
➢ The Commutation Relation

• Problem: what happens if we have products of operators?

• In classical physics we have xp = px. What about QM?

• Consider the following product in configuration space

• Then, on the other hand, we have

• Consider the following

This is not the 
same!



➢ The Commutation Relation

• We found

• This result does not depend on the wave function Ψ!

• We define the commutation relation (short: the commutator) via

• Therewith we can write

• Additional rule used in QM (e.g., in the Hamiltonian operator)

This is related to Heisenberg‘s 
uncertainty relation!



➢ The Time-Dependent Schrödinger Equation

• We consider the one-dimensional but time-dependent equation

• Note, we consider a potential which does not depend on time!

• Partial Differential Equations (PDEs) are usually solved via the 
product ansatz

• Using this in the Schrödinger equation yields

• Since this equation must be correct for all t and x, both sides are 
constant. We denote this constant by E since it is related to energy.



➢ The Time-Dependent Schrödinger Equation

• Therefore, we find

• This very basic Ordinary Differential Equation (ODE) has the 
solution

• The second equation is the time-independent Schrödinger equation

• Alternatively, we can write this equation as the eigenvalue equation



➢ The Time-Dependent Schrödinger Equation

• The solution of 

provides the eigenvalues E as well as the eigenfunctions uE(x).

• Important: the solution can have a continuous or a discrete spectrum!

• Discrete spectrum means

and

• The general solution has the form



➢ The Expansion Postulate and its Physical Interpretation

• Consider discrete eigenvalues and functions

• The general solution to a given problem is then

• Consider this for the initial time t=0

• Multiplying this by             and integrating over all x yields

Expansion coefficients



➢ The Expansion Postulate and its Physical Interpretation

• Assuming that the eigenfunctions are orthonormal means

• Therefore we obtain

• Thus, the expansion coefficients Cn are given by

• What is the physical meaning of the expansion coefficients Cn?

Kronecker delta



➢ The Expansion Postulate and its Physical Interpretation

• In order to answer this question, we calculate the expectation value 
of the Hamiltonian operator.

• Assume the physical system is described by the wave function Ψ(x).

• Therefore, we have

• For the wave function Ψ(x) we can use the expansion

to derive

Arbitrary (but time-
independent) wave function



➢ The Expansion Postulate and its Physical Interpretation

• We found

• However, the eigenfunctions un(x) satisfy the eigenvalue equation

• Using this above yields

• For the expansion coefficients we derived before



➢ The Expansion Postulate and its Physical Interpretation

• We finally find

• Furthermore, we can use normalization to find



➢ The Expansion Postulate and its Physical Interpretation

• We found

• Note: an energy measurement can only yield one of the eigenvalues 
En.

• We conclude: |Cn|2 has to be interpreted as the probability that a 
measurement of the energy for the state Ψ(x) yields the eigenvalue En.

• Assume that we make a measurement and find the result En.

• A repetition of the measurement must yield the same result. 
Otherwise, how else could we check that the measurement was 
carried out correctly?



➢ The Expansion Postulate and its Physical Interpretation

• This, however, means that after the first measurement the system had 
to be in the eigenstate un(x), since that is the only way to ensure that 
the second measurement will give En with certainty.

• This implies that a measurement projects the initial state into an 
eigenstate of the observable that is being measured (in our case the 
energy).

• The conclusion we found here holds for general systems in which 
there is a potential energy V(x) and also for observables other than 
the energy.

• Examples for other observables are momentum and angular 
momentum (see later in this course).



➢ Degeneracy

• Soving an eigenvalue problem means that we compute the energy 
eigenvalues En and the corresponding eigenfunctions un(x).

• There may be more than one eigenfunction that corresponds to the 
same eigenvalue of a Hermitian operator.

• Example: E1=E2 but u1≠u2.

• When this occurs, we have a degeneracy.

• In some cases this has important implications (see, e.g., perturbation 
theory).



➢ Parity

• Even eigenfunctions have the property

• Odd eigenfunctions, on the other hand, satisfy

• An arbitrary function can always be written as a sum of an even and 
an odd function

• Define the parity operator     via 

even function odd function



➢ Parity

• Eigenvalue equation for the parity operator

• Employing this operator twice yields

• Therefore, there are two eigenvalues

• The eigenvalues with λ=-1 correspond to

• The eigenvalues with λ=+1 correspond to
odd function

even function



➢ One-Dimensional Problems

• We consider potentials of the form

• The corresponding Schrödinger equation is in this case

• This is an Ordinary Differential Equation (ODE)!

• Depending on the problem, you need to think about conditions 
which are satisfied (or not):

o Normalization in the case of bound states.

o Flux conservation in the case of scattering problems.

o Continuity of the wave function and its first derivative if there 
are jumps in the potential.



➢ One-Dimensional Problems

• Examples for one-dimensional problems:

o The potential step (Gasiorowicz 4-1).

o The potential well (Gasiorowicz 4-2).

o The potential barrier (Gasiorowicz 4-3).

o Delta function potentials (Gasiorowicz 4-6).

o The harmonic oscillator (Gasiorowicz 4-7).

Not part of 
this review

I will review this 
as an example!



➢ One-Dimensional Problems

• For the harmonic oscillator the time-independent Schrödinger 
equation becomes

• Note that at this point ω is just a constant in the potential function.

• In order to solve this ODE we employ the transformations

• Using this in Schrödinger‘s equation yields ...

Harmonic oscillator potential



➢ One-Dimensional Problems

• Using this in Schrödinger‘s equation yields

• First we consider the asymptotic limit y → ±∞. In this limit our ODE 
simplifies to

• We try to solve this via

• We find for the derivatives



➢ One-Dimensional Problems

• We found

• In the considered limit y → ±∞, this becomes

• We found an asymptotic solution of our ODE!

• To find the general solution we try the ansatz

• The corresponding derivatives are (just use product rule)



➢ One-Dimensional Problems

• Using

in our ODE

yields

• Furthermore, we can cancel the exponentials to find

• This is called the Hermite differential equation (named after Charles 
Hermite).



➢ One-Dimensional Problems

• We found the Hermite differential equation

• The solutions are the Hermite polynomials Hn (y) with the integer 
number 

• For the energy eigenvalues we derive the discrete spectrum

• The eigenfunctions are given by



➢ One-Dimensional Problems

• Note, the Hermite polynomials Hn(y) can be obtained from tables 
(see, e.g., https://en.wikipedia.org/wiki/Hermite_polynomials):

• Some important properties are (see, e.g., Abramowitz & Stegun):



➢ One-Dimensional Problems

• Also very important is the orthogonality relation

• The orthogonality relation and 
the aforementioned recurrence
relations are useful in order to 
compute expectation values.

• Plot of some Hermite 
polynomials (from 
https://en.wikipedia.org/wiki/Hermite_

polynomials):
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