PHYS 4010/7010: General Relativity Assignment 4

Due: Wednesday, October 8, 2025 by 10:20 am

1. Particle in a Constant Magnetic Field

A particle with mass m and charge q is interacting with a constant magnetic field $\vec{B} = B\vec{e}_z$. The electric field is assumed to be $\vec{E} = 0$. Solve the covariant equations of motion

$$m\frac{du^{\alpha}}{d\tau} = \frac{q}{c}F^{\alpha\beta}u_{\beta}$$

for the initial conditions

$$(x^{\alpha} (\tau = 0)) = (0, 0, 0, 0),$$

 $(u^{\alpha} (\tau = 0)) = (\gamma_0 c, \gamma_0 v_0, 0, 0),$

where we have used $\gamma_0 = (1 - v_0^2/c^2)^{-1/2}$. Derive expressions for $x^{\alpha}(t)$ and $u^{\alpha}(t)$.

Hints:

- i) Use the matrix for $(F^{\alpha\beta})$ derived in class.
- ii) Compute first $x^{\alpha}(\tau)$, $u^{\alpha}(\tau)$ and then replace the proper time τ by the lab time t.

2. Transformation of \vec{E} and \vec{B}

By using a one-dimensional Lorentz-Transformation

$$\left(\Lambda_{\gamma}^{\alpha}\right) = \left(egin{array}{cccc} \gamma & -\gamma v/c & 0 & 0 \ -\gamma v/c & \gamma & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight).$$

and the relation $F'^{\alpha\beta} = \Lambda^{\alpha}_{\gamma} \Lambda^{\beta}_{\delta} F^{\gamma\delta}$ we can derive relations between the electric and magnetic fields in different inertial reference frames. Proof that the following transformation formulas are correct

$$\vec{E}'_{\parallel} = \vec{E}_{\parallel}, \quad \vec{E}'_{\perp} = \gamma \left(\vec{E}_{\perp} + \frac{\vec{v}}{c} \times \vec{B} \right)$$

$$\vec{B}'_{\parallel} = \vec{B}_{\parallel}, \quad \vec{B}'_{\perp} = \gamma \left(\vec{B}_{\perp} - \frac{\vec{v}}{c} \times \vec{E} \right).$$

Here \parallel corresponds to the x-direction and \perp to the direction perpendicular wrt x.