PHYS 4010/7010: General Relativity Assignment 3

Due: Wednesday, October 1, 2025 by 10:20 am

1. Equation of Motion for a Constant Force

A rocket in the interstellar space experiences the constant force F' = mg in the rest frame (m is the rest mass). Describe the problem as a one dimensional problem in the x-direction.

- a) Compute x(t) and v(t) in the lab inertial reference frame (IS). Assume that the initial conditions are x(0) = 0 and v(0) = 0.
- **b)** Simplify your formulas for x(t) and v(t) by considering the two limits $t \ll c/g$ and $t \gg c/g$ and discuss the results.
- c) Plot the results derived in a) and b).

2. Relativistic Hydrodynamics

The pressure tensor $P^{'\alpha\beta}$ in the instantaneous rest frame has the form

$$(P^{'\alpha\beta}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & P & 0 & 0 \\ 0 & 0 & P & 0 \\ 0 & 0 & 0 & P \end{pmatrix}$$

where we have used the (invariant) proper pressure P.

Use the Lorentz-Transformation

$$P^{\alpha\beta} = \Lambda^{\alpha}_{\gamma} \left(-\vec{v} \right) \Lambda^{\beta}_{\delta} \left(-\vec{v} \right) P^{'\gamma\delta}$$

to prove that the pressure tensor $P^{\alpha\beta}$ in an arbitrary inertial reference frame has the form

$$P^{\alpha\beta} = P\left(\frac{u^{\alpha}u^{\beta}}{c^2} - \eta^{\alpha\beta}\right).$$

To perform these calculations you can use the tensor $\Lambda_{\beta}^{\alpha}\left(\vec{v}\right)$ discussed in class for arbitrary \vec{v} .