-diffusion and is relevant in

turbulence without transverse complexity (see, e.g., Mace et al. 2000; Qin et al. 2002a). Ac-
cording to Eq. (5.9) parallel diffusion suppresses perpendicular transport to a sub-diffusive
level.

A more complete and accurate description of this type of transport was presented in Webb
et al. (2006). The latter authors employed an approach based on the so-called Chapman-
Kolmogorov equation (see, e.g., Gardiner 1985)

f⊥(x, y; t) =
∫ +∞

−∞
dzfFL(x, y; z)f‖(z; t) (5.10)

where the particle distribution in the perpendicular direction f⊥(x, y; t) is given as con-
volution integral of the parallel distribution function f‖(z; t) and the field line distribution
function fFL(x, y; z). Whereas Webb et al. (2006) computed the function f⊥(x, y; t) by
solving Eq. (5.10), we follow Shalchi and Kourakis (2007a) and only consider the second
moment of f⊥(x, y; t) leading to

〈(
�x(t)

)2〉
P

=
∫ +∞

−∞
dz
〈(
�x(z)

)2〉
FL

f‖(z; t) (5.11)

giving us a relation between particle and field line mean square displacements. In the follow-
ing we employ a Gaussian particle distribution and assume that parallel transport is diffusive
for all times. Thus, the parallel distribution function has the form

f‖(z, t) = 1√
4πκ‖t

e
− z2

4κ‖ t . (5.12)

Using this and Eq. (3.45) in Eq. (5.11) leads to

〈
(�x)2

〉
P

= κFL√
πκ‖t

∫ +∞

−∞
dz|z|e− z2

4κ‖ t . (5.13)
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This integral can easily be solved yielding

〈
(�x)2

〉
P

= 4κFL

√
κ‖t
π

(5.14)

similar compared to Eq. (5.9). The running diffusion coefficient is then

d⊥(t) = 1

2

d

dt

〈
(�x)2

〉= κFL

√
κ‖
πt

(5.15)

corresponding to sub-diffusion. However, the Chapman-Kolmogorov equation based ap-
proach allows us to compute not just second moments but also the perpendicular particle
distribution function f⊥(x, y; t). This was done in Webb et al. (2006) where a result de-
pending on a so-called Fox function was found. Therefore, for compound sub-diffusion, one
expects to find a non-Gaussian distribution function. This form, and therewith the result
of Webb et al. (2006), was confirmed via test-particle simulations by Arendt and Shalchi
(2018) and can also be seen in Fig. 16 of this review. A velocity correlation function based
approach to describe compound sub-diffusion was presented in Kóta and Jokipii (2000).

Compound sub-diffusion is highly relevant for particle transport in slab turbulence. Ac-
cording to the so-called theorem on reduced dimensionality, proposed in Jokipii et al. (1993)
and Jones et al. (1998), particles are tied to magnetic field lines if the turbulence has re-
duced dimensionality. Undoubtedly this is the case for slab turbulence. Numerically it was
confirmed by Qin and Shalchi (2015) that for slab turbulence particles follow indeed field
lines. However, if one includes wave propagation effects, for instance, perpendicular trans-
port can be diffusive even if particles follow field lines (see Shalchi et al. 2007). It remains
unclear whether the theorem on reduced dimensionality is valid for pure two-dimensional
turbulence and how perpendicular transport behaves in this specific case (see again Qin and
Shalchi 2015) but for slab/2D and full three-dimensional turbulence it is usually assumed
that perpendicular transport is diffusive except some transient regime where one can still
find sub-diffusion because normal diffusion is not yet restored. In Sect. 9 we shall provide
a more complete description of the physics of perpendicular transport. Before doing this we
focus on systematic theories.

5.3 Fundamental Equations for Perpendicular Diffusion

So far we discussed two simple models for perpendicular transport. Although perpendicular
transport is by far more complicated, both types of transport can be seen in test-particle
simulations as discussed later in this review. The FLRW limit should be valid in the limit of
high particle energies corresponding to very long parallel mean free paths. Compound sub-
diffusion, on the other hand, should describe particle transport in slab turbulence correctly.
Furthermore, there are intermediate times where we find sub-diffusion (see Fig. 14 of this
review or Zimbardo et al. 2006). In the next few sections we discuss more complete theories
for perpendicular transport which contain the aforementioned limits. Those considerations
will lead to the so-called unified non-linear transport (UNLT) theory and its time-dependent
generalization (see Sects. 6 and 7).

The fundamental equation describing the motion of charged particles through purely
magnetic turbulence is the Newton-Lorentz equation (4.1). We now replace the particle po-
sition x therein by the guiding center coordinates (see, e.g., Schlickeiser 2002)

X = x + 1

�
(v × ez) (5.16)
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where the gyrofrequency � is given by Eq. (4.3). The Cartesian components of Eq. (5.16)
have the form

X = x + vy

�
,

Y = y − vx

�
,

Z = z.

(5.17)

In the unperturbed case, the coordinates (X,Y,Z) correspond to the coordinates of the guid-
ing center. In reality those coordinates have a different meaning due to the chaotic motion of
the particles. Using those coordinates, however, is still useful as it allows for a strong simpli-
fication of fundamental equations. Even in the case of particle motion through turbulence,
we call those coordinates guiding center coordinates but we keep in mind that if there is
turbulence the particle motion is no longer a perfectly helical motion. The guiding center ve-
locity can be obtained by considering the time-derivative of Eq. (5.16). We can easily derive

V = d

dt
X

= d

dt
x + 1

�

dv
dt

× ez

= v + 1

mγ�

dp
dt

× ez

= v − q

mcγ�
ez × (v × B) (5.18)

where we have employed the Newton-Lorentz equation (4.1) also. Using the standard for-
mula for the double cross product (sometimes called vector triple product or Grassmann
identity)

A × (B × C) = (A · C)B − (A · B)C (5.19)

allows us to write

V = v − q

mcγ�

[
(ez · B)v − (ez · v)B

]

= v + vz

B0
B − Bz

B0
v. (5.20)

Considering Cartesian components yields

Vx = vx + vz

Bx

B0
− vx

Bz

B0
= vz

δBx

B0
− vx

δBz

B0
,

Vy = vy + vz

By

B0
− vy

Bz

B0
= vz

δBy

B0
− vy

δBz

B0
,

Vz = vz.

(5.21)

For the incompressible case δBz = 0 we find the following equations of motion

Vx = vz

δBx(x)

B0
and Vy = vz

δBy(x)

B0
. (5.22)

Even if real turbulence is compressible, these equations should still provide a good ap-
proximation assuming that δBz < B0. In the current review we assume that the diffusion
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coefficients based on particle and guiding center coordinates are the same. This assump-
tion is motivated by the fact that the distance between the coordinates (X,Y,Z) and the
coordinates (x, y, z) is limited

√
(X − x)2 + (Y − y)2 =

√
v2

y

�2
+ v2

x

�2
= v⊥

�
≤ v

�
= RL (5.23)

meaning that it does not increase with time. Furthermore, diffusion coefficients were cal-
culated for the different coordinates based on test-particle simulations in Qin and Shalchi
(2016) showing that there is no difference between the diffusion coefficients regardless
whether guiding center or particle coordinates are used (see Sect. 10.5 of the current re-
view for more details). Therefore, our investigations of perpendicular diffusion are based on
Eq. (5.22) as equations of motion. Due to the assumption of axi-symmetry we only consider
the x-component. Using again a Fourier representation as given by Eq. (2.3), allows us to
write this equation of motion as

Vx(t) = vz(t)

B0

∫
d3kδBx(k)eix·k. (5.24)

The latter equation will be the starting point of the so-called non-linear guiding center theory
as well as the unified non-linear transport theory. Both approaches will be discussed in the
following. Before doing so, we discuss another important tool frequently used in transport
theory, namely the so-called Taylor-Green-Kubo formulation.

5.4 The Taylor-Green-Kubo Formula

In the section about magnetic field line random walk, we computed diffusion coefficients via
mean square displacements (see, e.g., Eq. (3.1) of the current review). A powerful tool in
transport theory is the so-called TGK (Taylor-Green-Kubo) formula (see Taylor 1922; Green
1951; Kubo 1957) which relates diffusion coefficients to so-called velocity auto-correlation
functions. In the following this relation is derived and discussed. The difference between
final and initial position of the particle can be written as

�x(t) = x(t) − x(0) =
∫ t

0
dt1vx(t1) (5.25)

where the coordinate x can be replaced by any other Cartesian coordinate. Therefore, the
mean square displacement of possible particle trajectories can be written as

〈
(�x)2

〉=
∫ t

0
dt1

∫ t

0
dt2
〈
vx(t1)vx(t2)

〉
(5.26)

where we have used the velocity auto-correlation function 〈vx(t1)vx(t2)〉. A time-dependent
or running diffusion coefficient can be defined via14

d⊥(t) = 1

2

d

dt

〈
(�x)2

〉
(5.27)

14In the theory of particle transport time t is the variable and not parallel position z as in the theory of mag-
netic field line random walk. Therefore, Eq. (5.27) is different compared to Eq. (3.1). Even the units are not
the same. A field line diffusion coefficient has length dimensions whereas the particle diffusion coefficients
have the dimension [L]2/[T ].
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which is more common than definition (4.80). In order to find the time-derivative of the
mean square displacement given by Eq. (5.26), we can use the Leibniz integral rule (3.29)
to derive

d

dt

〈
(�x)2

〉=
∫ t

0
dt2
〈
vx(t)vx(t2)

〉+
∫ t

0
dt1
〈
vx(t1)vx(t)

〉
. (5.28)

Therewith the running diffusion coefficient (5.27) becomes

d⊥(t) =
∫ t

0
dτ
〈
vx(t)vx(τ )

〉
. (5.29)

The latter equation is exact and its derivation did not require any assumptions or approxi-
mations. Alternatively, we can use again Eq. (5.25) to write the running diffusion coefficient
as

d⊥(t) = 〈
vx(t)�x(t)

〉
. (5.30)

To continue we assume that the transport is stationary, meaning that the velocity correlation
function in Eq. (5.29) depends only on the time difference t − τ . Then we can write

d⊥(t) =
∫ t

0
dτ
〈
vx(t − τ)vx(0)

〉
. (5.31)

After employing a simple integral transformation we obtain

d⊥(t) =
∫ t

0
dτ
〈
vx(τ )vx(0)

〉
. (5.32)

In general the latter function can depend on time. This is the case for anomalous transport
such as compound sub-diffusion. If we compute the time-derivative of Eq. (5.32), on the
other hand, we find

d2

dt2

〈
(�x)2

〉= 2
〈
vx(t)vx(0)

〉
(5.33)

which is another useful relation as we shall see later in this review. If we consider the late-
time limit t → ∞ and assume that the transport eventually becomes diffusive, Eq. (5.32)
turns into

κ⊥ =
∫ ∞

0
dt
〈
vx(t)vx(0)

〉
(5.34)

which is the standard version of the TGK formula. This formula can also be used in order
to understand the relation between the particle’s mean free path and its diffusion coefficient.
For simplicity we assume that the velocity correlation function is given by the exponential
form

〈
vx(t)vx(0)

〉= v2

3
e−vt/λ⊥ (5.35)

where we have assumed isotropic initial conditions 〈v2
x(0)〉 = v2/3. Using this velocity cor-

relation function in the TGK formula (5.34) gives us

κ⊥ = v2

3

∫ ∞

0
dte−vt/λ⊥ (5.36)
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and, therefore,

κ⊥ = v

3
λ⊥. (5.37)

This relation is frequently used throughout this review. We understand the mean free path,
as defined via Eq. (5.35), as a characteristic length scale for the decorrelation of velocities.
This means that after the particle has traveled the distance vt = λ⊥, the velocity correlation
function basically decayed to zero.

All considerations presented above were done for the x-components of position and ve-
locity. All these relations can be used for any direction of space. However, special care is
required if it comes to the drift coefficient (see, e.g., Shalchi 2011b). Then, on the other
hand, the TGK formula (5.34) can be used in order to describe pitch-angle scattering (see,
e.g., Eq. (4.12)) or even momentum diffusion (see, e.g., Schlickeiser 2002).

5.5 The Non-Linear Guiding Center Theory

The first systematic theory for perpendicular diffusion which is discussed here is the so-
called non-linear guiding center (NLGC) theory. After some simple model-based approxi-
mations such as the non-linear closure approximation of Owens (1974) and the Bieber and
Matthaeus (1997) model, Matthaeus et al. (2003) developed a more systematic approach in
order to describe perpendicular diffusion. The equations of motion (5.22) can be combined
with the TGK formula (5.34) to obtain

κ⊥ = a2

B2
0

∫ ∞

0
dt
〈
vz(t)vz(0)δBx(t)δB

∗
x (0)

〉
. (5.38)

Besides quantities used before in this review, we have introduced the parameter a2. In
the original paper by Matthaeus et al. (2003), the parameter a was introduced directly in
Eq. (5.22) but it was shown in Qin and Shalchi (2016) that Eq. (5.22) is correct as it is
without containing any type of additional parameter. In the following we just keep this pa-
rameter in our equations and assume that this parameter is there in order to balance out some
inaccuracies of the theory related to some of the used approximations.

To proceed, Matthaeus et al. (2003) assumed that the fourth-order correlation in
Eq. (5.38) can be replaced by a product of two second-order correlations

〈
vz(t)vz(0)δBx(t)δB

∗
x (0)

〉≈ 〈
vz(t)vz(0)

〉〈
δBx(t)δB

∗
x (0)

〉
(5.39)

leading to

κ⊥ = a2

B2
0

∫ ∞

0
dt
〈
vz(t)vz(0)

〉〈
δBx(t)δB

∗
x (0)

〉
. (5.40)

Approximation (5.39) is problematic and does not work in the general case as shown in the
numerical work of Qin and Shalchi (2016). A more detailed discussion of this matter can
be found in Sect. 10.5 of this review. It will be shown there that the parameter a2 occurring
in Eq. (5.40) is there to balance out the inaccuracy of approximation (5.39) in slab/2D tur-
bulence. Furthermore, it was already shown in Shalchi (2005b) that Eq. (5.39) is the reason
why NLGC theory provides a diffusive result for pure slab turbulence where one expects to
find sub-diffusive transport. Therefore, approximation (5.39) is dropped in the derivation of
UNLT theory.
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Furthermore, Matthaeus et al. (2003) modeled the parallel velocity correlation function
by the isotropic exponential model

〈
vz(t)vz(0)

〉= v2

3
e−vt/λ‖ (5.41)

where we used the parallel mean free path λ‖. This corresponds to the velocity correlation
function derived above (see Eq. (4.77) of this review). It was shown in Shalchi (2011a) that
this form is only exact for an isotropic pitch-angle Fokker-Planck coefficient (see Eq. (4.35)
of the current article). However, for other forms of Dμμ, Eq. (5.41) should still provide an
accurate approximation. To proceed, the magnetic correlation function 〈δBx(t)δB

∗
x (0)〉 has

to be replaced by the Fourier representation (2.3) leading to

κ⊥ = a2v2

3B2
0

∫ ∞

0
dt

∫
d3k

∫
d3k′〈δBx(k)δB∗

x

(
k′)eik·x〉e−vt/λ‖ (5.42)

where we used x(t = 0) = 0. Now we employ Corrsin’s independence hypothesis as in the
theory of FLRW (see, e.g., Eq. (3.26) of this review) and use Eq. (2.6), corresponding to the
assumption of homogeneous turbulence, to derive

κ⊥ = a2v2

3B2
0

∫
d3kPxx(k)

∫ ∞

0
dt
〈
eik·x〉e−vt/λ‖ . (5.43)

Next, the characteristic function 〈eik·x〉 must be approximated. Matthaeus et al. assumed a
Gaussian distribution of the particles and that the particle motion is diffusive for all times.
Therefore, one can use

〈
eik·x〉= e

−κ⊥k2⊥t−κ‖k2‖ t (5.44)

corresponding to the characteristic function of a usual diffusion equation for the axi-
symmetric case.15 It has to be noted that here it is assumed that perpendicular and parallel
transport are diffusive for all times. For pure slab turbulence, however, we can set k⊥ = 0
and the assumption of diffusive perpendicular transport is no longer part of the theory in this
special case. Combining Eq. (5.43) with Eq. (5.44) and evaluating the time-integral, yields

κ⊥ = a2v2

3B2
0

∫
d3k

Pxx(k)

κ‖k2
‖ + κ⊥k2

⊥ + v/λ‖
. (5.45)

This is the non-linear integral equation of the NLGC theory as originally derived by
Matthaeus et al. (2003). This integral equation can be used for turbulence models with purely
magnetic fluctuations where δBz < 0. Furthermore, we assumed static turbulence here but
the theory can easily be generalized to allow for dynamical turbulence (see Matthaeus et al.
2003; Shalchi et al. 2004c).

As shown in Matthaeus et al. (2003) and Bieber et al. (2004), Eq. (5.45) agrees with some
simulations as well as solar wind observations as long as a two-component turbulence model

15A diffusion equation for the axi-symmetric case has the form ∂f/∂t = κ‖∂2f/∂z2 + κ⊥(∂2f/∂x2 +
∂2f/∂y2). In Fourier space this turns into ∂F/∂t = −κ‖k2‖F − κ⊥k2⊥F having the solution shown in
Eq. (5.44). The solution of the diffusion equation in Fourier space corresponds to the characteristic func-
tion apart from factors depending on how the Fourier transform is defined.
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is used and one sets a2 = 1/3. This was undoubtedly a breakthrough in the theory of perpen-
dicular diffusion. However, Eq. (5.45) cannot be seen as the final solution to this problem.
One of the major problems is that NLGC theory does not work for slab turbulence where
perpendicular transport should be sub-diffusive. This problem was also pointed out in the
review of Giacalone (2013). Since NLGC theory was presented, several authors developed
alternative theories. Examples are the weakly non-linear theory of Shalchi et al. (2004b), the
random ballistic interpretation of NLGC theory of Ruffolo et al. (2012), or the approaches
presented by le Roux and Webb (2007) and Qin and Zhang (2014). These alternative the-
ories definitely provided some interesting insight and contain useful ideas. However, they
did not really lead to a theory which provides a correct description of perpendicular trans-
port in slab turbulence, nor do they contain the Matthaeus et al. (1995) theory of random
walking magnetic field lines. An exception is the extended non-linear guiding center theory
presented in Shalchi (2006b) which describes correctly sub-diffusion for slab turbulence but
the theory was specifically designed for two-component turbulence and cannot be used for
three-dimensional models.

Another problem is that the correction factor a2 is needed in order to achieve agreement
with simulations. Since the theory does not contain an explanation of this parameter nor is
it clear why a2 = 1/3 is needed, NLGC theory is incomplete. Unfortunately, the correction
factor a2 will be kept in the next three sections although in several cases a2 is no longer
needed in more advanced theories. The physics of a2 and its value will eventually be ex-
plained in Sect. 9.

6 The Unified Non-Linear Transport Theory

The NLGC theory discussed before is based on approximation (5.39). It was shown numer-
ically and analytically that this approximation is not valid in the general case (see Shalchi
2005b; Qin and Shalchi 2016, and Sect. 10.5 of the current review). Therefore, UNLT the-
ory was developed which is not based on this approximation. Before we discuss solutions of
the latter theory, we derive UNLT theory by employing the approach based on the Fokker-
Planck equation as presented in Shalchi (2010).

6.1 Derivation from the Fokker-Planck Equation

In order to determine the correlations between the velocity component vz(t) and the particle
trajectory x(t) in the magnetic field, one needs a velocity-dependent transport equation. This
equation is given by the pitch-angle dependent Fokker-Planck equation similar compared to
Eq. (4.11) of this review. However, in order to derive diffusive UNLT theory, we need to
take into account perpendicular diffusion so that the Fokker-Planck equation becomes

∂f

∂t
+ vμ

∂f

∂z
= ∂

∂μ

[
Dμμ

∂f

∂μ

]
+ D⊥

[
∂2f

∂x2
+ ∂2f

∂y2

]
. (6.1)

The solution of this equation provides the pitch-angle dependent particle distribution func-
tion f (x,μ, t). Before using this, we go back to Eq. (5.38) and use the Fourier representation
(2.3) to find

κ⊥ = 1

B2
0

∫ ∞

0
dt

∫
d3k

∫
d3k′〈vz(t)vz(0)δBx(k)δB∗

x

(
k′)eik·x〉. (6.2)
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As before we employ Corrsin’s approximation to obtain

κ⊥ = a2

B2
0

∫
d3k

∫
d3k′〈δBx(k)δB∗

x

(
k′)〉

×
∫ ∞

0
dt
〈
vz(t)vz(0)eik·x〉 (6.3)

where we included the correction factor a2 as in NLGC theory. Ideally we would have a2 = 1
but a more detailed discussion of this factor can be found in Sects. 9 and 10 of this review.
Now we assume homogeneous turbulence meaning that we can employ Eq. (2.6). Thus, we
can write the perpendicular diffusion coefficient as

κ⊥ = a2v2

B2
0

∫
d3kPxx(k)�[T (k)

]
(6.4)

with the wave vector dependent function

T (k) = 1

v2

∫ ∞

0
dt
〈
vz(t)vz(0)eik·x〉. (6.5)

Above we assumed magnetostatic turbulence but diffusive UNLT theory can also be formu-
lated for dynamical turbulence (see discussion at the end of this subsection). The ensemble
average used here is defined like in Eq. (4.65) but with additional x- and y-integrals. Thus,
the correlations in Eq. (6.5) can be written as

〈
vz(t)vz(0)eik·x〉= v2

4

∫ +1

−1
dμ0

∫ +1

−1
dμμ0μ�(k,μ, t) (6.6)

with the pitch-angle dependent characteristic function

�(k,μ, t) :=
∫

d3xeik·xf (x,μ,μ0, t). (6.7)

In the notation used here we emphasize that the distribution function also depends on the
initial pitch-angle cosine μ0. To continue, we multiply the Fokker-Planck equation (6.1) by
exp (ik · x) and thereafter we integrate over the whole space to obtain

∂�

∂t
= ivμk‖� + ∂

∂μ

[
Dμμ

∂�

∂μ

]
− D⊥k2

⊥� (6.8)

corresponding to a partial differential equation for �. To proceed it is useful to define the
pitch-angle dependent function

S(μ,k) := 1

2

∫ +1

−1
dμ0μ0

∫ ∞

0
dt�(k,μ, t) (6.9)

and with Eqs. (6.5) and (6.6) we obtain

T (k) = 1

2

∫ +1

−1
dμμS(μ,k)

= 1

4

∫ +1

−1
dμ
(
1 − μ2

)∂S(μ,k)

∂μ
(6.10)
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where we have used integration by parts. In order to derive an ordinary differential equation
for the function S(μ,k), we multiply Eq. (6.8) by μ0, integrate over time t , and average
over the initial pitch-angle cosine μ0 to find

1

2

∫ +1

−1
dμ0μ0

[
�(t = ∞) − �(t = 0)

]

= ivμk‖S + ∂

∂μ

[
Dμμ

∂S

∂μ

]
− k2

⊥D⊥S. (6.11)

Due to the assumption of sharp initial conditions we can use f (x,μ, t) = 2δ(x)δ(μ − μ0)

and, thus, we have

�(t = 0) = 2δ(μ − μ0). (6.12)

Furthermore, due to the fact that we find a pitch-angle isotropization process (see, e.g.,
Sect. 4 of this review), the particle distribution function f and therewith the function �

become μ0- and μ-independent for late times. Thus, if we multiply the pitch-angle indepen-
dent function �(k, t → ∞) by μ0 and integrate over μ0, we find zero. Therewith, Eq. (6.11)
becomes

−μ = ivμk‖S + ∂

∂μ

[
Dμμ

∂S

∂μ

]
− k2

⊥D⊥S. (6.13)

If the function S would be known, we can easily compute the function T via Eq. (6.10)
and thereafter the perpendicular diffusion coefficient via Eq. (6.4). Equation (6.13) provides
an ordinary differential equation for the function S which depends on μ as well as the
wave vector k. Unfortunately, it is not possible to solve Eq. (6.13) for the general case. To
continue we assume that the two Fokker-Planck coefficients Dμμ and D⊥ are even functions
in μ. Furthermore, we split S in an even contribution S+ and an odd contribution S−. Then
we can derive from Eq. (6.13) a system of two ordinary differential equations for S+ and
S−, namely

0 = ivμk‖S− + ∂

∂μ

[
Dμμ

∂S+
∂μ

]
− k2

⊥D⊥S+ (6.14)

which is even in μ and

−μ = ivμk‖S+ + ∂

∂μ

[
Dμμ

∂S−
∂μ

]
− k2

⊥D⊥S− (6.15)

which is odd in μ. Equation (6.14) can be averaged over μ. By using Eqs. (4.15) and (6.5),
we can easily derive

ivk‖
∫ +1

−1
dμμS−(μ,k) = k2

⊥

∫ +1

−1
dμD⊥S+ (6.16)

which is an exact relation. The left hand side of this equation corresponds to the function T

defined via Eq. (6.10) so that we can write

T = k2
⊥

2ivk‖

∫ +1

−1
dμD⊥S+. (6.17)
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Here we can already see that for slab turbulence, where we have k⊥ = 0, we find T = 0 and,
thus, κ⊥ = 0 corresponding to sub-diffusion. To proceed we assume

D⊥ = 2|μ|κ⊥ (6.18)

which is a simple model based on the assumption that D⊥(μ) is symmetric in μ and in-
creases with |μ|. The assumption that D⊥ ∼ |μ| is supported by the test-particle simulations
performed by Qin and Shalchi (2014). Furthermore, this pitch-angle dependence is also pro-
vided by the FLRW limit (see, e.g., Eq. (5.3) of the current article). The factor 2 in Eq. (6.18)
has been chosen so, that Eq. (5.4) is satisfied. With the form given by Eq. (6.18), the exact
relation (6.17) turns into

T = 2κ⊥k2
⊥

ivk‖

∫ 1

0
dμμS+. (6.19)

Now we integrate Eq. (6.15) over the pitch-angle cosine from 0 to 1 and employ Eq. (6.19)
to obtain

−1

2
= ivk‖

∫ 1

0
dμμS+ − DS ′

−(μ = 0) − k2
⊥

∫ 1

0
dμD⊥S− (6.20)

where we have used S ′− ≡ ∂S−/∂μ and D ≡ Dμμ(μ = 0). Using Eqs. (6.18) and (6.19)
yields

1

2
= DS ′

−(μ = 0) +
[

2κ⊥k2
⊥ + (vk‖)2

2κ⊥k2
⊥

]
T (6.21)

where we have employed Eq. (6.10) again. Due to the factor (1 − μ2) in Eq. (6.10), we
approximate

S ′
−(k,μ) ≈ S ′

−(k,μ = 0) (6.22)

to derive

T (k) ≈ 1

3
S ′

−(k,μ = 0). (6.23)

Therefore, Eq. (6.21) becomes

T (k) = 1

3

1

2D + (4/3)κ⊥k2
⊥ + (vk‖)2/(3κ⊥k2

⊥)
. (6.24)

This result is valid for arbitrary but finite D ≡ Dμμ(μ = 0).
A further simplification can be achieved by employing the isotropic pitch-angle Fokker-

Planck coefficient as given by Eq. (4.35). This enables us to use Eq. (4.36) and Eq. (6.4)
becomes

κ⊥ = a2v2

3B2
0

∫
d3k

Pxx(k)

F (k‖, k⊥) + (4/3)κ⊥k2
⊥ + v/λ‖

(6.25)

where we have used the function

F(k‖, k⊥) = (vk‖)2/
(
3κ⊥k2

⊥
)
. (6.26)

Equation (6.25) with (6.26) represents diffusive UNLT theory. Of course one could question
the assumption of isotropic pitch-angle scattering. Especially for small wave numbers k = 0
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the term v/λ‖ in the denominator of Eq. (6.25) becomes important. However, we can explore
the case k = 0 separately. For k = 0, Eq. (6.13) turns into

−μ = ∂

∂μ

[
Dμμ

∂S

∂μ

]
. (6.27)

This can easily be integrated for arbitrary Dμμ so that

(
1 − μ2

) ∂S

∂μ
= 1

2

(1 − μ2)2

Dμμ

. (6.28)

Using this in Eq. (6.10) yields

T = 1

8

∫ +1

−1
dμ

(1 − μ2)2

Dμμ

= κ‖
v2

= λ‖
3v

(6.29)

where we have used Eq. (4.23). One can easily see that this is in agreement with Eq. (6.25)
if we set k = 0 therein, suggesting that Eq. (6.25) is also valid if Dμμ is not isotropic.
One can repeat the calculations performed above for the more general case of dynamical
turbulence. In this case one would obtain the formula derived in Shalchi (2011d). Diffusive
UNLT with plasma wave propagation effects was derived in Hussein and Shalchi (2014b).
Furthermore, the theory was extended in Wang and Qin (2018) by including the effect of
adiabatic focusing, which occurs if the mean magnetic field is curved.

We also note that Eq. (6.25) has some similarity with the NLGC theory represented by
Eq. (5.45). However, the two integral equations are not identical but they can provide similar
results in certain limits. This is in particular the case for pure two-dimensional turbulence.
For slab and three-dimensional turbulence, on the other hand, the solutions of these two
equations are very different.

Diffusive UNLT theory provides the non-linear integral equation for the perpendicular
diffusion coefficient given by Eq. (6.25). In the following we discuss asymptotic limits
which are contained in this theory. This will link Eq. (6.25) to previously derived and dis-
cussed theories such as QLT. Before we derive these limits systematically, we show the
relevance of the Kubo number in the theory of perpendicular diffusion.

6.2 The Importance of the Kubo Number

Usually, in the theory of energetic particles, one needs to specify the spectral tensor de-
scribing the properties of magnetic turbulence. In the current subsection we employ a dif-
ferent approach. We assume that the components of the spectral tensor have the general
form

Pnm(k) = �‖�2
⊥δB2

xf (k‖�‖, k⊥�⊥)

(
δnm − knkm

k2
⊥

)
(6.30)

where we have used the dimensionless function f (x, y) which depends only on x = k‖�‖
and y = k⊥�⊥. Furthermore, this function decays with increasing parallel and perpendicular
wave numbers. Therefore, �‖ and �⊥ are characteristic length scales for the decorrelation of
the turbulence namely the bendover scales as discussed in Sect. 2 of this review. The reason
why Eq. (6.30) is valid in the general case is the following. The components of the spectral
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Table 4 For the incompressible case, the components of the spectral tensor are given by Eq. (6.30) where �‖
and �⊥ are the bendover scales in the different directions of space. The function f (x, y) needs to satisfy the
normalization condition (6.32). This table lists the functions f (x, y) for the turbulence models discussed in
Sect. 2 of this review. Here we have used the variables x = k‖�‖ as well as y = k⊥�⊥

Turbulence model Spectral tensor f (x, y)

Slab Eq. (2.13) with (2.14) C(s)
π

δ(y)
y [1 + x2]−s/2

Two-dimensional Eq. (2.19) with (2.20) 4D(s,q)
π

δ(x)
y yq [1 + y2]−(s+q)/2

Noisy Slab Eq. (2.25) with (2.14) 2C(s)
π

(1−y)
y [1 + x2]−s/2

NRMHD Eq. (2.27) with (2.20) 2D(s,q)
π

(1−x)
y yq [1 + y2]−(s+q)/2

Gaussian Eq. (2.10) with (2.28) E(q)yq−1 exp (− 1
2 x2 − 1

2 y2)

Goldreich-Sridhar Eq. (2.10) with (2.38) 1
3π

y−10/3e−|x|y−2/3
(y − 1)

tensor need to satisfy the normalization constraint (2.16). Therefore, we have

δB2
x =

∫
d3kPxx(k)

∝ dk‖dk⊥k⊥Pxx(k)

∝ dxdyy�−2
⊥ �−1

‖ Pxx(k) (6.31)

justifying the form given by Eq. (6.30). Since the form (6.30) has to satisfy the normalization
condition (2.16), the function f (x, y) has to satisfy

1 = 2π

∫ ∞

0
dy

∫ ∞

0
dxyf (x, y). (6.32)

Some examples for the function f (x, y) are listed in Table 4. As demonstrated, all in-
compressible models discussed in this review have spectral tensors of the form given by
Eq. (6.30).

Furthermore, we define the diffusion ratio via

D := κ⊥
κ‖

�2
‖

�2
⊥

≡ λ⊥
λ‖

�2
‖

�2
⊥

(6.33)

and use the Kubo number K defined via Eq. (3.11). Therewith, and with Eq. (6.30),
Eq. (6.25) can be written as

D = 2πa2K2
∫ ∞

0
dy

∫ ∞

0
dxyf (x, y)

× D

x2/y2 + D + (2Dλ‖)2/(3�‖)2y2
. (6.34)

It follows from Eq. (6.33) that within the units used here, we measure all distances in the
perpendicular direction with respect to �⊥ and all distances in the parallel direction with
respect to �‖. According to Eq. (6.34), there are only two parameters controlling the diffusion
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Table 5 Transport regimes described by diffusive UNLT theory for extreme values of the parallel mean free
path with respect to the parallel scale λ‖/�‖ and the Kubo number K defined in Eq. (3.11). For each case we
have listed the formula for the perpendicular diffusion coefficient κ⊥ and the corresponding scaling behavior
of the perpendicular mean free path λ⊥ . All used parameters are explained in the main part of the text. This
table is from Shalchi (2015a)

Transport regime Limit Perpendicular diffusion coefficient Scaling law

Quasi-linear
diffusion

λ‖/�‖ → ∞, K → 0 κ⊥ = π
2

va2

B2
0

∫
d3kPxx(k)δ(k‖) λ⊥ ∝ �‖ δB2

x

B2
0

Kadomtsev &
Pogutse

λ‖/�‖ → ∞, K → ∞ κ⊥ = va
2B0

[∫ d3kPxx(k)k−2
⊥ ]1/2 λ⊥ ∝ �⊥ δBx

B0

CLRR limit λ‖/�‖ → 0, K → 0 κ⊥ = π2κ‖a4

B4
0

[∫ d3kPxx(k)k⊥δ(k‖)]2 λ⊥ ∝ �2‖
�2⊥

δB4
x

B4
0

λ‖

Fluid limit λ‖/�‖ → 0, K → ∞ κ⊥ = a2κ‖
B2

0

∫
d3kPxx(k) ≡ a2κ‖ δB2

x

B2
0

λ⊥ ∝ δB2
x

B2
0

λ‖

Compound
sub-diffusion

λ‖/�‖ finite, K = 0 1
2

d
dt

(〈�x〉)2 = κFL
√

κ‖/(πt) Sub-diffusive

Fig. 11 Diffusive UNLT theory
contains four asymptotic limits.
We obtain these limits for short
or long parallel mean free paths
and extreme values of the Kubo
number defined in Eq. (3.11). For
long parallel mean free paths and
small Kubo numbers, for
instance, we find the quasi-linear
limit. For a Kubo number equal
to zero, corresponding to slab
turbulence, and a finite parallel
mean free path we find a
vanishing perpendicular diffusion
coefficient usually interpreted as
sub-diffusive transport

ratio D, namely the parallel mean free path normalized with respect to the parallel scale
λ‖/�‖ and the Kubo number K . If we focus on small and large values of those parameters,
there are four different asymptotic limits and, therewith, four different transport regimes.
All limits are compared with each other in Table 5 and they are visualized in Fig. 11. The
validity of these limits and further regimes are discussed in Sects. 7 and 9 of this review.
In the following we explore these four limits. This could either be done by starting with
Eq. (6.25) or Eq. (6.34). In this review we use the first option but keep in mind Eq. (6.34)
and the relevance of the Kubo number. This will help us to understand in which regime the
considered limit is valid.

Also important here is to note that in some cases one has equal bendover scales in the
two directions of space �‖ = �⊥. In this particular case the Kubo number is nothing else than
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the magnetic field ratio δBx/B0 sometimes called the Alfvénic Mach number. Examples for
turbulence models where this is the case are, of course, isotropic turbulence but also models
based on Goldreich & Sridhar’s critical balance.

6.3 The Quasi-Linear Regime

First we consider the limit λ‖/�‖ → ∞ corresponding to the case that pitch-angle scattering
and therewith parallel diffusion are suppressed. From a more practical point of view this
corresponds to the case of higher particle rigidities or energies. In the case considered here
we can set v/λ‖ = 0 in Eq. (6.25) to derive the simple equation

κ⊥ = a2v2

B2
0

∫
d3kPxx(k)

κ⊥k2
⊥

(vk‖)2 + (2κ⊥k2
⊥)2

. (6.35)

To evaluate this further, we use the notation

κ⊥ = v

2
κFL. (6.36)

Using this in Eq. (6.35) yields for the parameter κFL the following equation

κFL = 1

B̃2
0

∫
d3kPxx(k)

κFLk
2
⊥

k2
‖ + (κFLk

2
⊥)2

(6.37)

where we have used B̃0 := B0/a.
Equation (6.36) agrees with Eq. (5.5) corresponding to the FLRW limit. Equation (6.37),

on the other hand, is in perfect agreement with Eq. (3.47) if we set a2 = 1. Therefore, it is
easy to understand the result obtained here. For λ‖/�‖ → ∞, corresponding to suppressed
pitch-angle scattering, perpendicular diffusion is caused by FLRW and no other effect is
controlling the transport. Furthermore, the Matthaeus et al. (1995) theory for field line wan-
dering is contained in Eq. (6.25). Therefore, UNLT theory can be seen as a unified transport
theory for magnetic field lines and energetic particles, hence the name unified non-linear
transport theory.

The quasi-linear limit can be obtained if we additionally consider κFL → 0 on the right
hand side of Eq. (6.37). This corresponds to the limit of small Kubo numbers. Using relation
(3.57) in Eq. (6.37) yields

κFL = π

B̃2
0

∫
d3kPxx(k)δ(k‖) (6.38)

corresponding to the well-known quasi-linear result (see Eq. (3.25) of the current paper). As
shown here, QLT for perpendicular diffusion can be obtained in the limit of long parallel
mean free paths and small Kubo numbers. Using the general form (6.30) in Eq. (6.38) as
well as Eqs. (6.36) and (5.37) allows us to derive the scaling law

λ⊥ ∝ �‖
δB2

x

B2
0

. (6.39)

It is usually assumed that the parallel mean free path increases with increasing magnetic
rigidity (see, e.g., Fig. 10 of the current review). Therefore, the quasi-linear scaling should
become relevant if high energy particles propagating through small Kubo number turbulence
are considered.
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6.4 The Non-Linear FLRW Limit

Here we still consider the case of λ‖/�‖ → ∞ and, thus, Eqs. (6.36) and (6.37) are still
valid. However, we now assume a large field line diffusion coefficient corresponding to
large values of the Kubo number. Considering κFL → ∞ on the right hand side of Eq. (6.37)
yields

κFL = 1

B̃0

[∫
d3kPxx(k)k−2

⊥

]1/2

(6.40)

in agreement with Eq. (3.58). The latter limit is sometimes called the non-linear regime
or the Bohm limit of field line diffusion and was originally obtained by Kadomtsev and
Pogutse (1979). In this case particles still follow magnetic field lines but the field lines are
highly non-linear (see Sect. 3.9 of the current review). For the general spectral tensor (6.30)
we find after some simple algebra the scaling law

λ⊥ ∝ �⊥
δBx

B0
(6.41)

which is different compared to the quasi-linear scaling given by Eq. (6.39). This result
should be valid for high particle energies and large Kubo number turbulence. It has to be
noted that the scale in Eq. (6.41) is really the ultra-scale LU but in most cases we expect
LU ∝ �⊥ as indicated by Table 5.

6.5 The Fluid Limit

We now consider the limit λ‖/�‖ → 0 corresponding to strong pitch-angle scattering. This
case is important for smaller rigidities. If pitch-angle scattering is strong we expect that the
perpendicular diffusion coefficient is somehow related to the parallel diffusion coefficient.
In the case considered here, Eq. (6.25) becomes

κ⊥ = a2v2

3B2
0

∫
d3k

Pxx(k)

F (k‖, k⊥) + v/λ‖
. (6.42)

Here we kept the function F(k‖, k⊥) in the equation because for a small parallel diffusion
coefficient, we also expect that the perpendicular diffusion coefficient is small. This means
that we can neglect the term directly proportional to κ⊥k2

⊥ in Eq. (6.25) but not the term
F(k‖, k⊥). Replacing the parallel mean free path via λ‖ = 3κ‖/v and using Eq. (6.26) allows
us to write

κ⊥ = a2

B2
0

∫
d3kPxx(k)

κ⊥k2
⊥

k2
‖ + κ⊥

κ‖ k2
⊥

. (6.43)

In order to simplify this further, we consider two cases for the ratio κ⊥/κ‖. Since this ratio
depends on the Kubo number, small and large values of κ⊥/κ‖ correspond to small and large
Kubo numbers, respectively. First we assume that this ratio is large and we find

κ⊥ = a2

B2
0

κ‖
∫

d3kPxx(k). (6.44)

Using the normalization condition (2.16) allows us to write this as

κ⊥ = a2 δB2
x

B2
0

κ‖. (6.45)
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Important here is to note that this result does not depend on the details of turbulence. Only
the ratio of the turbulent field with respect to the mean field enters the latter equation. The
result obtained here was derived before by Owens (1974) as well as Zybin and Istomin
(1985). Krommes et al. (1983) called Eq. (6.45) with a2 = 1 the fluid limit. Characteristic
here is that the ratio κ⊥/κ‖ does not depend on any particle properties such as energy or
rigidity. However, this ratio is typically in the order of unity in the considered case. The
physical reason for the parameter a2 and its value will be discussed in Sect. 9.

6.6 The Collisionless Rechester & Rosenbluth Scaling

Missing is the case relevant for short parallel mean free paths, corresponding to strong pitch-
angle scattering, and small Kubo numbers. Therefore, we still consider the case λ‖/�‖ →
0 and, thus, Eq. (6.43) is still valid. In order to simplify the latter equation in the limit
considered here, it is useful to write Eq. (6.43) as

κ⊥
κ‖

= a2

B2
0

∫
d3kPxx(k)

√
κ⊥
κ‖ k2

⊥

k2
‖ + κ⊥

κ‖ k2
⊥

√
κ⊥
κ‖

k2
⊥. (6.46)

Now we assume that the ratio κ⊥/κ‖ is small. Using Eq. (3.57) yields

√
κ⊥
κ‖

= π
a2

B2
0

∫
d3kPxx(k)k⊥δ(k‖). (6.47)

The latter formula can easily be combined with any turbulence model as long as the occur-
ring integrals are convergent. With the general form (6.30) we now find the scaling law

λ⊥ ∝ λ‖
�2

‖
�2

⊥

δB4
x

B4
0

(6.48)

which sensitively depends on the scale ratio �‖/�⊥ as well as the magnetic field ratio
δBx/B0. Characteristic here is that the ratio κ⊥/κ‖ does not depend on magnetic rigidity.
Furthermore, we expect to find small values of that ratio in this limit (see next subsection
for some examples). As explained in detail in Sect. 9, this result can also be obtained by
assuming a Rechester and Rosenbluth (1978) type of transport. Since Rechester & Rosen-
bluth considered collisions whereas we explore the collisionless case, we call the result ob-
tained here the collisionless Rechester & Rosenbluth (CLRR) limit as originally suggested
in Shalchi (2015a).

6.7 Illustrative Examples

The CLRR limit as given by Eqs. (6.47) or (6.48) provides a very sensitive dependence
on turbulence parameters. Therefore, we focus now on the CLRR limit and consider two
examples.

The first example is the noisy slab model defined via Eq. (2.25). This example is perfect
because it corresponds to the small Kubo number limit. In this case Eq. (6.47) becomes

√
κ⊥
κ‖

= π2a2

�⊥B2
0

gslab(k‖ = 0). (6.49)
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To continue we employ the model spectrum given by Eq. (2.14) to obtain

κ⊥
κ‖

=
[

π

2
C(s)a2 �‖

�⊥
δB2

B2
0

]2

∝ �2
‖

�2
⊥

δB4
x

B4
0

(6.50)

which is clearly a special case of the scaling law given by Eq. (6.48). To estimate a num-
ber for the ratio κ⊥/κ‖ in the limit considered here, we use δB2/B2

0 ≈ 0.5, �‖/�⊥ ≈ 0.75,
and a2 ≈ 1. This choice for a2 can be justified by comparing diffusive UNLT theory with
simulations performed for noisy slab turbulence (see Sect. 10.6 of this review). For s = 5/3
we find C(s = 5/3) ≈ 0.12 and, thus, Eq. (6.50) provides κ⊥/κ‖ ≈ 0.005 corresponding to
a small and rigidity independent ratio.

As a second example we employ the Gaussian correlation model defined via Eq. (2.28).
For simplicity we consider the special case q = 3. After evaluating Eq. (6.47) one finds for
this case

κ⊥
κ‖

=
(

3π

4

)2

a4
�2

‖
�2

⊥

δB4
x

B4
0

(6.51)

again in agreement with the scaling law given by Eq. (6.48). Typical for the CLRR regime
is that the ratio κ⊥/κ‖ does not depend on particle rigidity or energy. Furthermore, this ratio
is much smaller than one for small Kubo number turbulence.

6.8 Scaling Laws in the Theory of Perpendicular Diffusion

Above we have derived four different scaling laws from diffusive UNLT theory and they
are summarized in Table 5 as well as Fig. 11. One could try to find general scaling laws
for perpendicular transport in magnetic turbulence. This corresponds to the considerations
performed in Sect. 3.10 for magnetic field lines but is now done for the particles. This
idea was used in Hauff et al. (2010) and is reviewed and then generalized in the current
subsection.

First we focus on the case of ballistic parallel transport so that

v‖ = vμ = const. (6.52)

This corresponds to the case that pitch-angle scattering is suppressed. We now try to find a
general form of the pitch-angle Fokker-Planck coefficient of perpendicular diffusion D⊥(μ).
First we note that the diffusion coefficient D⊥ has the dimensions [L]2/[T ]. Therefore,
it is natural to assume that D⊥ ∝ v|μ|. Furthermore, we measure all distances along the
mean field with respect to the parallel scale �‖ and all distances across the mean field with
respect to the perpendicular scale �⊥. Therefore, one can assume that D⊥/�2

⊥ ∝ v|μ|/�‖.
The missing constant of proportionality does not have any dimensions but should depend
on the properties of turbulence. We assume that this constant depends only on the Kubo
number K and that this dependence is a simple power-law with the exponent γ . Therefore,
it is appropriate to assume

D⊥
�2

⊥
∝ Kγ v|μ|

�‖
. (6.53)

Replacing the Kubo number by employing Eq. (3.11) yields the following scaling law

D⊥ ∝
(

δBx

B0

)γ

�
2−γ

⊥ �
γ−1
‖ v|μ|. (6.54)
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We can easily see that the quasi-linear scaling given by Eq. (6.39) can be obtained by setting
γ = 2 and the non-linear FLRW limit, given by Eq. (6.41), can be obtained for γ = 1. The
percolation regime (see discussion in Sects. 3.9 and 3.10), on the other hand, corresponds to
γ = 0.7 so that

D⊥ ∝
(

δBx

B0

)0.7

�1.3
⊥ �−0.3

‖ v|μ| (6.55)

as, for instance, discussed in Hauff et al. (2010). The quasi-linear regime can be found for
small Kubo numbers K � 1. The non-linear regime, on the other hand, arises from diffusive
UNLT theory for the opposite case K � 1. It is still unclear, whether the percolation regime
exists in cases relevant in space and astrophysics. However, it is unlikely that it can be
derived from UNLT theory because this theory is based on Corrsin’s hypothesis whereas the
percolation regime is beyond this approximation.

The considerations presented above are based on the assumption that pitch-angle scatter-
ing is suppressed meaning that v|μ| is a constant. In general this is unrealistic because in
reality particles experience strong pitch-angle scattering leading to a diffusive parallel mo-
tion. However, we can repeat the considerations presented above for this case as well. First
we assume that the perpendicular diffusion coefficient is directly proportional to the parallel
diffusion coefficient κ⊥ ∝ κ‖ because both parameters have the dimensions [L]2/[T ]. Again
we measure lengths with respect to the corresponding turbulence scale and thus we find

κ⊥
�2

⊥
∝ κ‖

�2
‖
. (6.56)

Again we assume that the constant of proportionality is a simple power-law involving the
Kubo number leading to

κ⊥ ∝ Kγ �2
⊥�−2

‖ κ‖. (6.57)

Replacing the Kubo number by using Eq. (3.11) yields

κ⊥ ∝
(

δBx

B0

)γ

�
2−γ

⊥ �
γ−2
‖ κ‖. (6.58)

Again we can recover two cases obtained before in this review. By setting either γ = 2 or
γ = 4 we obtain the fluid limit given by Eq. (6.45) or the CLRR scaling given by Eq. (6.48).
However, there could be exotic cases where one finds different scaling laws. In Shalchi
(2015b), for instance, perpendicular transport for the NRMHD model defined via Eq. (2.27)
was explored based on diffusive UNLT theory. The following scaling was obtained

κ⊥ ∝
(

δBx

B0

)3
�‖
�⊥

κ‖ (6.59)

corresponding to the case γ = 3 in Eq. (6.58).
Interesting here is that more detailed formulas can be obtained if models with reduced

dimensionality are considered. For slab turbulence, for instance, the perpendicular scale �⊥
must not occur. Therefore, Eq. (6.54) can only be valid for γ = 2 automatically leading to
the quasi-linear scaling

D⊥ ∝
(

δBx

B0

)2

�‖v|μ| (6.60)
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as the only solution. For the case of non-vanishing pitch-angle scattering, one has to use
Eq. (6.58). This would lead to a diffusive result contradicting the sub-diffusive behavior.
The reason for this is that the simple dimension-based considerations performed here only
work if perpendicular transport is diffusive. However, we can generalize the considerations
presented above, to cover anomalous transport as well. Based on dimensions, we assume
that

d⊥(t)

�2
⊥

∝ 1

t
Kγ

(
κ‖t
�2

‖

)α

(6.61)

which can be written as

d⊥(t) ∝ �
2−γ

⊥ �
γ−2α

‖ κα
‖ tα−1

(
δBx

B0

)γ

. (6.62)

Since we consider transport in pure slab turbulence, the scale �⊥ must not occur in the latter
formula. This means that we need to set γ = 2 leading to

d⊥(t) ∝ �2−2α
‖ κα

‖ tα−1

(
δBx

B0

)2

. (6.63)

Assuming that the perpendicular diffusion coefficient is directly proportional to the field line
diffusion coefficient and using that κFL ∝ �‖ allows us to set α = 1/2 leading to

d⊥(t) ∝ �‖κ
1/2
‖ t−1/2

(
δBx

B0

)2

∝ κFL

√
κ‖
t

(6.64)

in agreement with compound sub-diffusion discussed before (see, e.g., Eq. (5.15) of this
review).

For two-dimensional turbulence we can perform the same considerations but in this case
the corresponding scaling law must not depend on the parallel scale �‖. Therefore, Eq. (6.54)
is only valid for γ = 1 leading to

D⊥ ∝
(

δBx

B0

)
�⊥v|μ|. (6.65)

Equation (6.58), on the other hand, can only be valid for γ = 2 leading to

κ⊥ ∝
(

δBx

B0

)2

κ‖. (6.66)

These are exactly the limits one finds for two-dimensional and two-component turbulence
as we shall see in Sect. 8 of this review.

7 Time-Dependent Perpendicular Transport

For certain applications, a time-dependent description of perpendicular transport could be
desired. Therefore, we now focus on time-dependent UNLT theory where the diffusion ap-
proximation is no longer used. Ideally a time-dependent theory should contain sub-diffusive
transport for slab turbulence but the theory should also explain why and when we get nor-
mal diffusion. The time-dependent UNLT theory was presented in Shalchi (2017) as well
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as Lasuik and Shalchi (2017). In the following we discuss this theory and show how diffu-
sive UNLT theory can be derived from the time-dependent approach. Thereafter, we discuss
special cases.

7.1 Time-Dependent UNLT Theory

Perpendicular transport is described by the auto-correlation function 〈Vx(t)Vx(0)〉 where the
guiding center velocity is given by Eq. (5.24). It is useful to write the latter equation as

Vx(t) = 1

B0

∫
d3kδBx(k, t)vz(t)e

izk‖eix⊥·k⊥ (7.1)

where we have used the notation x · k = zk‖ + x⊥ · k⊥ with the two-dimensional vectors
x⊥ = (x, y) and k⊥ = (kx, ky). Therefore, we find for the velocity correlation function

〈
Vx(t)Vx(0)

〉= 1

B2
0

∫
d3k

∫
d3k′〈δBx(k, t)δBx

(
k′,0

)
vz(t)vz(0)eiz(t)k‖eix⊥(t)·k⊥ 〉 (7.2)

where we have set x(t = 0) = 0. The central idea of time-dependent UNLT theory is to use
the following approximation

〈
vz(t)vz(0)δBx(k)δB∗

x

(
k′)eiz(t)k‖+ix⊥(t)·k⊥ 〉

≈ a2
〈
vz(t)vz(0)eikzz(t)

〉〈
δBx(k)δB∗

x

(
k′)〉〈eix⊥(t)·k⊥ 〉 (7.3)

meaning that we group together magnetic fields, all particle properties associated with their
parallel motion, and all particle properties associated with their perpendicular motion. This
can be understood as an extension of the Corrsin approximation used before in this review.
Clearly this is different compared to approximation (5.39) used during the derivation of
NLGC theory. In UNLT theory we no longer assume that the parallel position and the par-
allel velocity are uncorrelated. However, as in NLGC theory, we introduce the parameter a2

which balances out inaccuracies arising from the approximation used here. Using Eq. (7.3)
in (7.2) and employing Eq. (2.6) allows us to write the velocity auto-correlation function as

〈
Vx(t)Vx(0)

〉= a2

B2
0

∫
d3kPxx(k, t)ξ(k‖, t)

〈
eix⊥·k⊥ 〉 (7.4)

where we have used the parallel correlation function

ξ(k‖, t) = 〈
vz(t)vz(0)eiz(t)k‖ 〉

= v2
〈
μμ0e

izk‖ 〉 (7.5)

corresponding to the moment defined and calculated in Eqs. (4.71) and (4.72). For the per-
pendicular characteristic function in Eq. (7.4) we set

〈
eix⊥·k⊥ 〉= e− 1

2 〈(�x)2〉k2⊥ (7.6)

corresponding to a Gaussian distribution with vanishing mean. In Lasuik and Shalchi (2018)
other forms of distribution functions, such as kappa distributions, were employed but it was
shown that the assumed statistics has only a minor influence on the resulting perpendicular
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diffusion parameter. In Eq. (7.6) we do not distinguish between particle and guiding center
coordinates as before. However, finite gyroradius effects could be important for high particle
energies as discussed in Sect. 7.5.

We now have all ingredients necessary to formulate a time-dependent theory for perpen-
dicular transport. After combining Eqs. (7.4) and (7.6), we can write the velocity correlation
function as

〈
Vx(t)Vx(0)

〉= a2

B2
0

∫
d3kPxx(k, t)ξ(k‖, t)e− 1

2 〈(�x)2〉k2⊥ (7.7)

and after employing Eq. (5.33) we find

d2

dt2

〈
(�x)2

〉= 2a2

B2
0

∫
d3kPxx(k, t)ξ(k‖, t)e− 1

2 〈(�x)2〉k2⊥ . (7.8)

The latter formula is a second-order differential equation for the mean square displacement
〈(�x)2〉. What the solution of this equation is, depends on the spectral tensor Pxx(k, t), de-
scribing magnetic turbulence, and the parallel correlation function ξ(k‖, t). It has to be em-
phasized that at no point have we assumed that perpendicular transport is diffusive. Within
a two-dimensional subspace approximation, it was derived in Eqs. (4.71) and (4.72) of the
current review that ξ(k‖, t) can be approximated by

ξ(k‖, t) = v2

3

1

ω+ − ω−

[
ω+eω+t − ω−eω−t

]
(7.9)

with the parameters ω± given by Eq. (4.53). After using Eq. (4.36) this can be expressed by
the parallel mean free path via

ω± = − v

2λ‖
±
√(

v

2λ‖

)2

− 1

3
(vk‖)2. (7.10)

Since the function ξ(k‖, t) is known, the ordinary differential equation (7.8) can be evalu-
ated numerically for any given turbulence model described by the tensor component Pxx .
We like to emphasize that Eq. (7.8) can easily be evaluated for dynamical turbulence as
well. Equation (7.8) is very powerful because it allows for a time-dependent description
of the transport and covers also cases where the transport never becomes diffusive such as
compound sub-diffusion in slab turbulence.

7.2 Diffusive UNLT Theory

In the following we combine time-dependent UNLT theory with a diffusion approxima-
tion in order to explore how Eq. (7.8) is related to diffusive UNLT theory represented by
Eq. (6.25). Using a diffusion approximation means that we set

〈
(�x)2

〉= 2κ⊥t ∀t (7.11)

on the right hand side of Eq. (7.7). This approximation was already used in the theory of
FLRW and during the derivation of NLGC theory. In reality one expects a ballistic motion
(see next sub-section) and thereafter there could be a sub-diffusive regime (see, e.g., Lasuik
and Shalchi 2017). Eventually diffusion is recovered if there is transverse structure (see,
e.g., Shalchi 2017; Lasuik and Shalchi 2017). A detailed discussion of these effects can be
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found in Sects. 7.3, 7.5, 7.6, 9, and 10 of this review. If a diffusion approximation is used,
however, all these effects are ignored.

Using Eqs. (7.9) and (7.11) in (7.7) yields

〈
Vx(t)Vx(0)

〉 = a2v2

3B2
0

∫
d3kPxx(k, t)

1

ω+ − ω−

× [
ω+e(ω+−κ⊥k2⊥)t − ω−e(ω−−κ⊥k2⊥)t

]
. (7.12)

According to the Taylor-Green-Kubo formula (5.34) we find for the perpendicular diffusion
coefficient in the case of static turbulence

κ⊥ = a2v2

3B2
0

∫
d3kPxx(k)

κ⊥k2
⊥

ω+ω− − (ω+ + ω−)κ⊥k2
⊥ + κ2

⊥k4
⊥

. (7.13)

From Eq. (7.10) it follows that

ω+ + ω− = −v/λ‖ (7.14)

and

ω+ω− = 1

3
v2k2

‖ . (7.15)

Using the latter two relations in Eq. (7.13) yields

κ⊥ = a2v2

3B2
0

∫
d3k

Pxx(k)

F (k‖, k⊥) + κ⊥k2
⊥ + v/λ‖

(7.16)

where F(k‖, k⊥) is still given by Eq. (6.26). This result agrees with Eq. (6.25) apart from
a factor 4/3 in the second term of the denominator. The derivation presented here has the
advantage that one can see it as a special case of the time-dependent theory. The only dif-
ference between Eqs. (7.16) and (6.25) is the factor 4/3. Although this factor is a minor
difference, strictly speaking Eq. (6.25) should be more accurate than Eq. (7.16) because
this factor arises from a pitch-angle averaging procedure. The pitch-angle dependence of
〈(�x)2〉 is neglected during the derivation of time-dependent UNLT theory. Therefore, we
employ Eq. (6.25) if diffusive UNLT theory is used.

7.3 The Initial Free-Streaming Regime

Before we solve Eq. (7.8) for specific turbulence models we focus on early times. From
Eq. (7.9) it follows for t → 0 that

ξ(k‖, t → 0) = v2

3
. (7.17)

Here we have set a2 = 1 because for early times, this correction factor is not needed. Also
assuming 〈(�x)2〉 → 0 allows us to approximate Eq. (7.8) by

d2

dt2

〈
(�x)2

〉= 2v2

3B2
0

∫
d3kPxx(k, t) = 2

3
v2 δB2

x

B2
0

(7.18)
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where we have employed the normalization condition (2.16). Integrating over time twice
yields

〈
(�x)2

〉= v2

3

δB2
x

B2
0

t2 (7.19)

corresponding to ballistic perpendicular transport at early times. The running diffusion co-
efficient is in this case

d⊥(t) = v2

3

δB2
x

B2
0

t (7.20)

corresponding to a linear increase with time.

7.4 Suppressed Pitch-Angle Scattering

Equation (7.8) can also be simplified significantly if we assume that pitch-angle scattering
is suppressed. In this case the function ξ(k‖, t) defined in Eq. (7.5) becomes

ξ(k‖, t) = v2μ2eivμk‖t (7.21)

corresponding to an unperturbed parallel motion. Using this in Eq. (7.8) yields

d2

dt2

〈
(�x)2

〉= 2a2v2μ2

B2
0

∫
d3kPxx(k, t)eivμk‖t− 1

2 〈(�x)2〉k2⊥ . (7.22)

Although we consider the special case of suppressed pitch-angle scattering, the latter re-
sult is interesting because it allows for a time- and pitch-angle dependent description of
perpendicular transport. We can combine this result with a diffusion approximation similar
compared to Eq. (7.11)

〈
(�X)2

〉= 2D⊥t (7.23)

but now the corresponding diffusion coefficient D⊥ is pitch-angle dependent. Using this
diffusion approximation in Eq. (7.22), assuming static turbulence, and integrating over all
times, yields

D⊥(μ) = a2v2μ2

B2
0

∫
d3kPxx(k)

D⊥k2
⊥

v2μ2k2
‖ + (D⊥k2

⊥)2
. (7.24)

This can be understood as special case of diffusive UNLT theory because of the assumption
of suppressed pitch-angle scattering. Then, on the other hand, it is also more general because
it allows for a μ-dependent description of the transport. Equation (7.24) can easily be written
as

D⊥(μ) = v|μ|κFL (7.25)

where the parameter κFL is again the solution of Eq. (6.37). The solution (7.25) corresponds
to the pitch-angle dependent version of the field line random walk limit (see, e.g., Eq. (5.3)
of this review).
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7.5 Finite Gyroradius Effects

So far we have neglected finite gyroradius effects completely. However, these effects can
be important for high particle energies as discussed in Neuer and Spatschek (2006), Shalchi
(2015c, 2016b), and Qin and Shalchi (2016). In all those previous articles it was found
that at high energies there is a reduction of the perpendicular diffusion coefficient if finite
gyroradius effects are taken into account.

In the current subsection we give a brief introduction of finite gyroradius effects and ex-
plain how they can be incorporated into UNLT theory. Since gyroradius effects are assumed
to be important in the high rigidity limit, we concentrate on the case of suppressed pitch-
angle and gyrophase scattering as it was done in the previous subsection. In this case we can
write Eq. (7.2) as

〈
Vx(t)Vx(0)

〉= v2μ2

B2
0

∫
d3kPxx(k, t)eivμk‖t

〈
ei�x⊥(t)·k⊥ 〉. (7.26)

The perpendicular position x⊥(t) therein is the particle position and not the guiding center
position. In the previous sections we did not differentiate between particle and guiding center
coordinates. However, this is done in the following. To continue we write the first two lines
of Eq. (5.17) as

x = X − RL

√
1 − μ2 sin (�0 − �t),

y = Y + RL

√
1 − μ2 cos (�0 − �t),

(7.27)

where we have used the velocity components given by Eq. (4.6). To continue it is useful to
write Eq. (7.26) as

〈
Vx(t)Vx(0)

〉= v2μ2

B2
0

∫
d3kPxx(k, t)eivμk‖t+i�xg ·k⊥ 〈e− 1

2 〈(�X)2〉k2⊥
〉

(7.28)

where the vector xg(t) describes the gyro-rotation. We now evaluate this term further. First
we combine Eq. (7.27) with (2.12) to write

xg · k⊥ = k⊥RL

√
1 − μ2

[
sin (�) cos (�0 − �t) − cos (�) sin (�0 − �t)

]

= W sin (� − �0 + �t) (7.29)

where we have used

W = k⊥RL

√
1 − μ2 (7.30)

and the corresponding addition theorem for trigonometric functions. In order to rewrite the
exponential function involving xg in Eq. (7.28), we can use Eq. (7.29) to derive

eixg ·k⊥ = eiW sin (�−�0+�t)

=
+∞∑

n=−∞
Jn(W)ein(�−�0+�t) (7.31)
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where we have used the so-called Jacobi-Anger expansion (see, e.g., Cuyt et al. 2008).
Therefore, we obtain

ei�xg ·k⊥ =
+∞∑

n=−∞

+∞∑

m=−∞
Jn(W)Jm(W)ein(�−�0+�t)−im(�−�0). (7.32)

To continue we average over the initial gyrophase �0 and employ (see, e.g., Zwillinger
2012)

1

2π

∫ 2π

0
d�0e

i�0(m−n) = δnm (7.33)

to derive

ei�xg(t)·k⊥ =
+∞∑

n=−∞
J 2

n (W)ei(vμk‖+n�)t . (7.34)

Using this in Eq. (7.28), assuming magnetostatic turbulence, using the diffusion approxima-
tion (7.23), and integrating over time yields

D⊥ = v2μ2

B2
0

+∞∑

n=−∞

∫
d3kPxx(k)Rn(k)J 2

n (W) (7.35)

with the resonance function

Rn(k) = D⊥k2
⊥

(D⊥k2
⊥)2 + (vμk‖ + n�)2

. (7.36)

Please note that the latter resonance function corresponds to the one used in Shalchi et al.
(2004b) if we set Dμμ = 0 therein. Furthermore we can recover quasi-linear theory by con-
sidering the limit D⊥ → 0 at the right hand side.

Equation (7.35) with (7.36) describes perpendicular transport for suppressed velocity
diffusion but with finite gyorradius effects. We can recover the zero gyroradius limit by
considering W → 0. In this case we can use (see, e.g., Abramowitz and Stegun 1974)

J 2
n (0) = δn0, (7.37)

and Eq. (7.35) becomes

D⊥ = v2μ2

B2
0

∫
d3kPxx(k)R0(k) (7.38)

with

R0(k) = D⊥k2
⊥

(D⊥k2
⊥)2 + (vμk‖)2

. (7.39)

This result agrees with the UNLT theory for the case of suppressed pitch-angle scattering
(see Eq. (7.24) of this review).

For arbitrary Larmor radii RL we can compute the perpendicular mean free path by solv-
ing Eq. (7.35) numerically. For two-dimensional turbulence and spectrum (2.20) the results
are visualized in Fig. 12. We have computed λ⊥/�⊥ versus RL/�‖ for different values of
the ratio �⊥/�‖. In all considered cases we find that finite gyroradius corrections reduce the
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Fig. 12 The perpendicular mean
free path λ⊥ versus the
unperturbed gyroradius RL . The
first parameter is normalized with
respect to the perpendicular
bendover scale �⊥ and the
second parameter to the parallel
bendover scale �‖ . All curves
shown here are obtained for
two-dimensional turbulence and
q = 3. The solid line corresponds
to the zero Larmor radius limit
and the other curves are obtained
by taking into account the
non-vanishing gyroradius. Shown
are results for �⊥/�‖ = 10
(dotted line), �⊥/�‖ = 1 (dashed
line), and �⊥/�‖ = 0.1
(dash-dotted line)

perpendicular diffusion coefficient. For �⊥ = 0.1�‖ and high rigidities, for instance, the per-
pendicular mean free path is about a factor 3 smaller compared to the zero gyroradius limit.
If the parameter a2 is understood as finite gyroradius correction, this means that a2 ≈ 1/3
for the case �⊥ = 0.1�‖. That is in agreement with what was obtained by Matthaeus et al.
(2003) and other papers. However, this only explains the meaning and the value of a2 in the
high rigidity regime. The meaning of a2 for small rigidities is discussed in Sect. 9.

7.6 The Ballistic Approximation

Previous results were directly obtained from time-dependent UNLT theory or via a diffusion
approximation. One can combine Eq. (7.22) with the ballistic model

〈
(�x)2

〉= v2μ2t2 δB2
x

B2
0

(7.40)

to find after time integration for the pitch-angle dependent diffusion coefficient

D⊥ = a2v2μ2

B2
0

∫
d3kPxx(k)

∫ ∞

0
dte

ivμk‖t− 1
2 v2μ2t2 δB2

x

B2
0

k2⊥
. (7.41)

For small Kubo number turbulence this corresponds to the FLRW limit with the quasi-linear
field line diffusion coefficient. For large Kubo numbers, on the other hand, we can set k‖ ≈ 0
and solve the time integral to derive

D⊥ =
√

π

2

v|μ|
δBxB0

∫
d3kPxx(k)k−1

⊥ . (7.42)

The wave number integral therein corresponds to the perpendicular integral scale (see, e.g.,
Eq. (2.57) of this review) so that

κ⊥ =
√

π

2

v

4
L⊥

δBx

B0
. (7.43)
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Fig. 13 The running perpendicular diffusion coefficient versus time for slab turbulence, a Kubo number of
K = 0.75, and a parallel mean free path of λ‖ = 0.2�‖ . The results were obtained by solving Eq. (7.45)
numerically (solid lines). The dotted lines describe compound sub-diffusion as obtained from Eq. (7.50) and
the dashed lines the initial ballistic regime as given by Eq. (7.20). In the lower panel the graphs are shown
as double-logarithmic plot in order to emphasize the turnover from the ballistic to the sub-diffusive regime.
Perpendicular transport in slab turbulence does not depend on the perpendicular bendover scale �⊥ but the
units have been chosen so that the results shown in this plot can easily be compared with the results for noisy
slab turbulence visualized in Fig. 14

This result is relevant if the particles follow a ballistic motion at the time they experience
transverse complexity (see Sect. 9 for more details).

7.7 Pure Slab Turbulence

Now we consider pure slab turbulence where we expect compound sub-diffusion. This
has to come out of time-dependent UNLT theory as well. For slab turbulence, defined via
Eq. (2.13), Eq. (7.7) becomes

〈
Vx(t)Vx(0)

〉= 4π

B2
0

∫ ∞

0
dk‖gslab(k‖)ξ(k‖, t) (7.44)

where we set a2 = 1. Using Eqs. (5.32) and (7.9) yields for the running perpendicular diffu-
sion coefficient

d⊥(t) = 4πv2

3B2
0

∫ ∞

0
dk‖gslab(k‖)

1

ω+ − ω−

(
eω+t − eω−t

)
. (7.45)

Figure 13 shows the numerical solution of this equation for spectrum (2.14) and how this
agrees perfectly with compound sub-diffusion. In the following we shall simplify this equa-
tion by considering the late-time limit. From Eq. (7.10) it follows that ω− has always a
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non-vanishing negative real part. Therefore, the exponential exp (ω−t) in Eq. (7.45) damps
out for t → ∞. The parameter ω+, on the other hand, can become zero for very small wave
numbers k‖. In this case we can easily derive from Eq. (7.10)

ω+ ≈ −v2k2
‖

6D
= −κ‖k2

‖ (7.46)

as well as

ω+ − ω− ≈ 2D = v/λ‖. (7.47)

Therewith, Eq. (7.45) becomes16

d⊥(t) = 4π
κ‖
B2

0

∫ ∞

0
dk‖gslab(k‖)e

−κ‖k2‖ t
. (7.48)

We can further simplify this by approximating

d⊥(t) ≈ 4πκ‖
B2

0

gslab(k‖ = 0)

∫ ∞

0
dk‖e

−κ‖k2‖ t (7.49)

for late times. For the turbulence spectrum we employ Eq. (2.14) and therewith, we derive
from Eq. (7.49)

d⊥(t) = C(s)�‖
δB2

slab

B2
0

√
πκ‖
t

(7.50)

corresponding to compound sub-diffusion discussed in Sect. 5.2. Alternatively, we can use
the field line diffusion coefficient for slab turbulence as given by Eq. (3.20) to find agreement
with Eq. (5.14). Clearly we can see how compound sub-diffusion is correctly described by
time-dependent UNLT theory.

7.8 Diffusive Perpendicular Transport in Noisy Slab Turbulence

As demonstrated above, time-dependent UNLT theory provides compound sub-diffusion for
slab turbulence. In the following we try to explore what ingredients are needed in order to
restore normal diffusion. Therefore, we employ a turbulence model which is very close to
the slab model but contains some transverse structure. This model is the noisy slab model
defined via Eq. (2.25). Combining this with Eq. (7.8) yields

d2

dt2

〈
(�x)2

〉 = 8π�⊥
B2

0

∫ 1/�⊥

0
dk⊥e− 1

2 〈(�x)2〉k2⊥

×
∫ ∞

0
dk‖gslab(k‖)ξ(k‖, t) (7.51)

where we set a2 = 1. The k⊥-integral can be expressed by an error function

∫ 1/�⊥

0
dk⊥e− 1

2 〈(�x)2〉k2⊥ =
√

π

2〈(�x)2〉Erf

(√ 〈(�x)2〉
2�2

⊥

)
(7.52)

16Note that Eq. (7.48) was in principle derived the first time in Shalchi (2005b) but in the latter paper a
slightly different definition of the diffusion coefficient was used.
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Fig. 14 The running perpendicular diffusion coefficient versus time for noisy slab turbulence, a Kubo num-
ber of K = 0.75, and a parallel mean free path of λ‖ = 0.2�‖ . The results were obtained by solving Eq. (7.53)
numerically (solid lines). The dotted lines describe compound sub-diffusion as obtained from Eq. (7.50) and
the dashed lines the CLRR limit represented by Eq. (6.50) for a2 = 1. In the lower panel the graphs are
shown as double-logarithmic plot in order to emphasize the turnover from the sub-diffusive to the normal
diffusive regime. The vertical gray line in the bottom plot separates the regimes with 〈(�x)2〉 ≤ 2�2⊥ and

〈(�x)2〉 ≥ 2�2⊥ , respectively

so that

d2

dt2

〈
(�x)2

〉 = 8π�⊥
B2

0

√
π

2〈(�x)2〉Erf

(√ 〈(�x)2〉
2�2

⊥

)

×
∫ ∞

0
dk‖gslab(k‖)ξ(k‖, t). (7.53)

The error function has the following asymptotic properties (see, e.g., Abramowitz and Ste-
gun 1974)

Erf ≈
{

2√
π
x for x � 1

1 for x � 1.
(7.54)

Therewith, it follows from Eq. (7.53) that we find compound sub-diffusion as long as the
condition 〈(�x)2〉 � 2�2

⊥ is satisfied. A numerical solution of Eq. (7.53) is visualized in
Fig. 14. Clearly we can see that diffusion is restored for later times. From Fig. 14 but also
from Eq. (7.53) we can learn that in order to recover normal diffusion, we need to satisfy
the condition

〈
(�x)2

〉≥ 2�2
⊥ (diffusion condition). (7.55)
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For slab turbulence we have �⊥ = ∞ and we never satisfy this. As soon as there is transverse
complexity, corresponding to a finite �⊥, diffusion is restored as soon as the perpendicular
mean square displacement exceeds the perpendicular bendover scale squared. Also shown
in Fig. 14 is that the obtained diffusion coefficient is close to the CLRR limit as given by
Eq. (6.50). The discrepancy between the latter limit and the numerical solution of Eq. (7.53)
is due to the diffusion approximation not being used in the time-dependent theory but it was
used during the derivation of diffusive UNLT theory and, thus, it is part of the CLRR limit.
It has to be emphasized that the result obtained here is very important. We have seen that
everything which is needed in order to get normal diffusion in the perpendicular direction is
transverse structure in magnetic turbulence and condition (7.55) needs to be satisfied. The
latter condition will be crucial for the heuristic discussion presented in Sect. 9.

8 Analytical Forms of the Perpendicular Diffusion Coefficient

In several applications in astrophysics and space science simple analytical forms of the
perpendicular diffusion coefficient are desired. In the current section we employ the slab/2D
model described in Sect. 2.4. This model is supported by observations in the solar wind
and theoretical work as explained before. Another strength of this model is that it leads to
a strong simplification of fundamental equations. To find analytical solutions for the time-
dependent case is difficult. However, some analytical solutions of Eq. (7.8) were found in
Shalchi (2018).

In the following we employ diffusive UNLT theory. First of all we note that the explicit
contribution from the slab modes disappears in the late-time limit due to its sub-diffusive
behavior. This can, for instance, be obtained from Eq. (6.25). For slab turbulence we have
k⊥ → 0 and, therewith, F(k‖, k⊥ → 0) → ∞ and the resulting perpendicular diffusion co-
efficient is zero. Therefore, the perpendicular diffusion coefficient in slab/2D turbulence
is entirely controlled by the two-dimensional modes. However, there could be an implicit
contribution of the slab modes as shown in Shalchi (2016a). This contribution is due to
the non-linearity of fundamental equations for the perpendicular diffusion coefficient. This
effect is automatically taken into account in time-dependent UNLT theory. In the follow-
ing this effect is neglected in order to obtain simple analytical forms for the perpendicular
diffusion coefficient. Furthermore, we neglect finite gyroradius effects.

If we combine Eqs. (6.25) with the spectral tensor for two-dimensional turbulence given
by Eq. (2.19), we obtain

κ⊥ = π
a2v2

3B2
0

∫ ∞

0
dk⊥

g2D(k⊥)

v/λ‖ + (4/3)κ⊥k2
⊥

. (8.1)

In the following we evaluate the latter equation for two different forms of the spectrum.
We like to emphasize that Eq. (8.1) can also be derived from NLGC theory apart from the
factor 4/3 in the denominator. This is the case because for pure two-dimensional turbulence,
NLGC theory and diffusive UNLT theory are very similar.

8.1 The Shalchi & Weinhorst Spectrum

Early investigations of non-linear perpendicular diffusion were based on two-dimensional
turbulence and a model spectrum similar compared to Eq. (2.14) which was formulated
in the context of slab turbulence (see, e.g., Shalchi et al. 2004a; Zank et al. 2004). In the
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following we consider the more general spectrum proposed by Shalchi and Weinhorst (2009)
(see Eq. (2.20) of this review). The latter spectrum incorporates requirements such as having
finite length scales of turbulence originally formulated in Matthaeus et al. (2007). With
spectrum (2.20) the perpendicular diffusion coefficient given by Eq. (8.1) becomes

κ⊥ = 2a2D(s, q)�⊥
v2

3

δB2
2D

B2
0

×
∫ ∞

0
dk⊥

(k⊥�⊥)q

[1 + (k⊥�⊥)2](s+q)/2

1

v/λ‖ + (4/3)κ⊥k2
⊥

. (8.2)

To solve this non-linear integral equation we employ the methods presented in Shalchi et al.
(2010). With the integral transformation x = k⊥�⊥ and by using the parameter

ε = 9�2
⊥

4λ‖λ⊥
, (8.3)

we obtain

λ⊥
λ‖

= a2D(s, q)ε
δB2

2D

B2
0

I (ε, s, q) (8.4)

where we have used

I (ε, s, q) = 2
∫ ∞

0
dxxq

(
1 + x2

)−(s+q)/2(
ε + x2

)−1
. (8.5)

Here we have also replaced the perpendicular diffusion coefficient by the perpendicular
mean free path. With the integral transformation y = x2 and by using Gradshteyn and
Ryzhik (2000), the integral in Eq. (8.5) can be expressed by a product of a beta function
B(x, y) and a Gaussian hypergeometric function 2F1(a, b; c; z) so that

I (ε, s, q) = ε(q−1)/2B

(
q + 1

2
,
s + 1

2

)

× 2F1

(
s + q

2
,
q + 1

2
; s + q + 2

2
;1 − ε

)
. (8.6)

Note, the integral in Eq. (8.5) is only convergent for q > −1. Thus, we only consider such
values of the energy range spectral index. The perpendicular mean free path λ⊥ is obtained
if Eq. (8.6) is combined with Eq. (8.4). However, the parameter ε itself depends on λ⊥ and,
thus, we have to deal with a non-linear equation. To simplify the expression found here, we
consider three different cases of the two parameters ε and q .

8.1.1 The Case ε � 1 and −1 < q < 1

First we rewrite the hypergeometric function in Eq. (8.6). In order to do this we employ the
transformation (see, e.g., Abramowitz and Stegun 1974)

2F1(a, b; c; z) = �(c)�(c − a − b)

�(c − a)�(c − b)

× 2F1(a, b;a + b − c + 1;1 − z)
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+ (1 − z)c−a−b �(c)�(a + b − c)

�(a)�(b)

× 2F1(c − a, c − b; c − a − b + 1;1 − z) (8.7)

allowing us to write

2F1

(
s + q

2
,
q + 1

2
; s + q + 2

2
;1 − ε

)

= �(
s+q+2

2 )�(
1−q

2 )

�(1)�( s+1
2 )

2F1

(
s + q

2
,
q + 1

2
; q + 1

2
; ε
)

+ ε(1−q)/2 �(
s+q+2

2 )�(
q−1

2 )

�(
s+q

2 )�(
q+1

2 )
2F1

(
1,

s + 1

2
; 3 − q

2
; ε
)

. (8.8)

In the case discussed in this paragraph we consider ε � 1 and, therefore, we use (see
Abramowitz and Stegun 1974)

2F1(a, b; c;0) = 1 (8.9)

as well as �(1) = 1 to obtain

2F1

(
s + q

2
,
q + 1

2
; s + q + 2

2
;1 − ε

)

≈ �(
s+q+2

2 )�(
1−q

2 )

�( s+1
2 )

+ ε(1−q)/2 �(
s+q+2

2 )�(
q−1

2 )

�(
s+q

2 )�(
q+1

2 )
. (8.10)

Whether the first or second term in Eq. (8.10) dominates depends on the value of q . For the
case that −1 < q < 1, the hypergeometric function can be approximated by the first term
in Eq. (8.10). If we additionally replace the beta function by (see again Abramowitz and
Stegun 1974)

B(x, y) = �(x)�(y)

�(x + y)
(8.11)

Equation (8.6) turns into

I (ε � 1, s, q < 1) ≈ ε(q−1)/2�

(
1 + q

2

)
�

(
1 − q

2

)
. (8.12)

Therewith, Eq. (8.4) becomes

λ⊥
λ‖

= a2D(s, q)�

(
1 + q

2

)
�

(
1 − q

2

)
δB2

2D

B2
0

ε(q+1)/2. (8.13)

Using Eq. (8.3) to replace the parameter ε therein yields

λ⊥ =
[(

9

4

)(q+1)/2

a2D(s, q)
δB2

2D

B2
0

�
q+1
⊥

]2/(q+3)

×
[
�

(
1 + q

2

)
�

(
1 − q

2

)]2/(q+3)

λ
(1−q)/(3+q)

‖ (8.14)
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giving us the perpendicular mean free path as a function of the parallel mean free path. In
the case considered here, the parameter ε is assumed to be small. Going back to Eq. (8.3)
tells us that this means 4λ‖λ⊥ � 9�2

⊥. Since both mean free paths increase with rigidity, this
result should be important for high particle rigidities. Interesting here is the dependence on
the parallel mean free path. For q = 0, for instance, we find λ⊥ ∝ λ

1/3
‖ as originally obtained

in Shalchi et al. (2004a) and Zank et al. (2004).

8.1.2 The Case ε � 1 and q > 1

In the following we still assume that ε is small as before. However, we now consider the
case q > 1 and, thus, the second term in Eq. (8.10) is dominant and we have

2F1

(
s + q

2
,
q + 1

2
; s + q + 2

2
;1 − ε

)
≈ ε(1−q)/2 �(

s+q+2
2 )�(

q−1
2 )

�(
s+q

2 )�(
q+1

2 )
. (8.15)

Using this term in Eq. (8.6) yields

I (ε � 1, s, q > 1) ≈ s − 1

q − 1

1

2D(s, q)
(8.16)

where we have used Eq. (2.67) as well. Using this result in Eq. (8.4) gives us

λ⊥
λ‖

=
[

9

8
a2 s − 1

q − 1

�2
⊥

λ2
‖

δB2
2D

B2
0

]1/2

(8.17)

leading to

λ⊥ =
√

9(s − 1)

8(q − 1)
a�⊥

δB2D

B0
. (8.18)

Alternatively this result can be obtained by combining Eq. (5.6) with Eq. (3.56). Equa-
tion (8.18) corresponds to the FLRW limit in the case where the field lines are highly
non-linear.

8.1.3 The Case ε � 1

So far we considered cases where the parameter ε is small. In the last out of the three cases
we now explore ε � 1 corresponding to small rigidities. After employing the so-called Pfaff
transformation (see, e.g., Abramowitz and Stegun 1974)

2F1(a, b; c; z) = (1 − z)−b
2F1

(
b, c − a; c; z

z − 1

)
(8.19)

the hypergeometric function in Eq. (8.6) can be written as

2F1

(
s + q

2
,
q + 1

2
; s + q + 2

2
;1 − ε

)

= ε−(q+1)/2
2F1

(
q + 1

2
,1; s + q + 2

2
;1 − 1

ε

)

≈ ε−(q+1)/2
2F1

(
q + 1

2
,1; s + q + 2

2
;1

)
. (8.20)
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By additionally using (Abramowitz and Stegun 1974)

2F1(a, b; c;1) = �(c)�(c − a − b)

�(c − a)�(c − b)
(8.21)

in Eq. (8.20), we get

2F1

(
s + q

2
,
q + 1

2
; s + q + 2

2
;1 − ε

)
≈ ε−(q+1)/2 �(

s+q+2
2 )�( s−1

2 )

�( s+1
2 )�(

s+q

2 )

= ε−(q+1)/2 s + q

s − 1
. (8.22)

In the last step we have used Eq. (2.67) as well. The beta function in Eq. (8.6) can also be
written as

B

(
q + 1

2
,
s + 1

2

)
= s − 1

2D(s, q)(s + q)
(8.23)

where we have employed Eq. (8.11). By combining Eqs. (8.23) and (8.22) with (8.6), we
derive

I (ε � 1, s, q) ≈ 1

2εD(s, q)
(8.24)

and for the perpendicular mean free path, given by Eq. (8.4), we therefore find

λ⊥
λ‖

= a2

2

δB2
2D

B2
0

. (8.25)

This case was also obtained before (see Eq. (6.45) of this review).
Above we have shown how different limits come out of diffusive UNLT theory for two-

dimensional turbulence. Equations (8.18) and (8.25) were derived before in this review by
considering the corresponding limits directly. Equation (8.14), however, disagrees with those
directly obtained limits. The reason for this is that Eq. (8.14) was obtained for a case where
the ultra-scale is not finite. This would also mean, as shown in Shalchi and Kourakis (2007b)
and Shalchi (2011c), that the magnetic field lines are super-diffusive for the case q < 1. If
one drops the Matthaeus et al. (2007) requirement that the ultra-scale needs to be finite,
Eq. (8.14) would still be a valid result. However, during the remainder of this review, we
focus on spectra satisfying those requirements and this means that Eqs. (8.18) and (8.25)
are the only considered asymptotic limits for perpendicular transport in two-dimensional
turbulence.

8.2 The Simplified Spectrum

Above we derived simple formulas for the perpendicular diffusion coefficient and a general
and realistic spectrum. However, the derived formulas are only valid in asymptotic limits.
An alternative approach is to consider a special spectrum with q = 2 and s = 2 (see Shalchi
2013b). For the choice q = 2 the integral scale and the ultra-scale are finite (see, e.g., Table 2
of this review) and the random walk of magnetic field lines is normal diffusive (see Sects. 2
and 3 of this review). For these values of the spectral indices we have D(s = 2, q = 2) = 1/π

and the spectrum (2.20) becomes

g2D(k⊥) = 2

π2
�⊥δB2

2D

(k⊥�⊥)2

[1 + (k⊥�⊥)2]2
. (8.26)
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In the following we call this the simplified spectrum but we keep in mind that this spectrum
contains all features important for describing perpendicular diffusion in two-dimensional
turbulence. In order to compute the perpendicular diffusion coefficient we can employ again
Eq. (8.1). In combination with the simplified spectrum we find

κ⊥ = 2a2v2

3π

δB2
2D

B2
0

∫ ∞

0
dx

x2

(1 + x2)2

1

αx2 + β
(8.27)

where we have used the integral transformation x = k⊥�⊥ and the parameters α =
4κ⊥/(3�2

⊥) as well as β = v/λ‖. We can solve the integral by using (see, e.g., Gradshteyn
and Ryzhik 2000)

∫ ∞

0
dx

x2

(1 + x2)2

1

αx2 + β
= π

4(
√

α + √
β)2

. (8.28)

Using this in Eq. (8.27) and by replacing κ⊥ = vλ⊥/3 we find

λ⊥ = a2

2

δB2
2D

B2
0

λ‖

(1 +
√

4λ‖λ⊥/(9�2
⊥))2

. (8.29)

By additionally using x := √
λ⊥,

γ := a√
2

√
λ‖

δB2D

B0
, (8.30)

as well as

δ :=
√

4λ‖
9�2

⊥
, (8.31)

Equation (8.29) can be written as quadratic equation of the form

δx2 + x − γ = 0. (8.32)

Since x is defined as positive number, the latter quadratic equation has only one solution.
By replacing x, α, and γ again by physical quantities, this solution is

λ⊥ = 9�2
⊥

16λ‖

[√

1 + 8a

3
√

2

λ‖
�⊥

δB2D

B0
− 1

]2

. (8.33)

The latter formula can easily be employed to compute the perpendicular mean free path
if the parallel diffusion coefficient and turbulence parameters are known. The strength of
Eq. (8.33) is that we now have one single formula for the perpendicular mean free path in
two-dimensional turbulence. The cases given by Eqs. (8.18) and (8.25) can easily be re-
stored by considering the corresponding limits. Furthermore, Eq. (8.33) is an exact solution
of diffusive UNLT theory for two-dimensional turbulence and the simplified spectrum. In
Fig. 15 this solution is visualized together with the numerical solution of Eq. (8.1) for the
more realistic case s = 5/3 and q = 3 as well as the two asymptotic solutions given by
Eqs. (8.18) and (8.25).
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Fig. 15 The perpendicular mean
free path versus the parallel mean
free path for two-component
turbulence. Shown is the
numerical solution of Eq. (8.2)
for s = 5/3 and q = 3 (solid line)
as well as the asymptotic limits
given by Eqs. (8.18) and (8.25)
which are represented by the two
dotted lines. The dashed line
visualizes the simple analytical
form given by Eq. (8.33). In all
cases we have used a = 1/

√
3 as

well as δB2
2D

= 0.8B2
0

9 The Heuristic Description of Perpendicular Diffusion

In the previous sections we discussed advanced systematic theories for perpendicular trans-
port. As it was shown over the past few years, time-dependent UNLT theory in particular
agrees with most test-particle simulations (see, e.g., Arendt and Shalchi 2018). However,
there are two remaining questions which need to be explored. First, there are cases where
the agreement between theory and simulations can only be achieved if the parameter a2

is set to 1/3. Strictly speaking the theory fails in such cases because ideally this type of
correction parameter should not be needed. Furthermore, in physics one usually desires to
achieve a complete understanding of fundamental processes. The question arises how and
why are particles experiencing perpendicular diffusion. In the current section we, therefore,
review the heuristic approach towards perpendicular transport developed in Shalchi (2019a).
This will not only explain the underlying physics of perpendicular diffusion but it will also
provide an explanation of why the correction factor a2 is sometimes needed.

9.1 The Three Rules of Perpendicular Diffusion

Before we derive formulas for the perpendicular diffusion coefficient based on heuristic
arguments, we discuss the three rules of perpendicular diffusion formulated in Shalchi
(2019a). Those are:

1. Perpendicular transport is only controlled by three effects, namely parallel transport, the
random walk of magnetic field lines, as well as transverse complexity. The last of these
three effects leads to the particles getting scattered away from the original magnetic field
lines they were tied to.

2. We assume that the bendover scales �‖ and �⊥, the integral scales L‖ and L⊥, the ultra-
scale LU , as well as the Kolmogorov scale LK are finite and non-zero. Furthermore,
the parallel motion is assumed to be ballistic at early times and thereafter turns into a
diffusive motion described by the parallel diffusion coefficient κ‖. The FLRW is initially
ballistic and becomes diffusive for larger distances. In this case it is described by the field
line diffusion coefficient κFL which depends on some of the aforementioned scales.
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Table 6 The eight different ways of perpendicular transport in magnetostatic turbulence. The results are
compared with limits contained in time-dependent UNLT theory represented by Eq. (7.8). The collision-
less Rechester & Rosenbluth (CLRR) limit can also be written as κ⊥ = κFLκ‖/LK with the Kolmogorov
scale LK . This table is from Shalchi (2019a)

Case Parallel
transport

Field lines 〈(�x)2〉 ≥ 2�2⊥ Perp. transport Diffusion
coefficient

Described by
UNLT theory

1 Ballistic Ballistic No Ballistic d⊥(t) = v2

3
δB2

x

B2
0

t Yes

2 Ballistic Ballistic Yes Double-ballistic
diff.

κ⊥ =
√

2
3 v�⊥ δBx

B0
Yes

3 Ballistic Diffusive No FLRW limit κ⊥ = v
2 κFL Yes

4 Ballistic Diffusive Yes FLRW limit κ⊥ = v
2 κFL Yes

5 Diffusive Ballistic No Fluid limit κ⊥ = δB2
x

B2
0

κ‖ Yes

6 Diffusive Ballistic Yes Fluid limit κ⊥ = δB2
x

B2
0

κ‖ Yes

7 Diffusive Diffusive No Compound
sub-diff.

d⊥(t) = κFL

√
κ‖
2t

For small Kubo
numbers

8 Diffusive Diffusive Yes CLRR limit κ⊥ = (
κFL
�⊥ )2κ‖ For small Kubo

numbers

Table 7 The different routes
leading to perpendicular
diffusion. In the first three cases
perpendicular transport starts as
ballistic motion which then turns
directly into a normal diffusive
motion. Only in the fourth case
the ballistic motion is followed
by a sub-diffusive regime and
then, at later times, diffusion is
restored. This table is from
Shalchi (2019a)

Route Final state Diffusion coefficient

1 → 2 Double-ballistic diffusion κ⊥ =
√

2
3 v�⊥ δBx

B0

1 → 3 → 4 FLRW limit κ⊥ = v
2 κFL

1 → 5 → 6 Fluid limit κ⊥ = δB2
x

B2
0

κ‖

1 → 7 → 8 CLRR limit κ⊥ = (
κFL
�⊥ )2κ‖

3. In order to obtain normal diffusion, the particles need to leave the original magnetic field
lines they followed. This happens as soon as transverse complexity becomes significant
corresponding to

〈
(�x)2

〉≥ 2�2
⊥. (9.1)

What the perpendicular diffusion coefficient is depends solely on the state of parallel and
field line transport at the time particles start to satisfy condition (9.1).

It is assumed here that �⊥ is the scale at which transverse complexity becomes significant.
In principle this could be a different scale such as the integral scale L⊥. To use the bendover
scale, however, is motivated by time-dependent UNLT theory (see Sect. 7 and in particu-
lar Eq. (7.55)). In the following we try to understand perpendicular transport based on the
three rules formulated above. This will require to consider eight different cases which are
summarized in Table 6. The different routes to perpendicular diffusion are listed in Table 7.
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9.2 The FLRW Limit

First we assume that the random walk of magnetic field lines is diffusive at time scales where
perpendicular transport is of interest. This means we assume

〈
(�x)2

〉= 2κFL|z| (9.2)

where we have used the diffusion coefficient of magnetic field lines κFL. In order to continue
we need to model the parallel motion of the particles. If we assume that there are no colli-
sions and no pitch-angle scattering, we can use z(t) = vμt where we used the pitch-angle
cosine μ and the particle speed v as before. Combining this with Eq. (9.2) and averaging
over μ yields

〈
(�x)2

〉= vκFLt (9.3)

corresponding to the field line random walk limit as given by Eq. (6.36). This limit is stable
because if condition (9.1) is met, it does not alter the transport. Sometimes this type of trans-
port is called first diffusion and it is highly relevant in the limit of very long parallel mean
free paths. However, it needs to be emphasized that it has to be understood as asymptotic
limit which is never really achieved (see, e.g., Figs. 21 and 22 of this review).

9.3 Compound Sub-Diffusion

The FLRW limit was obtained by assuming that the parallel motion is unperturbed meaning
ballistic. However, if there is strong pitch-angle scattering the parallel motion is diffusive
meaning that

〈
(�z)2

〉= 2κ‖t. (9.4)

Assuming that at a certain time field lines are diffusive and particles follow field lines, we
can combine Eqs. (9.2) and (9.4) to find

〈
(�x)2

〉≈ 2κFL

√
2κ‖t ∝ √

t . (9.5)

The running diffusion coefficient can then be obtained via17

d⊥(t) = 1

2

d

dt

〈
(�x)2

〉≈ κFL

√
κ‖
2t

(9.6)

corresponding to sub-diffusive transport. In other words: if nothing else happens and we just
have a combination of particles following random walking magnetic field lines, while they
move diffusively in the parallel direction, perpendicular transport will be sub-diffusive for-
ever. However, diffusion will be restored as soon as condition (9.1) is satisfied as discussed
in the next paragraph. For slab turbulence, on the other hand, this condition is never satisfied
due to �⊥ = ∞. Thus, for slab turbulence, we find compound sub-diffusion as the final state
of the transport.

9.4 The CLRR Regime

We now assume that diffusion starts as soon as the particles scatter away from their original
magnetic field line. This happens as soon as condition (9.1) is satisfied. We also assume that

17Note that Eq. (9.6) is very similar compared to Eq. (5.15). The latter formula is, of course, more accurate.
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this happens after the particles travel the distance LK in the parallel direction. Therefore, we
have

κ⊥
κ‖

= 〈(�x)2〉
〈(�z)2〉 = �2

⊥
L2

K

. (9.7)

In order to replace LK we can use the field line diffusion coefficient where

κFL = 〈(�x)2〉
2|z| = �2

⊥
LK

. (9.8)

The latter formula can be rewritten as

LK = �2
⊥

κFL
. (9.9)

Using this in Eq. (9.7) yields

κ⊥ ≈
(

κFL

�⊥

)2

κ‖. (9.10)

Alternatively, Eq. (9.9) can be used in order to replace the perpendicular bendover scale �⊥
in Eq. (9.7) so that

κ⊥ ≈ κFLκ‖
LK

(9.11)

in agreement with equation (8) of Rechester and Rosenbluth (1978) as well as equation
(4) of Krommes et al. (1983). This formula was also derived in Shalchi (2019b) by using
arguments based on field line separation theory. The quantity LK is sometimes called the
Kolmogorov length or the Kolmogorov-Lyapunov length (see, e.g., Krommes et al. 1983;
Spatschek 2008). However, here LK is not an exponentiation length but a characteristic dis-
tance along the mean field at which transverse complexity becomes significant. The work by
Rechester and Rosenbluth (1978) emphasized the importance of collisions. In space plas-
mas collisions are not important but there is strong pitch-angle scattering leading to parallel
diffusion as discussed in Sect. 4 of this review. Thus, the importance of parallel diffusion
remains regardless whether it is caused by collisions or pitch-angle scattering. Thus, we call
Eq. (9.10) the collisionless Rechester & Rosenbluth (CLRR) limit.18

One can also obtain Eq. (9.10) by using a slightly different derivation. Let’s assume that
we are in a regime where particles experience compound sub-diffusion. Then we can use
Eqs. (9.5) and (9.6) to describe the transport. We now assume that we find compound sub-
diffusion until the particles satisfy condition (9.1) which is assumed to happen at the time td
so that Eqs. (9.5) and (9.6) turn into

2�2
⊥ = 2κFL

√
2κ‖td (9.12)

as well as

κ⊥ = κFL

√
κ‖
2td

. (9.13)

Combining the latter two equations in order to eliminate td yields again Eq. (9.10).

18A collisionless adaption of Rechester and Rosenbluth (1978) was also formulated by Chandran and Cowley
(1998). The latter adaption was also discussed and compared with simulations in the paper by Matthaeus et al.
(2003). However, this previous formula for the perpendicular diffusion coefficient has nothing to do with the
CLRR limit discussed in the current review.
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In order to evaluate Eq. (9.10) further, we consider two cases, namely small and large
values of the Kubo number, respectively. For small Kubo numbers the field line diffusion
coefficient is given by Eq. (3.21) leading to

κ⊥ =
(

L‖
�⊥

)2
δB4

x

B4
0

κ‖ ∝ �2
‖

�2
⊥

δB4
x

B4
0

κ‖ (9.14)

as well as

LK = �2
⊥

κFL
= �2

⊥
L‖

B2
0

δB2
x

∝ �2
⊥

�‖
B2

0

δB2
x

. (9.15)

Equation (9.14) is in perfect agreement with the scaling obtained from diffusive UNLT the-
ory (see, e.g., Eq. (6.48) of the current review).

For large Kubo numbers, on the other hand, we use Eq. (3.59) in Eq. (9.10) yielding

κ⊥ ≈
(

LU

�⊥

)2
δB2

x

B2
0

κ‖. (9.16)

Furthermore, the Kolmogorov scale is, in this case,

LK = �2
⊥

LU

B0

δBx

∝ �⊥
B0

δBx

. (9.17)

Since we usually expect LU ∝ �⊥ (see, for instance, Sect. 5), Eq. (9.16) looks very similar
compared to the fluid limit (see next subsection). However, the way how particles move
across the field is different. Below we will evaluate this further and relate it to previous
results and test-particle simulations.

9.5 The Fluid Limit

Let’s now assume that parallel transport is diffusive but magnetic field lines are still ballistic
when the particles start to satisfy condition (9.1). Then we can easily derive

〈
(�x)2

〉= δB2
x

B2
0

〈
(�z)2

〉= 2κ‖t
δB2

x

B2
0

. (9.18)

Consequently, the perpendicular diffusion coefficient is given by

κ⊥ = κ‖
δB2

x

B2
0

(9.19)

corresponding to the fluid limit. We conclude that the fluid limit is obtained if the parallel
motion becomes diffusive when the field lines are still ballistic.

9.6 Ballistic Perpendicular Transport

The simplest case is obtained for the very early times when parallel transport and field lines
are ballistic. In this case

〈
(�x)2

〉= δB2
x

B2
0

〈
(�z)2

〉= v2

3

δB2
x

B2
0

t2 (9.20)
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so that

d⊥(t) = v2

3

δB2
x

B2
0

t. (9.21)

This means that the running diffusion coefficient increases linearly with time. This type of
transport can be seen in test-particle simulations for very early times (see, e.g., Sect. 10 for
some examples). However, this is not a stable regime since we only find this type of transport
before condition (9.1) is met.

9.7 The Double-Ballistic Regime

We now consider the case where perpendicular transport is ballistic as described in Sect. 9.6
when particle experience transverse complexity. As soon as we satisfy condition (9.1), nor-
mal diffusion is restored. Therefore we use Eqs. (9.20) and (9.21) to derive

2�2
⊥ = v2

3

δB2
x

B2
0

t2
d (9.22)

as well as

κ⊥ = v2

3

δB2
x

B2
0

td . (9.23)

Combining the latter two equations in order to replace the diffusion time td leads to

κ⊥ =
√

2

3
v�⊥

δBx

B0
(9.24)

very similar compared to Eq. (7.43) derived from time-dependent UNLT theory by assum-
ing a ballistic motion. However, Eq. (7.43) contains the perpendicular integral scale L⊥
rather than the perpendicular bendover scale �⊥. Therefore, we need to keep in mind that
the heuristic approach is based on simple arguments and is not necessarily providing a very
accurate result.

9.8 Time-Scale Arguments

Above we derived several cases for perpendicular transport. Of course the question arises
which case is valid for which scenario. In order to answer this question one needs to explore
how long it takes for a certain process to take place. If it comes to parallel transport, for
instance, one usually assumes that the particles need to travel a parallel mean free path in
order to get diffusive (see, e.g., Eqs. (4.78) and (4.79) of this review). Therefore, we can
estimate

vt‖ = λ‖ = 3

v
κ‖. (9.25)

To find a condition for magnetic field line diffusion is more difficult. For small Kubo num-
bers the field lines usually become diffusive for |z| ≈ �‖ (see, e.g., Sect. 3.4). In this case
one needs to specify how the particles move when they satisfy this condition. For a very
short parallel mean free path, parallel diffusion is reached quickly. Therefore the field lines
become diffusive for

�2
‖ = 2κ‖tFL. (9.26)
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Then, on the other hand, if we assume that condition (9.1) is satisfied while the field lines
are still ballistic, we can estimate

2�2
⊥ = δB2

x

B2
0

2κ‖tF luid (9.27)

so that

tF luid = �2
⊥

κ‖
B2

0

δB2
x

. (9.28)

In order to find the fluid limit as the final state of perpendicular diffusion, we need to satisfy

t‖ < tFluid < tFL (9.29)

because only then we find that parallel transport becomes diffusive first, then we meet con-
dition (9.1) and we obtain a stable regime for perpendicular transport, namely the fluid limit.
If, on the other hand,

t‖ < tFL < tFluid (9.30)

the field lines become diffusive before condition (9.1) is met. This means that we find com-
pound sub-diffusion first. At even later time condition (9.1) is eventually met and diffusion is
restored. The corresponding diffusion coefficient is then the one corresponding to the CLRR
limit. Using the formulas for the times discussed above, this means that we find CLRR dif-
fusion for

λ‖
v

<
�2

‖
2κ‖

<
�2

⊥
κ‖

B2
0

δB2
x

(9.31)

or

λ2
‖ � �2

‖ � �‖LK (9.32)

where we have used the Kolmogorov length LK given by Eq. (9.15). This means that for
λ‖ � �‖ we either find the fluid limit or CLRR diffusion. If additionally �‖ � LK we find
the fluid limit but for �‖ � LK we get CLRR diffusion. We can clearly see that LK/�‖ ≈
K−2 � 1 meaning that for small Kubo numbers we should always find CLRR diffusion
rather than the fluid limit. This is in principle in agreement with UNLT theory where we
find CLRR diffusion for small λ‖ and small K but the fluid limit for small λ‖ and large K .

The arguments presented above were performed for small Kubo number turbulence. For
large Kubo numbers, on the other hand, it is more difficult to estimate the time tFL since it
is unclear for which distance the field lines become diffusive. However, we expect that this
time will be somewhere between the tFL derived above and tF luid . We can easily see that if
the Kubo number is large, the time tF luid given by Eq. (9.28) becomes small. We therefore,
conclude that if the Kubo number is large enough one should find the fluid limit but in most
applications we expect to find CLRR diffusion.

Also problematic is that one can easily end up in a regime somewhere between CLRR
and fluid limits. If we focus on the large Kubo number regime, Eqs. (9.16) and (9.19) are
very similar. One would expect that the fluid limit acts as an upper limit meaning that if
LU > �⊥ one finds the fluid limit.

9.9 Further Comments

Important here is to note that the results obtained here are sometimes not comparable to
previous results. However, this is because previously obtained results often violate one of



Perpendicular Transport of Energetic Particles in Magnetic Turbulence Page 97 of 134    23 

the three rules of perpendicular diffusion listed above. First of all there are cases such as pure
slab or pure two-dimensional turbulence. In the former case condition (9.1) is never satisfied
leading to compound sub-diffusion as the final state. In the two-dimensional case parallel
transport is not diffusive (see, e.g., Arendt and Shalchi 2018) violating the second rule.

In some work (see, e.g., Qin et al. 2002a, 2002b; Matthaeus et al. 2003; or Shalchi et al.
2004a) a spectrum was used for the two-dimensional modes which is perfectly flat at large
scales. For this type of spectrum some fundamental scales of turbulence are not finite. This is
in particular the case for the ultra-scale and, thus, it violates the second rule of perpendicular
diffusion.

Sometimes the FLRW limit as given by Eq. (6.36) together with Eq. (3.59) is called the
Kadomtsev & Pogutse limit. However, there is another limit which is sometimes also called
the Kadomtsev & Pogutse limit (see, e.g., Table 1 of Krommes et al. 1983) which is

κ⊥ = κFL

√
κ‖χ⊥
�⊥

(9.33)

where χ⊥ is the perpendicular diffusion coefficient due to collisions. However, in astrophys-
ical scenarios there are no collisions and perpendicular diffusion is only caused by pitch-
angle scattering and transverse complexity. Thus we set χ⊥ = κ⊥ so that Eq. (9.33) turns
into κ⊥ = κ2

FLκ‖/�2
⊥ in perfect agreement with Eq. (9.10). Therefore, we conclude that in the

collisionless case the second Kadomtsev & Pogutse limit and the Rechester & Rosenbluth
limit are the same.

In order to determine the form of the field line diffusion coefficient and to distinguish
between the different regimes of perpendicular diffusion, we use the Kubo number as given
by Eq. (3.11). However, in some cases such as the Goldreich & Sridhar model (see Sect. 2.8)
there is only one scale and, thus, �‖ = �⊥. In this case the Kubo number becomes K =
δBx/B0 often called the Alfvénic Mach number. The results derived above are, of course,
still valid.

9.10 A Composite Formula

A problem of the heuristic approach is that the obtained formulas are only valid in asymp-
totic limits. Therefore, we now design a formula which contains the two most important
cases as asymptotic limits. Those are the CLRR and FLRW limits. Motivated by Eq. (8.33)
we start with the ansatz

λ⊥ = b

λ‖
[√1 + cλ‖ − 1]2. (9.34)

We now choose the constants b and c so that for λ‖ → 0 we obtain Eq. (9.10) and for
λ‖ → ∞ we get Eq. (6.36). After straightforward algebra we obtain

b = 9

16
�2

⊥ (9.35)

as well as

c = 8

3

κFL

�2
⊥

(9.36)

leading to the composite formula

λ⊥
�⊥

= 9�⊥
16λ‖

[√
1 + 8κFLλ‖

3�2
⊥

− 1

]2

. (9.37)
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Of course this formula has its limitations. For instance it does not contains the fluid limit and,
thus, it is not valid for too large Kubo numbers. However, it can be used for arbitrary turbu-
lence. In Sect. 10 we compare this formula with UNLT results and test-particle simulations.

9.11 Two-Component Turbulence as an Example

As an example we employ a two-component turbulence model where we approximate turbu-
lence by using a superposition of slab and two-dimensional modes. In this case perpendic-
ular transport is mostly controlled by the two-dimensional modes whereas the slab modes
ensure that parallel transport behaves well. One still needs to specify the spectrum in order
to obtain concrete results.

In the case of two-dimensional turbulence we employ Eq. (2.19) for the spectral tensor
and Eq. (2.20) for the spectral function. According to Eq. (2.66) the ultra-scale is, in this
case, given by

LU =
√

s − 1

q − 1
�⊥ (9.38)

and, thus, it is directly proportional to the perpendicular bendover scale but depends also on
the two spectral indices.

With the parameter a2 included, non-linear theories provide for the perpendicular dif-
fusion coefficient in the limit of short parallel mean free path (see, e.g., Eq. (6.45) of this
review)

κ⊥ = a2 δB2
x

B2
0

κ‖. (9.39)

If one is in the fluid regime we have a2 = 1. According to the heuristic approach described
above, however, we expect more a CLRR type of behavior. Comparing Eqs. (9.39) and (9.16)
yields

a = LU

�⊥
(9.40)

and using Eq. (9.38) for the ultra-scale gives us

a2 = s − 1

q − 1
. (9.41)

Previously, as quantitative theories were compared with simulations, it was often assumed
that s = 5/3 and q = 3 (see for instance Arendt and Shalchi 2018). Therefore, we can easily
show that

a2 = 1

3
. (9.42)

The arguments presented here provide a natural explanation of why the parameter a2 is
needed. This parameter balances out the differences of the fluid limit and CLRR diffusion
in the large Kubo number regime. This is important because the problem of needing this
correction factor a2 in systematic theories is known since more than 15 years (see Matthaeus
et al. 2003). Due to the heuristic approach discussed here we now understand the physics of
this parameter as well as its value.

It should be emphasized that Eq. (9.42) suggests that a2 is exactly 1/3. This is probably
not true. First of all the heuristic approach is based on rough estimations and is not supposed
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to be exact. Furthermore, Eq. (9.39) with a2 = 1/3 is already close to the fluid limit where
a2 = 1. The parameters often used in the context of slab/2D turbulence lead to a scenario
where perpendicular transport ends up somewhere between CLRR and fluid limits. One
would expect that changing turbulence and particle parameters could easily lead to different
values of a2 and in some cases one would even expect a2 = 1.

More examples and a comparison between UNLT theory, the heuristic approach, and
test-particle simulations is presented in the next section (see Figs. 21 and 22).

10 Test-Particle Simulations

The work discussed so far is entirely based on analytical considerations. An alternative tool
for describing the transport of energetic particles through magnetic turbulence is provided by
test-particle simulations. They are also useful in order to test the validity and accuracy of the
analytical theories discussed so far. Ideally there is agreement between theory, simulations,
and observations.

Test-particle simulations consist of the following three steps:

1. First we need to generate the magnetic fields by employing a turbulence model very
similar compared to the models used in analytical theories (see Sect. 2 of this review).
A problem is that the computational time needed for turbulence creation increases sig-
nificantly if three-dimensional or time-dependent models are employed.

2. The second step is to solve the Newton-Lorentz equation (4.1) to obtain the particle or-
bits. Since the Newton-Lorentz equation is a second-order ordinary differential equation,
one usually employs standard solvers such as fourth-order Runge-Kutta integrators with
adaptive time steps (see, e.g., Press et al. 2007). An alternative is provided by symplectic
integrators leading to better energy conservation (see Arendt and Shalchi 2018).

3. The last step is to ensemble average the obtained orbits to compute the diffusion pa-
rameters in the different directions of space. Furthermore, one can also obtain particle
distribution functions, mean square displacements, and velocity correlation functions. In
order to get results with high accuracy and to reduce noise, one has to perform such
simulations by using thousands of particles.

In the following we present a more detailed description of these steps and thereafter we show
numerical results together with a comparison with analytical results for different turbulence
configurations.

10.1 Generating the Turbulence

As described above, test-particle simulations are a common tool in the theory of particle
transport. In the following we summarize the method and employ the notation used before
in Hussein and Shalchi (2014a), Hussein et al. (2015), Hussein and Shalchi (2016) as well
as Arendt and Shalchi (2018). This approach, however, is based on previous papers such
as Giacalone and Jokipii (1999) as well as Tautz (2010b). The most common technique to
generate magnetic turbulence is to sum over a large number of plane waves with random
phases, polarizations, amplitudes, and orientations. In test-particle simulations the turbulent
magnetic field vector is created via

δB(x) = √
2δB

N∑

n=1

A(kn)ξn cos[kn · x + βn] (10.1)

where N is the number of wave modes. The quantity A(kn) denotes the amplitude function
and is discussed below. In Eq. (10.1) we have also used the wave vector kn = knek,n with the
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Table 8 The values of the parameters used in the simulations for the different turbulence models. Here we
have listed the parameters ηn , αn, and �n used in Eqs. (10.1)–(10.3) in order to create the turbulent magnetic
field. The parameters �‖ , �⊥ , and �0 are the corresponding bendover scales. The used values for the energy
range spectral index q are also listed. The first three cases are based on a single sum in the field creation
whereas the last two cases are based on a double-sum

Turbulence model ηn αn �n Wave numbers q

Slab 1 0 Random kn = �‖k‖ 0

Two-dimensional 0 0 Random kn = �⊥k⊥ 2 or 3

Isotropic Random Random Random kn = �0k 3

Noisy slab model 0 0 Random kn = �⊥k⊥, km = �‖k‖ 0

NRMHD 0 0 Random kn = �⊥k⊥, km = �‖k‖ 3

wave number kn and the unit vector

ek,n =
⎛

⎜⎝

√
1 − η2

n cosφn
√

1 − η2
n sinφn

ηn

⎞

⎟⎠ . (10.2)

Furthermore, we have used the random phase βn, restricted by 0 ≤ βn < 2π , and the polar-
ization vector

ξn =
⎛

⎜⎝
− sinφn cosαn + ηn cosφn sinαn

cosφn cosαn + ηn sinφn sinαn

−√1 − η2
n sinαn

⎞

⎟⎠ (10.3)

with ηn = cos θn. The angles θn, φn, and αn can have a specific value or they are random
numbers depending on the simulated turbulence model (see Table 8 of the current paper for
some examples).

If the slab model is simulated, for instance, we set ηn = 1 so that ek,n = ez for all n.
Furthermore, we set αn = 0 so that ξn = − sinφnex + cosφney for all n. This choice of ηn

and αn ensures that all wave vectors are aligned parallel with respect to the mean field and
that δBz = 0. These are exactly the conditions which need to be satisfied if the slab model is
considered. The remaining angles φn are random numbers satisfying 0 ≤ φn < 2π emulating
the chaotic nature of the field δB.

In a very similar manner we can generate two-dimensional turbulence. In this case
we set αn = 0 as before to ensure that δBz = 0. However, we now use ηn = 0 so that
ek,n = cosφnex + sinφney and ξn = − sinφnx + cosφney as required for two-dimensional
turbulence.

Isotropic turbulence can also be generated via Eqs. (10.1)–(10.3). In this case all angles
θn, φn, and αn are random numbers leading to a turbulence model where the wave vector as
well as the magnetic field vector are isotropic.

One can easily show by combining Eqs. (10.2) and (10.3) that for the general case we
have ek,n · ξn = 0, corresponding to the solenoidal constraint k · δB = 0, as required. The
amplitude function A(kn) used in Eq. (10.1) depends on the spectrum G(kn) via

A2(kn) = G(kn)�kn

(
N∑

m=1

G(km)�km

)−1

. (10.4)
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The parameter �kn describes the spacing between wave numbers and is discussed below.
Note, the wave numbers used in simulations are unitless meaning that the physical wave
numbers are multiplied by a characteristic scale of turbulence, usually one of the bendover
scales. This means, for instance, that for slab turbulence the parameter kn in Eq. (10.4) is
really kn�‖. The amplitude function (10.4) has to be normalized so that

N∑

n=1

A2(kn) = 1. (10.5)

Using Eq. (10.4) in the latter condition yields

N∑

n=1

A2(kn) =
∑N

n=1 G(kn)�kn∑N

m=1 G(km)�km

= 1. (10.6)

For the spectrum G(kn) we use a form corresponding to the analytical models described in
Sect. 2, namely

G(kn) = k
q
n

(1 + k2
n)

(s+q)/2
. (10.7)

The parameters q and s are energy and inertial range spectral indices as before. The used
values for these two parameters and the meaning of kn in the different models are summa-
rized in Table 8. In most simulations a logarithmic spacing in kn is implemented so that

�kn

kn

= exp

[
ln(kmax/kmin)

N − 1

]
(10.8)

which is constant. In the context of two-dimensional turbulence the grid created in wave
number space via Eq. (10.8) is visualized in Fig. 3 together with the spectra used in analytical
treatments of field line and particle transport.19 Furthermore, the possible values for the wave
numbers are restricted by kmin ≤ kn ≤ kmax. Typical values for minimum and maximum
wave numbers are kmin = 10−5 and kmax = 103. There are two constraints that should be
taken into account in test-particle simulations. First we know that pitch-angle scattering
happens mostly close to the resonance condition μRLk‖ = 1 (see Sect. 4.3). Therefore, the
simulations have to be performed so that we hit the resonance. Furthermore, we need to
ensure that no particle travels more than the distance Lmax = k−1

min. This is done via the
relation vtmax < Lmax corresponding to a restriction of time. For kmin = 10−5, for instance,
we have Lmax = 105 leading to the condition vtmax < 105�. Since in the simulations we use
T = �t for time, this turns into TmaxRL/� < 105. Obviously, this restriction becomes more
relevant for high rigidities.

10.2 More General Models for Turbulence

As obvious from Eq. (10.1), we only discuss the case of magnetostatic turbulence here.
Of course, one can incorporate wave propagation effects in such simulations (see, e.g.,
Michałek and Ostrowski 1996; Tautz 2010b; Hussein and Shalchi 2014b). Test-particle sim-
ulations in dynamical turbulence were performed for the first time in Hussein and Shalchi
(2016) based on a more-dimensional Fourier technique.

19The grid shown in Fig. 3 is just an example. Usually in such simulations we use a large number of wave
numbers such as N = 256.
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Furthermore, the models discussed above were models with either reduced dimension-
ality (slab or two-dimensional modes), superpositions thereof (two-component turbulence),
or isotropic models. Therefore, the simulated wave numbers are only one-dimensional and
thus there is only one sum over the different modes in Eq. (10.1). There are in principle two
ways of generalizing this to three-dimensional anisotropic but axi-symmetric turbulence:

1. One can keep Eqs. (10.1)–(10.8) and adjusts the spectrum and the values of the parame-
ters ηn, φn, and αn accordingly. Of course one has to ensure that the whole wave number
space of the simulated turbulence model is covered and that the right spectrum is chosen.
Since a more-dimensional wave number space has to be covered with the same spacing
�kn, significantly more wave modes N are needed. This is the method which was used,
for instance, by Tautz (2010a, 2010b).

2. One can follow Hussein et al. (2015) and create the turbulent magnetic field vector via
the double-sum

δB(x) = √
2δB

N∑

n,m=1

A(kn, km)ξn cos[knm · x + βnm] (10.9)

where the wave vectors are now given by

knm =
⎛

⎝
kn cosφn

kn sinφn

km

⎞

⎠ (10.10)

corresponding to cylindrical coordinates where kn represents the perpendicular wave
number and km represents the parallel wave number. For an incompressible turbulence
model where δBz = 0, the polarization vector is now given by

ξn =
⎛

⎝
− sinφn

cosφn

0

⎞

⎠ (10.11)

corresponding to Eq. (10.3) with ηn = 0 and αn = 0. Of course Eqs. (10.4)–(10.8) have
to be modified as well but this is straightforward because one just has to replace the sums
in these equations by double-sums.

The second method was specifically developed for incompressible turbulence. It is in par-
ticular useful for so-called noisy models where one starts with a model with reduced di-
mensionality such as the slab model and then adds some noise. In the case of the noisy slab
model, for instance, the turbulence is very narrow in the perpendicular direction. Therefore,
one has to generate only a few wave numbers kn in Eq. (10.9) but a large number of parallel
wave numbers km. The main problem is that the creation of anisotropic turbulence is much
more time-consuming computationally. With the help of modern super-computing, however,
one can overcome this problem and perform simulations for time-dependent or anisotropic
turbulence without too many problems.

10.3 Solving the Newton-Lorentz Equation

The Newton-Lorentz equation for a particle in purely magnetic turbulence is given by
Eq. (4.1). This equation is solved numerically in test-particle simulations with the initial
conditions discussed in the following. Initially all particles have the same z-coordinate
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and the same rigidity which is conserved in a purely magnetic system. However, their ini-
tial x- and y-coordinates as well as their initial pitch-angle cosine μ0 are different. There
are, in principle, two ways of implementing the turbulent magnetic fields in test-particle
codes:

1. Using discrete grid: In this case we first create and save magnetic field data at each
grid point using Eqs. (10.1)–(10.8) for the whole space and then interpolate for where
the particle is moving. This could be done using a two-dimensional grid for the per-
pendicular directions accompanied with a one-dimensional grid for the parallel direction
or rigorously using a three-dimensional grid. The grid method was used by Mace et al.
(2000), Casse et al. (2002), Qin et al. (2002a,b), Pommois et al. (2007), and Reville et al.
(2008).

2. Creating fields along the trajectory: An alternative is to create fields anew at each time
step. The given initial position allows us to create the field initially which is then seeded
back to the numerical integrator to solve for position which is then seeded to turbulence
creation and so on and so forth. This type of simulations were performed by Giacalone
and Jokipii (1994, 1999), Tautz (2010a, 2010b), Hussein and Shalchi (2014a), and Arendt
and Shalchi (2018).

The second method listed above saves time and uses less memory compared to the grid
method because it generates magnetic fields only where the particle is actually moving, not
on all the provided space as the first method does. On the other hand, when it comes to
visualization, the grid-based system allows to visualize the magnetic field lines across the
whole space and therefore one can see how particles are moving in the vicinity of field lines.
This could be useful in order to develop a deeper understanding of the physics of particle
transport.

In order to solve the second-order Newton-Lorentz equation one can use a fourth-order
Runge-Kutta solver with an adaptive time step option. Although this can be seen as a
standard method in this field, more recently a modified third-order symplectic integration
method was used as an alternative (see Arendt and Shalchi 2018). This ensures energy
conservation and should provide an important improvement of test-particle simulations if
stochastic acceleration due to turbulent electric fields is studied.

In simulations parameters are made to be dimensionless. For instance, all length scales
are divided by the turbulence bendover scale �. Furthermore, we define the dimensionless
running time via T = �t and the dimensionless rigidity vector via R := v/(��). With these
parameters, we can derive the dimensionless Newton-Lorentz equation

d

dT
R = R ×

(
ez + δB(x)

B0

)
(10.12)

where the turbulent field δB(x) is given by Eq. (10.1). The relation between position and
velocity v = dx/dt turns into the dimensionless equation

d

dT

x
�

= R. (10.13)

Special care is required if there is more than one bendover scale �. For two-component
turbulence, we usually choose � = �‖. Then, however, if the two-dimensional modes are
created via Eq. (10.1), positions are measured in terms of the slab bendover scale �‖. In the
two-dimensional modes we also have kn = k⊥�⊥, therefore, the ratio �⊥/�‖ appears in front
of x · k and this scale ratio controls the transport of particles.
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Fig. 16 Diffusion coefficients and distribution functions for pure slab turbulence, a magnetic rigidity of
R = 0.1, and a magnetic field ratio of δB2

slab
/B2

0 = 1. The used parameters T , R, K‖, and D‖ are defined in
Eq. (4.83). In the upper left panel the solid line represents the test-particle simulations and the dotted line the
analytical formula (4.84) for K‖ = 0.043. In the upper right panel the solid line represents the test-particle
simulations and the dotted line the analytical formula (7.45) corresponding to time-dependent UNLT the-
ory. The bottom panels show parallel and perpendicular distribution functions for the different times T = 0,
T = 2500, and T = 5000. Shown are the simulations (solid lines) and Gaussian overlays (dashed lines).
Reprinted with permission from Springer—Arendt and Shalchi (2018)

In the numerical solution of Eqs. (10.12) and (10.13), one needs to specify several pa-
rameters as well. The initial time is usually set to zero but there is also a final time tmax.
This has to be chosen so that one finds the stable regime which is often the time where
the particles have reached diffusive behavior. In Figs. 16 and 17, for instance, the choice
was �tmax = 5000. Furthermore, the constant step size in the symplectic solver was set to
��t = 10−3 meaning that the total number of time steps in such runs was 5 × 106.

The procedure explained so far has to be performed for a huge amount of particles to
obtain results with a high accuracy and in order to reduce the noise in the running diffusion
coefficients as much as possible. Often the number of particles is a few thousands but the
results visualized in Figs. 16 and 17 were created by using 12000 particles. That is the
point where parallel computing becomes a required tool so that the different particles can be
distributed among the different processors.

If particle trajectories are obtained numerically, the remaining step is the calculation of
the diffusion coefficients via mean square displacements. To do this, a diffusion coefficient
is preferably defined as the ratio of the corresponding mean square displacement and time
(see, e.g., Eq. (4.80) of this review) rather than the time-derivative (see, e.g., Eq. (5.27)).
This is entirely done with the purpose of reducing noise in the diffusion coefficient. If one is
more interested in the late-time limit and assuming that one indeed finds diffusive transport,
there is no difference between dividing by time and computing the time-derivative. However,
special care is required for anomalous transport where these two definitions do not yield the
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Fig. 17 Diffusion coefficients and distribution functions for slab/2D turbulence with δB2
slab

= 0.20δB2,

δB2
2D

= 0.80δB2, δB/B0 = 0.5, �⊥ = �‖ , and a magnetic rigidity of R = 0.1. The used parameters T ,
R, K‖, and D‖ are defined in Eq. (4.83). In the upper left panel the solid line represents the test-particle
simulations and the dotted line the analytical formula (4.84) for K‖ = 0.60. In the upper right panel the solid
line represents the test-particle simulations, the dotted line the numerical solution of Eq. (7.8), corresponding
to time-dependent UNLT theory for a2 = 1, and the dashed line for a2 = 1/3. The bottom panels show
parallel and perpendicular distribution functions for the different times T = 0, T = 2500, and T = 5000.
Shown are the simulations (solid lines) and Gaussian overlays (dashed lines). Reprinted with permission from
Springer—Arendt and Shalchi (2018)

same diffusion coefficients. Of course, if numerical and analytical data are compared with
each other, one has to use the same definition of a diffusion coefficient in both cases.

In addition to running diffusion coefficients in both directions of space, Arendt and
Shalchi (2018) also obtained particle distribution functions giving more insight into the
transport of particles. Such distribution functions are shown in Figs. 16 and 17 together
with Gaussian overlays.

In the following we consider test-particle simulations for different turbulence configura-
tions. In all considered cases we compare simulations and analytical results with each other.
The results of this comparison are summarized in Table 9.

10.4 Slab Turbulence

As a first example we explore the transport in magnetostatic slab turbulence. The aim is to
explore whether perpendicular transport in indeed sub-diffusive as described by compound
sub-diffusion models. Furthermore, we can test time-dependent UNLT theory for that spe-
cific case. Arendt and Shalchi (2018) performed simulations for slab turbulence and not just
parallel and perpendicular diffusion coefficients were obtained, but also the corresponding
distribution functions of the energetic particles. In the simulations performed for slab turbu-
lence q = 0 and s = 5/3 were used in the spectrum defined via Eq. (10.7). Therefore, the
simulated spectrum agrees with model spectrum (2.14). In Fig. 16 we show the simulations
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Table 9 Diffusive and time-dependent UNLT theories have been tested by comparing perpendicular diffu-
sion parameters with test-particle simulations in several articles. The table lists those comparisons as well as
the parameter values for a2 for which the best agreement was obtained. Ideally we have a2 = 1 meaning that
the correction factor a2 is not needed at all

Turbulence model Published in UNLT theory Best-fit value for a2 Figures

Slab Arendt and Shalchi (2018) Time-dependent 1 16

Slab/2D Arendt and Shalchi (2018) Time-dependent 1 for slab and 1/3
for 2D modes

17, 18, 20

Noisy slab Heusen and Shalchi (2017) Diffusive 1 20

Noisy reduced MHD Shalchi and Hussein (2014) Diffusive Between 1/3 and 1 21

Goldreich-Sridhar Shalchi and Hussein (2015) Diffusive 1 22

demonstrating that we find indeed sub-diffusive perpendicular transport. The conclusion was
also obtained by Giacalone and Jokipii (1994) and Giacalone and Jokipii (1999) as well as
Mace et al. (2000) and Qin et al. (2002a). Furthermore, the simulations shown in Fig. 16
confirm the parallel transport model listed in Eq. (4.84). We can also see that the parallel
distribution function is Gaussian. However, the perpendicular distribution function is clearly
non-Gaussian. Webb et al. (2006) used the Chapman-Kolmogorov equation (5.10) to com-
pute the distribution function across the mean field and they found a result depending on a
so-called Fox function. This distribution was plotted in Fig. 3 of Webb et al. (2006) and is
very similar compared to the distribution obtained and visualized in Fig. 16. We can also
clearly see that time-dependent UNLT theory, represented by Eq. (7.45), agrees very well
with the simulations for all considered times. This includes the initial ballistic regime as
well as the peak and the following sub-diffusive regime. It needs to be emphasized that the
theory does not include any free parameter since in Eq. (7.45) we set a2 = 1.

10.5 Slab/2D Composite Turbulence

In order to restore Markovian diffusion one needs to include transverse complexity. Starting
with the slab model this can be done in two ways. First we can add two-dimensional modes
to create a quasi three-dimensional model, or we broaden the slab model leading to the
noisy slab model. The first option is discussed in the following whereas the second option is
considered in Sect. 10.6.

The two-component model describes the turbulence as superposition of slab and two-
dimensional modes. For the slab modes we set q = 0 as before and for the two-dimensional
modes q = 3. Furthermore, we set δB2

slab/δB
2 = 0.2 and δB2

2D/δB2 = 0.8 as suggested by
Bieber et al. (1996). Figure 17 shows simulations performed for slab/2D turbulence. Clearly
we can see that parallel and perpendicular transport behave diffusively in the late-time limit.
Again we can confirm the parallel transport model given by Eq. (4.84). Both, the parallel as
well as the perpendicular distribution functions are now Gaussian. We can clearly see that
time-dependent UNLT theory agrees well with the simulations if we set a2 = 1/3 in front
of the two-dimensional modes. In front of the slab modes we kept a2 = 1. As demonstrated,
the theory describes the initial ballistic regime as well as the following diffusive regime
correctly.

In Tautz and Shalchi (2011) test-particle simulations were used to test NLGC and dif-
fusive UNLT theories for two-component turbulence. In Fig. 18 the influence of the slab
fraction δB2

slab/δB
2 on the perpendicular diffusion coefficient is shown. The simulations in-

dicate sub-diffusive transport for pure two-dimensional turbulence as well as for pure slab
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Fig. 18 The perpendicular mean
free path for two-component
turbulence versus the slab
fraction δB2

slab
/δB2. Visualized

are the test particle simulations
(dots), NLGC theory (dashed
line), and diffusive UNLT theory
(solid line). The arrows indicate
that the simulations provide a
sub-diffusive result in the
considered case. All analytical
results shown here were obtained
by setting a2 = 1/3. The
simulations are from Tautz and
Shalchi (2011)

turbulence. Therefore, the perpendicular diffusion coefficient should go to zero for high
values of the slab fraction. This is exactly what diffusive and time-dependent UNLT the-
ories provide. NLGC theory, on the other hand, provides a finite perpendicular diffusion
coefficient even if the pure slab model is considered. This is clearly not in agreement with
simulations.

The common approach in order to test analytical theories is to compute diffusion parame-
ters via test-particle simulations and compare the numerical results with analytical findings.
This can either be done in the late-time limit (see, e.g. Fig. 18 of the current review) or
by considering the whole time-dependent diffusion process (see Fig. 17). An alternative
test-method was proposed by Qin and Shalchi (2016). In the latter work different approxi-
mations were artificially incorporated into the simulations in order to test their validity. Then
the corresponding diffusion parameter was computed from the simulations and compared to
the result which is not based on this approximation. The tests have been performed for two-
component turbulence and the different diffusion parameters were plotted versus the slab
fraction. The following approximations were tested:

1. First the authors tested the validity of using guiding center coordinates instead of particle
coordinates. This basically tests the accuracy of using Eq. (5.22) as equation of motion.
In order to do this the following parameter was defined

a2 = κP
⊥/κGC

⊥ (10.14)

where κP
⊥ is the perpendicular diffusion coefficient computed by using particle coor-

dinates and κGC
⊥ is the diffusion coefficient based on guiding center coordinates. The

way how the parameter a2 is defined, corresponds to Matthaeus et al. (2003). However,
according to Fig. 19, we find numerically a2 ≈ 1 confirming that using guiding center
coordinates as well as Eq. (5.22) as equation of motion works perfectly.

2. Diffusion coefficients can be calculated via mean square displacements or based on the
TGK formula. Thus Qin and Shalchi (2016) defined

b2 = DP
⊥/DGC

⊥ (10.15)

where the two diffusion parameters DP
⊥ and DGC

⊥ have been computed via mean square
displacements whereas the two parameters κP

⊥ and κGC
⊥ were based on the TGK formula.
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Fig. 19 The upper panel shows
perpendicular diffusion
coefficients for two-component
turbulence versus the slab
fraction Eslab/Etotal =
δB2

slab
/δB2. Here we have used

δB/B0 = 1.0 and RL/�‖ = 0.1.
The lower panel shows the
parameters a2, b2, c2, and d2

which are defined in Eqs.
(10.14)–(10.17). The aim of both
panels is to test approximations
commonly used in the theory of
perpendicular transport. If the
corresponding parameter is close
to one, this means that the tested
approximation works perfectly
well. Reprinted with permission
from The American Astronomical
Society—Qin and Shalchi (2016)

Again the ratio b2 allows us to test the validity of using guiding center coordinates.
Furthermore, we can also compare the diffusion parameters κP

⊥ and DP
⊥ with each other

to test the TGK formula. According to Fig. 19, we have b2 ≈ 1 as well as κP
⊥ ≈ DP

⊥
meaning that using guiding center coordinates as well as the TGK formula works very
well in diffusion theory.

3. As pointed out in the previous sections of this review, a problematic approximation is
given by Eq. (5.39). The NLGC theory, for instance, is fully based on this approximation
whereas UNLT theories are based on a different approximation (see Eq. (7.3) of this
review). In order to check Eq. (5.39), Qin and Shalchi (2016) defined

c2 = κGC
⊥ /κ4

⊥ (10.16)

where the diffusion coefficient κ4
⊥ is based on approximation (5.39) and κGC

⊥ is not based
on this approximation. As shown in Fig. 19, this approximation is indeed not valid. In
particular for slab turbulence it breaks down completely explaining why NLGC theory
does not work in this case. Interesting here is that even for the typical scenario of 80%
two-dimensional and 20% slab turbulence we have c2 ≈ 1/3 which means that we need
this parameter (in the previous section it was called a2) to balance out the inaccuracy of
approximation (7.3). There will be more comments about this matter in Sect. 12.2.1.

4. As the last approximation Qin and Shalchi (2016) tested the validity of the guiding center
approximation in the exponential of the characteristic function. In the general case, one
needs to include the gyro-rotation as it was, for instance, done in Sect. 7.5. This can
be called the second guiding center approximation. Therefore, Qin and Shalchi (2016)
defined

d2 = κGC
⊥ /κGC2

⊥ . (10.17)

According to Fig. 19, this approximation works well for small and intermediate rigidities.
Qin and Shalchi (2016) performed more runs to show that for higher and higher rigidities
the second guiding center approximation fails more and more.
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Fig. 20 The perpendicular mean free path versus the parallel mean free path for noisy slab turbulence. Shown
are test-particle simulations (dots) and diffusive UNLT theory (solid line). The dashed line corresponds to the
CLRR limit given by Eq. (6.50) and the dotted line corresponds to the FLRW limit. All these results were
obtained for δB/B0 = 1 and �‖/�⊥ = 0.5 to ensure that the Kubo number is smaller than one. The simulations
were originally presented in Heusen and Shalchi (2017)

As demonstrated above, using Eq. (5.22) as equation of motion but also the TGK formulation
work very well in the theory of perpendicular diffusion. Approximation (5.39), on the other
hand, fails in almost all cases. This is in particular the case for pure slab turbulence. Special
care is also required for the second guiding center approximation which becomes more and
more inaccurate for high particle energies and one needs to include finite Larmor radius
corrections in such cases as explained in Sect. 7.5 of this review.

10.6 Noisy Slab Turbulence

A simple three-dimensional turbulence model is provided by the noisy slab model given by
Eq. (2.25). This model allows us to incorporate transverse complexity by using a minimal-
istic approach. Therefore, one can use this to explore our understanding of perpendicular
transport and to test the validity of analytical theories in the small Kubo number regime.
Figure 20 shows simulations for a noisy slab model in comparison with UNLT theory for
a2 = 1. First of all we note that diffusion is restored if the pure slab model is replaced by
the corresponding noisy model. Furthermore, we can easily see that diffusive UNLT theory
agrees well with simulations. The latter theory predicts a turnover from the CLRR regime,
as described by Eq. (6.50), for short parallel mean free paths to the FLRW limit for long
parallel mean free paths. In the CLRR regime the perpendicular mean free path is directly
proportional to the parallel mean free path. For long parallel mean free paths, on the other
hand, the perpendicular mean free path becomes constant corresponding to the FLRW limit.
According to diffusive UNLT theory this behavior of the perpendicular mean free path is
universal and should be observed for almost all turbulence models.

10.7 Noisy Reduced MHD Turbulence

In the previous subsection we have employed the noisy slab model in order to test our under-
standing of particle transport in the small Kubo number regime. In a similar way we can use
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Fig. 21 The perpendicular mean free path versus the parallel mean free path for the noisy reduced MHD
model. Compared are the results obtained from the simulations of Shalchi and Hussein (2014) (dots), diffusive
UNLT theory for a2 = 1/3 and a2 = 1 (solid lines), the FLRW limit (dotted line), and the CLRR limit (dashed
line). Also shown is the composite formula (grey line) as given by Eq. (9.37). In the case considered here we
have used δB/B0 = 1 and the field line diffusion coefficient is in this case κFL = 0.23�⊥ . Reprinted with
permission from The American Astronomical Society—Shalchi (2019a)

the noisy reduced MHD model as given by Eq. (2.27). The latter model allows us to explore
the transport in larger Kubo number turbulence. Figure 21 shows the simulations performed
by Shalchi and Hussein (2014). Diffusive UNLT theory does agree with the simulations but
only for the right choice of a2. The heuristic composite formula given by Eq. (9.37), how-
ever, agrees perfectly with the simulations. Like in all considered cases, the theory provides
a perpendicular diffusion coefficient which is directly proportional to the parallel diffusion
coefficient for small λ‖ and for long parallel mean free paths, the perpendicular mean free
path approaches asymptotically the FLRW limit. Interesting here is that for the case of short
parallel mean free paths we find agreement with simulations for a2 = 1/3 whereas for long
parallel mean free paths we find agreement if a2 is close to one. The heuristic approach
described in Sect. 9 explains why these values of a2 are needed.

10.8 Goldreich-Sridhar Turbulence

In the recent years spectral tensors based on the Goldreich-Sridhar model became more
popular and they were used in test-particle simulations by Sun and Jokipii (2011). The latter
authors used a model spectrum which corresponds to the one given by Eq. (2.41) for the
case q = 0. Diffusive UNLT theory was combined with this spectral tensor to test the theory
via a comparison with the aforementioned simulations (see Shalchi 2013a; Shalchi and Hus-
sein 2015). This comparison is visualized in Fig. 22. As in the cases before, we find good
agreement between analytical theory and simulations. Interesting here is that we find good
agreement for a2 = 1 meaning that the correction factor a2 is not needed at all. This was
also found for slab as well as noisy slab turbulence but not for two-component and NRMHD
turbulence where we need to set a2 = 1/3. This suggests that UNLT theory works very well
for small and intermediate Kubo numbers and only for large Kubo numbers one needs the
correction factor a2.

Furthermore, we can clearly see by considering Fig. 22 that λ⊥ ∝ λ‖ for small λ‖ whereas
the perpendicular mean free path becomes independent of the parallel mean free path for
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Fig. 22 The perpendicular mean free path λ⊥ versus the parallel mean free path λ‖ for Goldreich-Sridhar
turbulence. Both parameters are normalized with respect to the characteristic turbulence scale �. Shown are
the mean free paths obtained from the simulations (dots) performed by Sun and Jokipii (2011). Also shown
are the mean free paths obtained from diffusive UNLT theory for a2 = 1 (solid line), the CLRR limit (dashed
line), and the FLRW limit (dotted line). Also shown is the composite formula (grey line) as given by Eq.
(9.37). In the case considered here we have used δB/B0 = 1 and the field line diffusion coefficient is in this
case κFL = 0.38�. Reprinted with permission from The American Astronomical Society—Shalchi (2019a)

large λ‖. This behavior was also seen in other cases. Thus there is some universality in
the transport of particles across the mean magnetic field (see, e.g., Shalchi 2014; Hussein
et al. 2015). However, this universal behavior of the perpendicular mean free path requires
that all fundamental turbulence scales such as the integral scales and the ultra-scale are
finite. In Fig. 22 we have also shown the heuristic composite formula. In this case diffusive
UNLT theory is closer to the simulations than the heuristic approach. This is what one would
naturally expect since systematic theories should be more accurate than simple heuristic
arguments.

11 Applications

The motion of energetic particles in magnetized plasmas is a fundamental problem and there
are applications of transport theory in a variety of scenarios ranging from fusion reactors to
the space between galaxies. In the following we discuss some examples to emphasize the
importance of theories and analytical results for the perpendicular diffusion coefficient.

11.1 Transport of Galactic Protons in the Solar System

Different energetic particles, such as galactic cosmic rays and solar energetic particles prop-
agate through the solar system and interact with the interplanetary magnetic field. Therefore,
they experience parallel and perpendicular diffusion. It is one aim of the theory of perpen-
dicular transport to reproduce measurements performed by space probes such as Ulysses.
In Burger et al. (2000), for instance, the rigidity dependence of the perpendicular diffusion
coefficient was obtained for galactic protons. As also discussed in Bieber et al. (2004), it
was found that their perpendicular mean free path is about λ⊥ ≈ 0.006−0.008 AU at higher
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rigidities. Palmer (1982), on the other hand, focused on the parallel spatial diffusion coeffi-
cient. A detailed discussion of this analysis and our ability to reproduce such measurements
theoretically can be found in Bieber et al. (1994). A comparison of simulations and observed
parallel diffusion coefficients can be found in Hussein and Shalchi (2016). Palmer (1982)
also proposed an average perpendicular diffusion coefficient at 1 AU of κ⊥c/v ≈ 1021 cm2/s
and therefore λ⊥ ≈ 0.0067 AU. However, it was pointed out that the spread around this av-
erage is rather large.

Bieber et al. (2004) combined the NLGC integral equation with a two-component tur-
bulence model and they have shown that good agreement with the aforementioned Ulysses
measurements can be obtained. For this specific case, diffusive UNLT theory provides very
similar results except that, compared to NLGC theory, there is no longer an explicit contribu-
tion due to the slab modes because this contribution damps out sub-diffusively as discussed
before in this review. Furthermore, Bieber et al. (2004) used a flat spectrum for the energy
range of the two-dimensional modes which contradicts the Matthaeus et al. (2007) condi-
tions which require either an increasing spectrum at small wave numbers or a cut-off.

The best approach in order to reproduce solar wind observations is to either combine test-
particle simulations or an advanced theory, such as UNLT theory, with an accurate turbu-
lence model and an appropriate value for the parallel mean free path. Besides UNLT theory
we also use a much simpler approach. First we assume that the slab/2D model provides a
good approximation to solar wind turbulence. If we also take into account that the aforemen-
tioned observations were obtained for high rigidities, corresponding to long parallel mean
free paths, we can employ Eq. (8.18) to approximate the perpendicular mean free path. This
means that in the considered case perpendicular diffusion is predominantly caused by ran-
dom walking magnetic field lines which are, however, in the Bohmian/non-linear regime. In
order to compute the perpendicular mean free path via Eq. (8.18), we need to specify the
parameters therein. For the energy range spectral index we set q = 3 (in agreement with
Matthaeus et al. 2007) and for the inertial range spectral index we use s = 5/3 as usual.
For the magnetic fields we assume δB2

2D/δB2 = 0.8 (see, e.g., Bieber et al. 1996) as well as
δB2/B2

0 = 0.5 and for the two-dimensional bendover scale we use �⊥ = 0.03 AU. Motivated
by test-particle simulations performed for two-component turbulence, we set a2 = 1/3 (see,
e.g., Fig. 17). With those values we find from Eq. (8.18)

λ⊥ =
√

9(s − 1)

8(q − 1)
a�⊥

δB2D

B0
≈ 0.0067 AU, (11.1)

which is in perfect agreement with the Ulysses measurements. This result is compared with
diffusive UNLT theory and observations in Fig. 23. There are also results for Jovian electrons
obtained in Chenette et al. (1977) which are at smaller rigidities but the corresponding values
for the perpendicular mean free path are similar.

As pointed out in Bieber et al. (2004), the assumption that the perpendicular diffusion
coefficient is much smaller than the parallel diffusion coefficient is not always valid. Dwyer
et al. (1997) and Zhang et al. (2003) reported that the ratio of these two diffusion coefficients
κ⊥/κ‖ can occasionally approach or even exceed unity. Dwyer et al. (1997), for instance,
found results for low rigidities usually corresponding to short parallel mean free paths. For
two-component turbulence one can then use Eq. (6.45) to compute the ratio κ⊥/κ‖. Ac-
cording to this formula the ratio can be around one or even larger depending on what the
magnetic field ratio is. This statement is true regardless whether we have a2 = 1/3 (CLRR
diffusion) or a2 = 1 (fluid limit).
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Fig. 23 The perpendicular mean free path λ⊥ of particles propagating through the solar system. Shown are
Ulysses measurements of galactic protons (Burger et al. 2000, dots), the value for the perpendicular mean
free path as suggested by Palmer (1982, horizontal gray line), and observational determinations of Jovian
electrons (Chenette et al. 1977, square). For the theoretical results we have shown the diffusive UNLT result
represented by the black solid line and the (non-linear) FLRW limit as given by Eq. (11.1) for a2 = 1/3 and
a2 = 1 (dashed lines). The dotted line represents the used parallel mean free path as given by Eq. (4.34). The
UNLT result was obtained by combining Eq. (4.34) for the parallel mean free path with the simple analytical
form given by Eq. (8.33)

11.2 Particle Acceleration at Perpendicular Interplanetary Shock Waves

Different shock waves are believed to accelerate particles up to high energies through the
mechanism of diffusive shock acceleration. The latter process is a first-order Fermi accel-
eration process (see, e.g., Fermi 1949; Axford et al. 1977; Krymsky 1977; Bell 1978a,b;
Blandford and Ostriker 1978; Drury 1983; Blandford and Eichler 1987; Malkov and Drury
2001). In the following we review the importance of the perpendicular diffusion coefficient
in the problem of particle acceleration at perpendicular interplanetary shock waves. Exam-
ples of such interplanetary shocks are those driven by coronal mass ejections (CME’s). The
theory of particle acceleration at quasi-parallel shocks appears to be reasonably well under-
stood, and has been applied to solar energetic particle and energetic storm particle events by
Zank et al. (2000) as well as Li et al. (2003) and (2005). Zank et al. (2006) have developed
a theory for describing particle acceleration at quasi-perpendicular shocks. This approach is
discussed in the following. Figure 24 shows parallel and perpendicular CME driven shock
fronts.

Diffusive shock acceleration is described via Parker’s transport equation (see Eq. (1.1) of
this review) or extensions thereof. For a one-dimensional scenario Eq. (1.1) reduces to

∂f

∂t
+ u

∂f

∂x
= ∂

∂x

(
κ⊥

∂f

∂x

)
+ 1

3

(
∂u

∂x

)
∂f

∂ lnp
+ S (11.2)

where f (x,p, t) is the cosmic ray distribution as a function of position x along the shock
normal, momentum p measured in the rest-frame of the streaming plasma, and time t . The
term with the x-derivative on the left hand side of Eq. (11.2) describes convection whereas
the terms on the right hand side correspond to diffusion, energy change, and sources/losses.
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Fig. 24 Schematic of a coronal
mass ejection driven shock
showing parallel and
perpendicular propagating shock
fronts. Reprinted with permission
from The American Geophysical
Union—Zank et al. (2006)

The parameter κ⊥ corresponds to the diffusion coefficient in the shock propagation direc-
tion. In this form of the transport equation we have neglected stochastic acceleration and
other effects such as radiative losses. Equation (11.2) has a steady-state solution of the form
f (p) ∝ p−3σ/(σ−1) where we have used the compression ratio σ = uu/ud . For a compression
ratio of σ = 4, for instance, this turns into f (p) ∝ p4.

The time it needs to accelerate a particle from the injection momentum pinj to the maxi-
mum momentum pmax is, in general, given by (see Drury 1983; Webb et al. 1995)

t = 3

uu − ud

∫ pmax

pinj

dp

p

(
κu

uu

+ κd

ud

)
(11.3)

where we have used upstream and downstream diffusion coefficients κu and κd as well as
upstream and downstream velocities uu and ud . This relation is valid for non-relativistic as
well as relativistic particles. Figure 25 shows a simple sketch of upstream and downstream
regions, respectively.

There are different ways of simplifying relation (11.3). Sometimes it is assumed that the
downstream diffusion coefficient is much smaller than the upstream one. Using this and
κ⊥ = κu allows us to simplify Eq. (11.3) to

t = 3σ

σ − 1

1

u2
sh

∫ pmax

pinj

dp

p
κ⊥(p) for κd � κu (11.4)

where we have used the shock velocity ush = uu. Sometimes a more complicated approach
is used for replacing the diffusion coefficient in Eq. (11.3). In a perpendicular magnetohy-
drodynamic shock one expects a jump in the magnetic field.20 Keeping in mind that the
perpendicular diffusion coefficient depends on magnetic fields, this could lead to a jump
of the diffusion coefficient. One can, for instance, assume that κd = κu/σ (see, e.g., Kang
et al. 2009). Since the compression ratio is usually assumed to be around σ ≈ 4, this means
that the downstream diffusion coefficient is indeed smaller than the upstream coefficient as

20For a parallel magnetohydrodynamic shock there is no jump in the magnetic field. For a perpendicular
shock, however, the jump condition for the magnetic field is Bu = σBd .
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Fig. 25 Sketch showing the
shock with its upstream and
downstream regions in the rest
frame of the shock

assumed above. However, if we employ the relation κd = κu/σ , we find an increase of the
time in Eq. (11.4) by a factor two (see, e.g., Ferrand et al. 2014 for more details and different
relations between perpendicular diffusion coefficients and acceleration times).

The aim of this subsection is to compute the maximum energy a charged particle can get
due to shock acceleration. This energy will be calculated as a function of time requiring to
not just specify the analytical form of κ⊥(p) in Eq. (11.4), but also the time-dependence of
other parameters such as magnetic fields. In the following we employ the approach presented
in Shalchi et al. (2010) which is based on the ideas of Zank et al. (2006). First we rewrite
Eq. (11.4) by replacing the diffusion coefficient by the mean free path (κ⊥ = vλ⊥/3) to find

t = σ

u2
sh(σ − 1)

∫ pmax

pinj

dp
v

p
λ⊥(p)

= σ

u2
sh(σ − 1)

∫ vmax

vinj

dvγ 2λ⊥(v). (11.5)

In the last step we have used the relativistic momentum p = mvγ as well as dp = mγ 3dv

with the Lorentz-factor γ . We can evaluate the expression given by Eq. (11.5) for the ve-
locity independent perpendicular mean free path derived in Sect. 8 (see Eq. (8.18) of this
review). We obtain

t = σ

u2
sh(σ − 1)

λ⊥
∫ vmax

vinj

dv

(
1 − v2

c2

)−1

. (11.6)

The integral therein can be expressed by inverse hyperbolic tangent functions so that

t = σ

u2
sh(σ − 1)

λ⊥c

[
artanh

(
vmax

c

)
− artanh

(
vinj

c

)]
. (11.7)

After using the relation

tanh(x − y) = tanh(x) − tanh(y)

1 − tanh(x) tanh(y)
(11.8)
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we find

tanh(τ ) = vmax/c − vinhj /c

1 − vmaxvinhj /c2
(11.9)

where we used the dimensionless time

τ = tu2
sh

λ⊥c

σ − 1

σ
. (11.10)

Since the injection velocity vinj is much smaller than the maximal velocity vmax and the
speed of light c (see, e.g., Fig. 7 of Zank et al. (2006)), we can approximate Eq. (11.9) by

vmax

c
= tanh(τ ). (11.11)

For the maximum particle momentum, on the other hand, we can use

pmax

mc
= vmax/c√

1 − (vmax/c)2

= tanh(τ )√
1 − tanh2(τ )

= sinh(τ ) (11.12)

and for the maximum (relativistic) kinetic energy Emax, one can easily derive

Emax

mc2
=
√

p2
max

m2c2
+ 1 − 1

=
√

sinh2(τ ) + 1 − 1

= cosh(τ ) − 1. (11.13)

Equations (11.11)–(11.13) allow us to compute maximum velocity, momentum, and energy.
In order to compute the maximum energy that a particle can get due to its interaction with

an interplanetary shock wave, we also have to specify the shock position r(t) and the shock
velocity ṙ(t). After the shock has swept up sufficient mass, a self-similar Sedov-Taylor
blast wave solution (see Taylor 1950; Sedov 1959) is assumed to begin. The Sedov-Taylor
solution is

r(t) =
(

Eblast

ρ0

)1/5

t2/5 (11.14)

where Eblast is the total blast wave energy (typically 5 · 1032 ergs ≈ 5 · 1025 kg m2/s2 for a
CME driven blast wave) and ρ0 is a characteristic mass density. From Eq. (11.14) we derive
for the shock velocity

ṙ = 2

5

(
Eblast

ρ0

)1/5

t−3/5

= 2

5

(
Eblast

ρ0

)1/2

r−3/2. (11.15)
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The mass density therein can be estimated by using ρ0 = mp · n0 where we have used the
proton mass (mp ≈ 1.67 · 10−27 kg) and the particle density n0 ≈ 106/m3. For the velocity
we then find

ṙ

c
≈ 4 · 10−3

(
1 AU

r

)3/2

. (11.16)

Combining Eqs. (11.14) and (11.15) allows us to replace the time t by using shock position
r and shock velocity ṙ . We can easily derive

t = 5

2

r

ṙ
(11.17)

so that Eq. (11.10) becomes

τ = 5

2

r

ṙ

u2
sh

λ⊥c

σ − 1

σ
. (11.18)

For the perpendicular mean free path we use Eq. (8.18) which can be written as

λ⊥ = λ⊥,0
δB2D

B0
(11.19)

with

λ⊥,0 =
√

9(s − 1)

8(q − 1)
a�⊥. (11.20)

For the standard parameters (s = 5/3, q = 3, a = 1/
√

3, and �⊥ = 0.03 AU) we have

λ⊥,0 = 0.011 AU. (11.21)

Note that Eqs. (11.19)–(11.21) are in coincidence with Eq. (11.1) except that we no longer
assume a constant magnetic field ratio δB2D/B0. Compared to Shalchi et al. (2010) these
parameter values were updated to take into account more recent advances in this field of
research. By combining Eqs. (11.18) and (11.19) we find

τ = 5

2

r

λ⊥,0

ṙ

c

σ − 1

σ

B0

δB2D

(11.22)

where we used ṙ = vsh. To continue we need to estimate the shock parameters r , ṙ , σ as
well as the ratio B0/δB2D . For the turbulent field we follow Zank et al. (2006) and use

δB2(r)

δB2
ref

=
(

rref

r

)3

(11.23)

where δB2
ref is the magnetic field variance at a reference heliocentric distance rref . We

choose rref = 1 AU and δBref = 4 nT. In this case Eq. (11.23) becomes

δB2D(r) = 3.6 nT

(
1 AU

r

)3/2

(11.24)

where we have also assumed that 80% of the magnetic energy is in the two-dimensional
modes as usual.
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Fig. 26 The maximal kinetic
energy Emax that a proton can
achieve due to diffusive shock
acceleration as a function of
heliocentric distance. Here we
have employed the analytical
result obtained for the
Sedov-Taylor phase of the shock.
Shown is the result derived in this
review for a2 = 1/3 (solid line),
the result for a2 = 1 (dashed
line), as well as the result
obtained in Shalchi et al. (2010)
for different parameter values
(dotted line)

For the mean magnetic field we assume a Parker spiral field (Parker 1958)

B0(r) = B0,co

(
rco

r

)2
√

1 +
(

ω0r

vsw

)2

(11.25)

where ω0 is the solar angular velocity, vsw is the solar wind speed, and B0,co is the magnetic
field at the heliocentric corotation radius r = rco. Typically, we have ω0 = 2π/(25.4 days),
vsw = 400 km/s, B0,co = 1.83 · 10−6 T, and rco = 46 · 10−3 AU (we assumed that the
corotation radius is approximately 10 times larger than the radius of the Sun) leading to
vsw/ω0 ≈ 1 AU. By employing these values Eq. (11.25) becomes

B0(r) = B0,co

(
rco

r

)2

≈ 1830 nT

(
46 · 10−3 AU

r

)2
√

1 +
(

r

1 AU

)2

. (11.26)

By combining Eqs. (11.24) and (11.26) we find,

B0

δB2D

≈
√

1 AU

r
+ r

1 AU
. (11.27)

The parameter λ⊥,0 is given by Eq. (11.21) and for the compression ratio we use σ = 3.7.
By combining Eqs. (11.22)–(11.27) with these values we can derive

τ = 0.7

√

1 +
(

1 AU

r

)2

. (11.28)

The parameter τ can easily be combined with Eq. (11.13) to compute the maximum kinetic
energy. The maximum energy a proton can get by interacting with a CME driven shock is
illustrated in Fig. 26 together with the curve obtained in Shalchi et al. (2010). The results
shown there were obtained by combining Eqs. (11.13) and (11.28). For small heliocentric
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distances we have Emax ≈ 4.5 GeV and for r ≈ 1 AU we find Emax ≈ 500 MeV. These values
are significantly higher compared to previous results due to the updated turbulence and
particle parameters such as the two-dimensional bendover scale �⊥. Since the exact values
for those parameters are not known in the heliosphere, one could easily obtain different
particle energies. Then, on the other hand, the used perpendicular diffusion coefficient is
in coincidence with observations (compare Eq. (11.21) with Eq. (11.1)). However, we have
also plotted the result for a2 = 1 and obtained a significantly lower energy. One could argue
that for the considered energy the perpendicular diffusion coefficient is in the FLRW limit
and, thus, a2 = 1 is indeed correct.

The result obtained here is consistent with that derived originally in Zank et al. (2000)
who also obtained GeV energies for protons during the early phase of the shock. Both here
and in Zank et al. (2000), the reason for the high energies is the combination of the large
magnetic field strength close to the Sun and the speed and strength of the shock. The decay
in the maximum particle energy accelerated at the shock is a consequence of the magnetic
field strength weakening with increasing heliocentric distance, as well as the shock slowing
down.

Similar work was done by Dosch and Shalchi (2010) where perpendicular diffusion co-
efficients based on different spectra in the energy range were used and it was explored how
this impacts the maximum energy at a perpendicular interplanetary shock. It was shown that
the large turbulence scales have a strong impact on the maximum energy. The largest energy
was clearly found for the case where the spectrum increases in the energy range and where
the corresponding spectral index agrees with the Matthaeus et al. (2007) conditions. In this
case the perpendicular diffusion coefficient at high energies corresponds to the non-linear
field line random walk limit where the perpendicular mean free path does not depend on
particle rigidity or energy. This is exactly the case considered above. For flat or even de-
creasing turbulence spectra, the perpendicular mean free path depends on rigidity leading
to much smaller energies due to shock acceleration (see, e.g., Figs. 2 and 3 of Dosch and
Shalchi (2010)). Particle acceleration at an oblique CME-driven shock was explored in Li
et al. (2012).

11.3 Cosmic Ray Propagation in the Nearby Starburst Galaxy NGC 253

In Buffie et al. (2013) the propagation of cosmic rays in an external galaxy was explored
theoretically. Radio continuum observations of the nearby starburst galaxy NGC 253 can
be used to measure distribution and transport of cosmic ray electrons (see Heesen et al.
2009a, 2011). The current understanding is that these electrons are accelerated in the disk
by shock waves induced by supernova explosions (see Reynolds et al. 2012). The particles
are then transported away by either convection in a galactic wind or spatial diffusion. Radio
continuum studies can be used to measure the length scale of cosmic ray transport. The
time scale of cosmic ray electrons is determined by loss processes by which the electrons
are losing their energy, such as synchrotron and inverse Compton radiation. The diffusion
coefficient can then be estimated via

κobs = L2
diff /τ, (11.29)

where Ldiff is the diffusion length scale and τ is the electron lifetime. Depending on the
magnetic field structure, the observed diffusion coefficient is either along the magnetic field
or perpendicular with respect to it. Ideally, one can measure the distance to the star-formation
sites, where the cosmic rays are accelerated and injected into the interstellar medium, to ob-
tain the transport length scale. This is for instance the case when observing galaxies in
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so-called edge-on geometry, where the observer is located in or close to the disk plane of the
galaxy. Cosmic ray acceleration in supernova remnants is confined to the relatively thin disk
plane, where the formation of massive stars happens. The geometry in this case is simple:
cosmic rays are transported away from the star formation sites over their lifetime and their
transport length scale is equal to the vertical electron scale height. Typical scale heights of
galaxies are 1.8 kpc21 at observing wavelengths of 6 cm (see Krause 2009). Typical cosmic
ray electron lifetimes in the interstellar medium are between 1 and 10 Myr. This basically
determines the typical parallel diffusion coefficient κ‖ in the interstellar medium, where it is
assumed that the halo magnetic field is opening up from the disk parallel to a vertical direc-
tion with increasing distance from the disk (see Beck 2012). Therefore, vertical diffusion is
predominantly along the magnetic field lines hence allowing us to measure κ‖. Heesen et al.
(2009b) confirmed this scenario for NGC 253. For the parallel diffusion coefficient one can
assume κ‖ = 1.0 × 1029 cm2 s−1 at a magnetic rigidity of 3 × 1012 Volts, equivalent to an
electron energy of 3 GeV (Heesen et al. 2009a).

To measure the perpendicular diffusion coefficient is more difficult because it requires
to have variations of the cosmic ray distribution perpendicular to the magnetic field orien-
tation. The observed radio continuum emission is mostly smooth in the disk-halo interface
and filamentary structures are rare. Magnetohydrodynamic simulations suggest that the disk
halo interface is dominated by filamentary magnetic fields (see Breitschwerdt et al. 2012),
but line-of-sight confusion and limited spatial resolution hampers their detection. An excep-
tion are starburst galaxies such as NGC 253, where the spatially concentrated star formation
activity results in exceptionally high radio continuum surface brightness, allowing us to em-
ploy high spatial resolution (≈ 100 pc). The spatially concentrated star formation can result
into outflows of hot X-ray emitting gas in a galactic wind. The magnetic field is then con-
centrated and amplified by expansion of the hot gas until a pressure equilibrium is reached.
This very specific geometry allowed Heesen et al. (2011) to determine the perpendicular
diffusion coefficient across the magnetic field in the walls of the nuclear outflow cone in
NGC 253. From the observations of particles with a magnetic rigidity of 3 × 1012 Volts,
they found a perpendicular diffusion coefficient of κ⊥ = (2.6 ± 0.6) × 1028 cm2 s−1. It is
important to measure the diffusion coefficients at roughly the same electron energy. Buffie
et al. (2013) have reduced the measured perpendicular diffusion coefficient of Heesen et al.
(2009a) to account for a possible contribution of convection.

In order to reproduce the observed perpendicular diffusion coefficient we employ diffu-
sive UNLT theory as given by Eq. (6.25). The theory requires the specification of the spectral
tensor describing magnetic turbulence in interstellar media. In the following we employ the
tensor based on the Goldreich-Sridhar model as given by Eq. (2.39) with (2.40). Using this
in Eq. (6.25) and employing the integral transformations x = �k‖ and y = 1/(�k⊥) yields
for the ratio of perpendicular and parallel mean free paths

λ⊥
λ‖

= a2

6

(
δB

B0

)2/3 ∫ 1

0
dy

∫ ∞

0
dxe−(xy2/3E

−4/3
B

)

× 2x2y2 + 1

x2y2 + 1

y7/3

x2y4λ‖/λ⊥ + y2 + 4λ‖λ⊥/(3�)2
. (11.30)

Motivated by Fig. 22 we set a2 = 1 because this value gives good agreement between sim-
ulations and UNLT theory for Goldreich-Sridhar turbulence.

21In the present section we measure distances in parsecs (pc). Approximately we have 1 pc ≈ 3 · 1016 m ≈
3.3 ly.
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Fig. 27 The perpendicular
diffusion coefficients of cosmic
rays in the nearby starburst
galaxy NGC 253. We show the
theoretical perpendicular
diffusion coefficient for different
correlation scales �. For the
parallel diffusion coefficient we
have used κ‖ = 1.0 × 1029 cm2/s
as proposed by Heesen et al.
(2009a). The theoretical values
were calculated for δB/B0 = 1
(dashed line) and δB/B0 = 2
(solid line). The dot represents
the perpendicular diffusion
coefficient from the observations
(see Heesen et al. 2011), where
we have κ⊥ = 2.6 × 1028 cm2/s
at � = 50 pc

Obviously, the perpendicular mean free path depends on the magnetic field ratio δB/B0

and the length scale �. The values for these parameters are discussed in the following. Ac-
cording to Heesen et al. (2011) the ordered magnetic field strength is B0 = 21 µG whereas
the turbulent field is δB = 41 µG. Therefore, the magnetic field ratio is δB/B0 ≈ 2 in the
case considered here. It should be noted, however, that this is an upper limit as the spa-
tial resolution that was available for the polarization measurements may be not be enough
to resolve the filamentary magnetic fields. Thus, Buffie et al. (2013) have also studied the
implication of a lower value of δB/B0 = 1 to explore how it changes the theoretical perpen-
dicular diffusion coefficient.

More difficult to estimate is the scale �. The width of the cone walls in which the mag-
netic fields are confined is equal or less than 40 pc (see Heesen et al. 2011). This suggests
that the upper value cannot be larger than � ≈ 50–100 pc. However the value for � is very
uncertain and, therefore, Buffie et al. (2013) have computed the perpendicular diffusion co-
efficient for a whole range of correlation lengths. Beck (2007), for instance, suggested that
the largest scales of turbulence are in the order of 10–100 pc. Such largest scales, however,
are not necessarily equal to the turbulence correlation scale. Actually they can be seen as
the maximum of the scale �. Sometimes it is assumed that the correlation length of inter-
stellar turbulence is 1 pc. Therefore we compute the perpendicular diffusion coefficient for
1 pc ≤ � ≤ 1000 pc to explore the values of � which lead to agreement between theory and
observations. Turbulence spectra in the local interstellar medium are discussed in Armstrong
et al. (1995). The values found there for the scale � are consistent with the values discussed
above.

In Fig. 27 we show the perpendicular diffusion coefficient versus the correlation scale �.
The theoretical results are based on the numerical solution of Eq. (11.30). Mean free
paths and diffusion coefficients are related to each other via Eq. (5.37). In those rela-
tions we replace the particle speed v by the speed of light c since we deal with rel-
ativistic particles. The observational value of the perpendicular diffusion coefficient is
κ⊥ = (2.6 ± 0.6) × 1028 cm2 s−1 for a correlation length of approximately � = 50 pc. The
theoretical perpendicular diffusion coefficient is calculated for different values of the cor-
relation length. For a correlation length of 50 pc we find a κ⊥ which is very close to the
observations depending on the value of δB/B0. As shown in Fig. 27 there is very good
agreement between theory and observations. Of course one has to keep in mind that in in-
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terstellar media the exact values of turbulence parameters and diffusion coefficients are not
available. Thus, it is easy to reproduce interstellar measurements of cosmic rays compared
to the interplanetary scenarios. Nevertheless, the nice agreement between theoretical and
observational diffusion parameters is another confirmation of our improved understanding
of perpendicular diffusion.

11.4 Cosmic Ray Acceleration at Perpendicular Shocks in Supernova Remnants

It is believed that galactic cosmic rays get their energy due to diffusive shock acceleration
at supernova remnants. Diffusive shock acceleration at an interstellar shock wave is similar
compared to the interplanetary scenario discussed in Sect. 11.2. It was shown in Ferrand
et al. (2014) how advanced analytical results for the perpendicular diffusion coefficient are
useful in the theory of diffusive shock acceleration at supernova shocks. In the current sec-
tion we consider a perpendicular interstellar shock and, thus, the diffusion coefficient in
Eq. (11.2) is again the perpendicular diffusion coefficient. Furthermore, the acceleration
time is still given by Eq. (11.3).

In Ferrand et al. (2014) the so-called MARCOS code, developed and explained in Ferrand
et al. (2008), was used in order to perform hydro-kinetic simulations of the coupled shock +
particles system. The code jointly solves the three conservation equations that describe the
thermal fluid and the transport equation (11.2) that describes the energetic particles. The
hydro equations have been solved using an explicit Godunov (1959) scheme and the parti-
cle transport equation, written for g = p4f as a function of y = ln (p), is solved by using
a semi-implicit Crank-Nicolson scheme (see, e.g., Press et al. 2007). Furthermore, the code
includes the effect of Alfvénic heating on the flow and of Alfvénic drift on the particles (see,
e.g., Kang 2013). The geometry is one-dimensional in space and one-dimensional spheri-
cally symmetric in momentum. The shock was generated by a constant velocity piston and
position and properties of the shock front are diagnosed at each hydro time step. There, par-
ticles are injected continuously in time from the thermal pool. For simplicity we consider
that this occurs in a fixed momentum bin pinj and at a constant rate η expressed as a frac-
tion of the flux crossing the shock. The diffusive shock acceleration solver then spreads the
distribution of particles over space and momentum. The pressure of particles is computed
from their momentum distribution in each space cell and is included in the hydro equations
at each time step leading to modified shocks and spectra.

In previous explorations of diffusive shock acceleration at supernova remnants isotropic
Bohm diffusion has been assumed.22 For parallel diffusion the Bohm limit was derived sys-
tematically in Shalchi (2009b) where it was shown that in this case the parallel mean free
path is given by λBohm = RLB0/δB meaning that

κBohm = v

3
λBohm = vRL

3

B0

δB
= pvc

3qδB
(11.31)

where we replaced the unperturbed Larmor radius RL by using Eq. (4.7). In Shalchi (2009b)
the Bohm diffusion coefficient was obtained in a highly non-linear regime where the turbu-
lent magnetic field is very strong. The Bohm limit, as given by Eq. (11.31), was confirmed
numerically by Hussein and Shalchi (2014a). For perpendicular diffusion, on the other hand,
there can be a regime where κ⊥ ≈ κ‖ but this requires isotropic turbulence with a very strong

22In most papers who dealt with diffusive shock acceleration at interplanetary shocks, more realistic forms for
the diffusion coefficients were assumed. For interstellar shocks, on the other hand, scientists usually assume
Bohm diffusion. In most cases this is done without a clear justification and even without a proper reference.
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turbulent magnetic field (see, e.g., Shalchi and Dosch 2009; Hussein and Shalchi 2014a).
However, in the case of perpendicular diffusion, one still expects to find anisotropic scat-
tering in the high-energy limit. In this case the symmetry is broken because if the particles
move very fast, they only experience the mean magnetic field even if the turbulent field is
strong (see again Shalchi and Dosch 2009). Therefore, the Bohm limit is not a good approx-
imation for particle diffusion in the general case. Below we follow Ferrand et al. (2014) and
construct a more advanced and realistic model for the perpendicular diffusion coefficient
based on the previous sections of this review. First we replace

v = c
p/(mpc)√

1 + (p/(mpc))2
(11.32)

in Eq. (11.31) to write

κBohm = κ∗
p2

√
1 + p2

(11.33)

where from now on we measure the momentum p in units of mpc. Furthermore, we have
used the momentum independent parameter

κ∗ = mpc3

3qδB
≡ mpc3

3qB0

B0

δB
. (11.34)

For simplicity we assume δB ≈ B0. Since we are using Gaussian units, we have

mp ≈ 1.67 · 10−27 kg,

c ≈ 3 · 108 m

s
,

q ≈ 4.8 · 10−10
√

g cm3/2

s
,

B0 ≈ B̃0 · 10−6
√

g√
cm s

;

(11.35)

so that

κ∗ ≈ 3 × 1022

B̃0

cm2

s
(11.36)

where B̃0 is the background field in microGauss. Alternatively, some authors (see, e.g., Kang
et al. 2009) used a power-law model of the form

κ‖(p) = κ∗pα (11.37)

but this was mostly done in the context of parallel diffusion. However, below we shall link
the perpendicular diffusion coefficient to this form of the parallel diffusion coefficient.

We have shown in previous sections of this review that the perpendicular mean free path
increases with increasing particle momentum and that for high momenta the perpendicular
mean free path becomes independent of momentum. This behavior of the perpendicular
diffusion coefficient is universal meaning that it does not depend on turbulence parameters
and can also be seen in test-particle simulations (see, for instance, Figs. 20 and 22 of this
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review). Based on those findings, we can assume the following form for the perpendicular
diffusion coefficient:

κ⊥(p) = κ∞
pα

(p2α
c + p2α)1/2

(11.38)

where momenta are still in mpc units. Equation (11.38) contains three parameters: the fac-
tor κ∞, the index α, and a characteristic momentum pc . For low momenta κ⊥(p) behaves
like a power-law, and above the characteristic momentum it saturates to a constant so that

κ⊥(p) =
{

κ∞(
p

pc
)α p � pc

κ∞ p � pc.
(11.39)

The parameter κ∞ is most likely related to the field line diffusion coefficient via κ∞ =
vκFL/2 ≈ cκFL/2. The momentum dependence for p � pc , on the other hand, comes from
the parallel mean free path. Here we have restricted the discussion to relativistic particles,
and in particular we expect pc > mpc. The parameters pc and κ∞ depend on turbulence
parameters such as the magnetic field strength and the correlation length, but these param-
eters are not really known in interstellar scenarios. However, analytical theory predicts that
for low particle momenta the perpendicular and parallel diffusion coefficients are related
via κ⊥ ∝ κ‖, so that we can match the diffusion coefficient given by Eq. (11.38) with the
diffusion coefficient of Eq. (11.37). This means we set

κ∞ = κ∗
(
p2α

c + p2α
inj

)1/2
, (11.40)

where pinj < mpc is the smallest momentum considered. Therefore, the used diffusion co-
efficient is given by

κ⊥(p) = κ∗

√
p2α

c + p2α
inj

p2α
c + p2α

pα. (11.41)

For p � pc this turns into the momentum independent diffusion coefficient whereas for
pinj ≤ p � pc and α = 1 we recover the previously used Bohm limit. It can easily be seen
that our perpendicular diffusion coefficient will always be less than its Bohm counterpart.
Having limited the number of free parameters, we shall study the effect of varying pc for a
given α in the following.

So far we have been concerned only with the momentum dependence of the diffusion
coefficient, but there can also be a variation in space. Following Kang et al. (2009), Ferrand
et al. (2014) modified the form of the diffusion coefficient to account for the compression of
the magnetic field leading to

κ(x,p) =
(

ρ0

ρ(x)

)ν

κ(p) (11.42)

where ρ0 is the upstream (unperturbed) density, ρ(x) is the local density at location x, and
ν is set to either 0 or 1 depending on whether compression is taken into account or not.

A key feature that was observed in the simulations of Ferrand et al. (2014) is that for both
cases, α = 1 and α = 1/2, the diffusion coefficient given by Eq. (11.41) produces modified
shocks that clearly bear one distinctive signature of non-linear diffusive shock acceleration:
the precursor, yet produces spectra that do not bear another landmark signature of non-linear
diffusive shock acceleration: the concavity. For a very high pc , which is equivalent to the
Bohm case, the spectra are fairly hard before pmax. But as the characteristic momentum pc
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is reduced, so is the spectrum curvature. For a very low pc , the spectra are very steep. As
can be seen in Fig. 28, as pc is lowered, the spectrum first sees its concavity being restricted
to a smaller range of momenta while still reaching similar values at pmax, leading to highly
modified spectra for that particular parameter range. We note that the shape of the cosmic
ray spectrum will be reflected in the shape of the spectrum of non-thermal photons radiated
via the production and decay of pions for energetic protons. Recent γ -ray observations of
supernova remnants do not support the existence of concave spectra of the underlying cos-
mic ray population, on the contrary they require rather steep spectra (see Caprioli 2011).
The approach reviewed in this subsection and originally presented in Ferrand et al. (2014),
naturally produces such spectra, even though particles may be efficiently accelerated and
take a large part of the shock energy.

12 Summary, Conclusion, and Outlook

12.1 Summary and Conclusion

In the context of space science and astrophysics the diffusion of energetic particles across
the mean magnetic field was first discussed in the pioneering work of Jokipii (1966). In the
latter paper the perpendicular diffusion coefficient was computed by employing quasi-linear
theory which has to be understood as a first-order perturbation theory. It is well-known
that quasi-linear theory has its limitations. This comes due to the fact that real orbits are
not unperturbed and that parallel diffusion can have a strong influence on perpendicular
diffusion as described by compound sub-diffusion models (see, e.g., Webb et al. 2006 for
a comprehensive analytical description of compound sub-diffusion). Furthermore, there is
the large Kubo number regime where the behavior of the magnetic field line random walk
itself is highly non-linear (see, e.g., Matthaeus et al. 1995). From a more modern point of
view, quasi-linear theory should provide an accurate description of perpendicular transport
for small Kubo number turbulence and very long parallel mean free paths corresponding to
high rigidities. In general the theory does not work. During the past two decades, however,
progress was achieved mainly because of two reasons:

1. Test-particle simulations were developed often using super-computing. Such simulations
allow for an accurate description of particle transport but they are, of course, based on
numerical approximations (e.g., finite wave number grid-size and number of time-steps)
but they do not require ad-hoc assumptions necessary in analytical treatments. Of course,
one still needs to specify the properties of magnetic turbulence such as spectral anisotropy
and the form of the spectrum. Apart from that, simulations allow to compute particle
diffusion parameters accurately and, thus, simulations can be used in order to test our
understanding of the particle motion through magnetic turbulence.

2. Non-linear transport theories were developed based on Corrsin’s independence hypothe-
sis. The problem in analytical treatments of the transport is the emergence of higher order
correlations involving particle positions, velocities, as well as magnetic fields. In reality
all those quantities are somehow correlated. Corrsin’s approximation allows for a strong
simplification of such correlations by writing them as a product of correlations only con-
taining magnetic fields and correlations containing only particle properties. Based on
this approximation advanced theories such as the non-linear guiding center theory or the
unified non-linear transport theory were developed. Whereas the former theory can be
seen as an important step in this field, the latter theory is superior because it contains
previously known results and agrees with simulations for a wider range of parameters.
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Fig. 28 Left: pressure profiles (solid: fluid, dashed: particles) as a function of position at different times.
Right: spectrum of the particles (g = p4f ) as a function of momentum at different times. For the diffusion
coefficient Eq. (11.41) was employed where we have set α = 1 and ν = 1. Furthermore, pc is increasing
from the bottom to top such that pc = 100, 102, 104, 106, and 108 in mpc units. Therefore, the topmost
plot corresponds to the Bohm case usually used in this type of work. The plot at the bottom shows the
result for a more realistic perpendicular diffusion coefficient. Reprinted with permission from The American
Astronomical Society—Ferrand et al. (2014)
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Non-linear theories can be tested by comparing their results with test-particle simulations.
Therefore, the combination of both, simulations and non-linear tools, allow for a realistic
description of particle transport.

A major step forward in the analytical description of perpendicular transport was made
due to the development of the non-linear guiding center (NLGC) theory by Matthaeus et al.
(2003). Compared to other theories developed in the past the latter theory agreed with simu-
lations performed for slab/2D turbulence. However, this agreement was only achieved with
the help of a correction factor a2 = 1/3. Furthermore, NLGC does not work for slab tur-
bulence and three-dimensional turbulence with small and intermediate Kubo numbers. The
reason for this is approximation (5.39) as shown in Shalchi (2005b). In order to fix the
problem related to slab and small Kubo number turbulence, the unified non-linear transport
(UNLT) theory was developed in Shalchi (2010). A time-dependent version of UNLT theory
was presented in Shalchi (2017) as well as Lasuik and Shalchi (2017) which is, compared to
previous descriptions of perpendicular transport, no longer based on the diffusion approxi-
mation. One of the most important features of diffusive and time-dependent UNLT theories
is that they contain several previously derived theories and equations as special limits. Those
are listed in the following:

1. In the limit of long parallel mean free paths, the unified non-linear transport equation
turns into the field line random walk limit and one obtains automatically the non-linear
field line theory of Matthaeus et al. (1995). Therefore, the latter theory is contained in
the non-linear integral equation provided by diffusive UNLT theory.

2. For magnetostatic slab turbulence time-dependent UNLT theory provides compound sub-
diffusion.

3. For long parallel mean free paths and small Kubo numbers, UNLT theory is identical
compared to quasi-linear theory.

4. For short parallel mean free paths and small Kubo numbers, one can derive a Rechester
and Rosenbluth (1978) type of scaling from UNLT theory. Since this process does not
require to incorporate collisions, this limit can be called the collisionless Rechester &
Rosenbluth (CLRR) scaling. This result is interesting because it provides a ratio κ⊥/κ‖
which is small and does not depend on particle energy.

5. For short parallel mean free paths and large Kubo numbers one finds κ⊥/κ‖ ≈ a2δB2
x /B

2
0 .

For a = 1 this corresponds to the so-called fluid limit whereas for a = LU/�⊥ we obtain
the CLRR limit for large Kubo numbers as explained in Sect. 9 of this review.

A strength of time-dependent UNLT theory is that is explains that normal diffusion is re-
stored in the late-time limit as soon as there is transverse complexity of the turbulence. Fur-
thermore, UNLT theory agrees well with most test-particle simulations as summarized in Ta-
ble 9. This is in particular the case for slab turbulence and three-dimensional turbulence with
small Kubo numbers. For instance, UNLT theory agrees almost perfectly with simulations
performed for noisy slab and Goldreich-Sridhar turbulence. However, for two-component
turbulence, often used to approximate solar wind turbulence, and three-dimensional turbu-
lence with large Kubo numbers, the theory still requires the inclusion of the correction factor
a2 = 1/3.

In order to develop an understanding of the physics of perpendicular transport based on
simple and fundamental arguments a heuristic approach was presented in Shalchi (2019a).
The latter approach, which is based on three rules, states that perpendicular transport is only
controlled by three effects, namely field line random walk, parallel transport, and transverse
complexity of magnetic turbulence. As a consequence one is able to obtain different cases
of perpendicular transport and one finds different routes to normal diffusion as summarized
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in Tables 6 and 7 of this review. However, the heuristic approach does not only lead to an
improved understanding of perpendicular transport, it also explains the reason and value
of the parameter a2. Previous approaches such as NLGC and UNLT theories provides the
so-called fluid limit (see, e.g., Eq. (6.45) of this review) in the limit of very short parallel
mean free paths. However, the heuristic approach predicts that in this limit one should find
the CLRR limit. The factor a2 is able to balance out the difference between fluid and CLRR
limits which is, in the large Kubo number limit, given by Eq. (9.40) leading to a2 = 1/3 in
some cases.

As also pointed out in this review, modern theories for perpendicular transport can ex-
plain perpendicular diffusion coefficients obtained from observations. This is true for inter-
planetary as well as interstellar scenarios. Furthermore, if such modern results are used in
studies of diffusive shock acceleration interesting new results can be obtained motivating to
use these analytical forms in further applications in astrophysics and space science.

12.2 Outlook

Undoubtedly tremendous progress has been achieved over the past view years in the theory
of perpendicular transport. This was partly due to advanced computer simulations but mostly
due to the development of systematic non-linear transport theories. However, there are still
unsolved puzzles motivating future work in this field.

12.2.1 Further Improvement of UNLT Theories

As shown in this review, time-dependent UNLT theory works very well in most cases. There
is a nice agreement between simulations, heuristic considerations, and systematic theories.
However, there is one exception and that is perpendicular transport for the case of short
parallel mean free paths, corresponding to strong pitch-angle scattering, and large Kubo
numbers. Strictly speaking, UNLT theories provide the fluid limit in this regime whereas
the heuristic approach discussed in Sect. 9 provides a CLRR type of transport. This failure
of the theory can easily balanced out via the correction parameter a2. Ideally, however, this
should not be required. Therefore, one has to achieve a further improvement of the theory.
Time-dependent UNLT theory is based on the approximation

〈
vz(t)vz(0)eik·x〉≈ 〈

vz(t)vz(0)eik‖z
〉〈
eik⊥·x⊥ 〉. (12.1)

In the limit of small Kubo numbers this approximation becomes exact whereas for large
Kubo numbers this approximation fails. In the general case there can be a strong correla-
tion between velocities and the perpendicular position of the particle. It was already shown
in Shalchi (2005b) that the assumption of uncorrelated positions and velocities omits com-
pound sub-diffusion. Since CLRR diffusion comes after the sub-diffusive regime, theories
based on approximation (12.1) are incomplete and do not provide sub-diffusion and CLRR
diffusion for large Kubo numbers. The next step in the theoretical description of perpendic-
ular transport is, therefore, the formulation of a theory which does not rely on this approxi-
mation regardless of what the Kubo number is.

Furthermore, it has to be subject of future work to determine the exact value of the pa-
rameter a2 for a variety of turbulence models and parameter regimes. Some work has already
been done by Qin and Zhang (2014) providing some more detailed insight about the value
of the parameter a2. However, the latter work was performed for a constant spectrum in
the energy range of the two-dimensional modes and was based on the extended non-linear
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guiding center theory. Future work should explore the value of a2 for more modern spectra
and should also be based on time-dependent UNLT theory. This will help us to ensure that
we have the correct understanding of the physical meaning of this parameter.

12.2.2 Dropping the Corrsin Approximation in Transport Theory

Theories developed in order to describe the random walk of magnetic field lines as well as
particle transport are based on Corrsin’s independence hypothesis. Although it is usually
believed that in the context of space and astrophysical plasmas this approximation works
well, one should try to replace the Corrsin approximation by a more reliable and systematic
approach. Although some work has been performed in the past such as the development
and application of percolation theory (see, e.g., Gruzinov et al. 1990; Isichenko 1991) or
the decorrelation trajectory method (see, e.g., Vlad et al. 1998, 2004; Balescu 2005; Ne-
grea et al. 2007), it is a difficult task to develop pure analytical theories without employing
Corrsin’s independence hypothesis.

12.2.3 The Strong and Compressible Turbulence Case

Most analytical theories, but also test-particle simulations, were developed with the incom-
pressible case δBz = 0 in mind. Even if one considers the compressible case, theories of
field line random walk and perpendicular particle transport such as UNLT theories should
still be valid as long as δBz < B0 meaning that the parallel component of the turbulent field is
weaker than the mean field. There could be cases, however, such as supernova shock waves,
where one can find effects such as wave amplification leading to a strong turbulent field.
Therefore, it should be useful to develop analytical theories for such cases. Some work has
been done in the past (see, e.g., Shalchi and Dosch 2009; Plotnikov et al. 2011) with some
promising results. More systematic theories for this more general case should be developed
in the future.

12.2.4 Exploration of Exotic Regimes

For most turbulence models discussed in the literature, the tools and results presented in this
review should be valid. However, there could be extreme cases where this is no longer true.
In particular parallel and perpendicular transport in pure two-dimensional turbulence are not
fully understood and one would expect a very different behavior in this case. It could easily
be that Eq. (7.8) representing time-dependent UNLT theory is still valid for two-dimensional
turbulence. However, parallel transport could be very different in pure two-dimensional tur-
bulence as, for instance, shown analytically in Shalchi et al. (2008) and numerically in
Arendt and Shalchi (2018). Therefore, the function ξ(k‖, t), which enters Eq. (7.8), would
be different compared to the one used in this review.

12.2.5 Detailed Measurements of Magnetic Turbulence

All analytical theories for particle transport require to specify the spectral tensor of the
magnetic fluctuations. Such tensors contain several parameters which need to be specified
regardless what the considered turbulence model is. Turbulence theorists, but also observers,
often focus on the inertial range corresponding to scales smaller than the bendover scale.
However, perpendicular transport of energetic particles is mainly controlled by the large
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scales of the energy range. This is very different compared to parallel diffusion where one
finds gyro-resonant interactions.

Future work should focus on the measurement of magnetic fluctuations at large scales.
In particular the Kubo number is important since this number determines together with the
parallel mean free path how particles experience perpendicular diffusion and what value
the perpendicular diffusion coefficient has. Therefore, at least the Kubo number should be
determined with high accuracy via solar wind measurements.
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