➤ The Commutation Relation

- Problem: what happens if we have products of operators?
- In classical physics we have xp = px. What about QM?
- Consider the following product in <u>configuration space</u>

$$\hat{x}\hat{p}\Psi = x\frac{\hbar}{i}\frac{\partial}{\partial x}\Psi.$$

• Then, on the other hand, we have

$$\hat{p}\hat{x}\Psi = \frac{\hbar}{i}\frac{\partial}{\partial x}(x\Psi) = \frac{\hbar}{i}\left(\Psi + x\frac{\partial\Psi}{\partial x}\right).$$

Consider the following

$$(\hat{p}\hat{x} - \hat{x}\hat{p})\Psi = \frac{\hbar}{i}\left(\Psi + x\frac{\partial\Psi}{\partial x}\right) - x\frac{\hbar}{i}\frac{\partial}{\partial x}\Psi = -i\hbar\Psi.$$

➤ The Commutation Relation

We found

$$(\hat{p}\hat{x} - \hat{x}\hat{p})\Psi = -i\hbar\Psi.$$

- This result does not depend on the wave function Ψ!
- We define the <u>commutation relation</u> (short: the <u>commutator</u>) via $[\hat{A}, \hat{B}] := \hat{A}\hat{B} \hat{B}\hat{A}.$
- Therewith we can write

$$[\hat{p},\hat{x}] = -i\hbar.$$

This is related to Heisenberg's uncertainty relation!

• Additional rule used in QM (e.g., in the Hamiltonian operator)

$$pf(x) \rightarrow \frac{\hat{p}f(x) + f(x)\hat{p}}{2}.$$

- ➤ The Time-Dependent Schrödinger Equation
 - We consider the one-dimensional but time-dependent equation

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t).$$

- Note, we consider a potential which does not depend on time!
- Partial Differential Equations (PDEs) are usually solved via the product ansatz

$$\Psi(x,t) = T(t)u(x).$$

• Using this in the Schrödinger equation yields

$$i\hbar \frac{1}{T(t)} \frac{\partial T(t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2 u(x)}{\partial x^2} + V(x)u(x) \right] \frac{1}{u(x)}.$$

 Since this equation must be correct for all t and x, both sides are constant. We denote this constant by E since it is related to energy.

- > The Time-Dependent Schrödinger Equation
 - Therefore, we find

$$\frac{\partial T(t)}{\partial t} = -\frac{iE}{\hbar}T(t).$$

• This very basic Ordinary Differential Equation (ODE) has the solution

$$T(t) = Ce^{-iEt/\hbar}$$
 with $C = const.$

• The second equation is the <u>time-independent Schrödinger</u> equation

$$-\frac{\hbar^2}{2m}\frac{d^2u(x)}{dx^2} + V(x)u(x) = Eu(x).$$

• Alternatively, we can write this equation as the <u>eigenvalue equation</u> $\hat{H}u(x) = Eu(x)$.

- > The Time-Dependent Schrödinger Equation
 - The solution of

$$\hat{H}u_E(x) = Eu_E(x)$$

provides the eigenvalues E as well as the eigenfunctions $u_E(x)$.

- Important: the solution can have a continuous or a discrete spectrum!
- <u>Discrete spectrum</u> means

$$E=E_n \qquad {
m with} \qquad n=1,2,3,...$$
 and
$$u(x)=u_n(x) \qquad {
m with} \qquad n=1,2,3,....$$

The general solution has the form

$$\Psi(x,t) = \sum_{n} C_n u_n(x) e^{-iE_n t/\hbar} + \int dE \ C(E) u_E(x) e^{-iEt/\hbar}.$$

- > The Expansion Postulate and its Physical Interpretation
 - Consider <u>discrete eigenvalues</u> and functions

$$u_n(x)$$
 and E_n .

• The general solution to a given problem is then

$$\Psi(x,t) = \sum_{n} C_n u_n(x) e^{iE_n t/\hbar}.$$

- Consider this for the initial time t=0 Expansion coefficients $\Psi_0(x) = \sum C_n u_n(x).$
- Multiplying this by $u_m^*(x)$ and integrating over all x yields

$$\int dx \ \Psi_0(x) u_m^*(x) = \sum_{m} C_n \int dx \ u_n(x) u_m^*(x).$$

- > The Expansion Postulate and its Physical Interpretation
 - Assuming that the eigenfunctions are <u>orthonormal</u> means

$$\int dx \ u_n(x)u_m^*(x) = \delta_{nm}.$$

Therefore we obtain

$$\int dx \ \Psi_0(x) u_m^*(x) = \sum_n C_n \int dx \ u_n(x) u_m^*(x) = \sum_n C_n \delta_{nm}.$$

• Thus, the expansion coefficients C_n are given by

$$C_n = \int dx \ \Psi_0(x) u_n^*(x).$$

• What is the physical meaning of the expansion coefficients C_n ?

- > The Expansion Postulate and its Physical Interpretation
 - In order to answer this question, we calculate the <u>expectation value</u> of the Hamiltonian operator.
 - Assume the physical system is described by the wave function $\Psi(x)$.
 - Therefore, we have

$$\langle \hat{H} \rangle = \int dx \ \Psi^*(x) \hat{H} \Psi(x).$$

Arbitrary (but timeindependent) wave function

• For the wave function $\Psi(x)$ we can use the expansion

$$\Psi(x) = \sum_{n} C_n u_n(x)$$

to derive

$$\langle \hat{H} \rangle = \int dx \ \Psi^*(x) \hat{H} \sum_n C_n u_n(x) = \sum_n C_n \int dx \ \Psi^*(x) \hat{H} u_n(x).$$

- > The Expansion Postulate and its Physical Interpretation
 - We found

$$\langle \hat{H} \rangle = \sum_{n} C_n \int dx \ \Psi^*(x) \hat{H} u_n(x).$$

• However, the eigenfunctions $u_n(x)$ satisfy the eigenvalue equation

$$\hat{H}u_n(x) = E_n u_n(x).$$

Using this above yields

$$\langle \hat{H} \rangle = \sum_{n} C_n \int dx \ \Psi^*(x) E_n u_n(x) = \sum_{n} C_n E_n \int dx \ \Psi^*(x) u_n(x).$$

• For the expansion coefficients we derived before

$$C_n = \int dx \ \Psi(x) u_n^*(x) \qquad \Rightarrow \qquad C_n^* = \int dx \ \Psi^*(x) u_n(x).$$

- ➤ The Expansion Postulate and its Physical Interpretation
 - We finally find

$$\langle \hat{H} \rangle = \sum_{n} E_n C_n C_n^* = \sum_{n} E_n |C_n|^2.$$

• Furthermore, we can use normalization to find

$$1 = \int dx \ \Psi^*(x)\Psi(x) = \int dx \ \Psi^* \sum_n C_n u_n(x)$$
$$= \sum_n C_n \int dx \ \Psi^* u_n(x) = \sum_n C_n C_n^*$$
$$= \sum_n |C_n|^2.$$

- > The Expansion Postulate and its Physical Interpretation
 - We found

$$\langle \hat{H} \rangle = \sum_{n} E_n |C_n|^2$$
 and $\sum_{n} |C_n|^2 = 1$.

- Note: an energy measurement can only yield one of the eigenvalues E_n .
- We conclude: $|C_n|^2$ has to be interpreted as the <u>probability</u> that a measurement of the energy for the state $\Psi(x)$ yields the eigenvalue E_n .
- Assume that we make a measurement and find the result E_n .
- A repetition of the measurement must yield the same result.
 Otherwise, how else could we check that the measurement was carried out correctly?

- > The Expansion Postulate and its Physical Interpretation
 - This, however, means that after the first measurement the system had to be in the eigenstate $u_n(x)$, since that is the only way to ensure that the second measurement will give E_n with certainty.
 - This implies that a measurement projects the initial state into an eigenstate of the observable that is being measured (in our case the energy).
 - The conclusion we found here holds for general systems in which there is a potential energy V(x) and also for observables other than the energy.
 - Examples for other observables are momentum and angular momentum (see later in this course).

Degeneracy

- Soving an eigenvalue problem means that we compute the energy eigenvalues E_n and the corresponding eigenfunctions $u_n(x)$.
- There may be more than one eigenfunction that corresponds to the same eigenvalue of a Hermitian operator.
- Example: $E_1 = E_2$ but $u_1 \neq u_2$.
- When this occurs, we have a <u>degeneracy</u>.
- In some cases this has important implications (see, e.g., perturbation theory).

> Parity

Even eigenfunctions have the property

$$\Psi(x) = \Psi(-x).$$

Odd eigenfunctions, on the other hand, satisfy

$$\Psi(x) = -\Psi(-x).$$

 An arbitrary function can always be written as a sum of an even and an odd function

$$\Psi(x) = \frac{1}{2} \left[\Psi(x) + \Psi(-x) \right] + \frac{1}{2} \left[\Psi(x) - \Psi(-x) \right].$$
even function odd function

• Define the parity operator \hat{P} via

$$\hat{P}\Psi(x) = \Psi(-x).$$

> Parity

- Eigenvalue equation for the parity operator $\hat{P}\Psi(x) = \lambda \Psi(x)$.
- Employing this operator twice yields

$$\hat{P}^2\Psi(x) = \lambda^2\Psi(x) = \Psi(x).$$

• Therefore, there are two eigenvalues

$$\lambda^2 = 1 \qquad \Rightarrow \qquad \lambda = \pm 1.$$

• The eigenvalues with λ =-1 correspond to

$$\hat{P}\Psi(x) = \Psi(-x) = \lambda\Psi(x) = -\Psi(x).$$

• The eigenvalues with λ =+1 correspond to

$$\hat{P}\Psi(x) = \Psi(-x) = \lambda\Psi(x) = \Psi(x).$$

One-Dimensional Problems

We consider potentials of the form

$$V(\vec{r},t) = V(x).$$

The corresponding Schrödinger equation is in this case

$$-\frac{\hbar^2}{2m}\frac{d^2u(x)}{dx^2} + V(x)u(x) = Eu(x).$$

- This is an Ordinary Differential Equation (ODE)!
- Depending on the problem, you need to think about conditions which are satisfied (or not):
 - Normalization in the case of bound states.
 - Flux conservation in the case of scattering problems.
 - Continuity of the wave function and its first derivative if there are jumps in the potential.

- One-Dimensional Problems
 - Examples for one-dimensional problems:
 - The potential step (Gasiorowicz 4-1).
 - The potential well (Gasiorowicz 4-2).
 - o The potential barrier (Gasiorowicz **4-3**).
 - Delta function potentials (Gasiorowicz 4-6).
 - o The harmonic oscillator (Gasiorowicz **4-7**).

Not part of this review

I will review this as an example!

One-Dimensional Problems

• For the <u>harmonic oscillator</u> the time-independent Schrödinger equation becomes

$$-\frac{\hbar^2}{2m}\frac{d^2u(x)}{dx^2} + \frac{1}{2}m\omega^2 x^2 u(x) = Eu(x).$$

Harmonic oscillator potential

- Note that at this point ω is just a constant in the potential function.
- In order to solve this ODE we employ the transformations

$$E = \frac{1}{2}\hbar\omega\epsilon$$
 and $y = \sqrt{\frac{m\omega}{\hbar}}x$.

• Using this in Schrödinger's equation yields ...

One-Dimensional Problems

Using this in Schrödinger's equation yields

$$\frac{d^2u(y)}{dy^2} + (\epsilon - y^2)u(y) = 0.$$

• First we consider the asymptotic limit $y \to \pm \infty$. In this limit our ODE simplifies to

$$\frac{d^2u}{dy^2} = y^2u.$$

We try to solve this via

$$u(y) = u_0 e^{-\frac{1}{2}y^2}.$$

We find for the derivatives

$$u' = -yu_0e^{-\frac{1}{2}y^2}$$
 and $u'' = -u_0e^{-\frac{1}{2}y^2} + y^2u_0e^{-\frac{1}{2}y^2}$.

One-Dimensional Problems

We found

$$u'' = -u_0 e^{-\frac{1}{2}y^2} + y^2 u_0 e^{-\frac{1}{2}y^2}.$$

• In the considered limit $y \to \pm \infty$, this becomes $u'' \approx y^2 u_0 e^{-\frac{1}{2}y^2} = y^2 u$.

- We found an asymptotic solution of our ODE!
- To find the general solution we try the ansatz $u(y) = h(y)e^{-\frac{1}{2}y^2}$.
- The corresponding derivatives are (just use product rule)

$$u' = h'e^{-\frac{1}{2}y^{2}} - hye^{-\frac{1}{2}y^{2}}$$

$$u'' = h''e^{-\frac{1}{2}y^{2}} - 2h'ye^{-\frac{1}{2}y^{2}} - he^{-\frac{1}{2}y^{2}} + hy^{2}e^{-\frac{1}{2}y^{2}}.$$

One-Dimensional Problems

Using

$$u'' = h'' e^{-\frac{1}{2}y^2} - 2h' y e^{-\frac{1}{2}y^2} - h e^{-\frac{1}{2}y^2} + h y^2 e^{-\frac{1}{2}y^2}$$
 in our ODE
$$u'' + (\epsilon - y^2) u = 0$$
 yields
$$h'' e^{-\frac{1}{2}y^2} - 2h' y e^{-\frac{1}{2}y^2} - h e^{-\frac{1}{2}y^2} + h y^2 e^{-\frac{1}{2}y^2} + (\epsilon - y^2) h e^{-\frac{1}{2}y^2} = 0.$$

• Furthermore, we can cancel the exponentials to find

$$h'' - 2yh' + (\epsilon - 1)h = 0.$$

 This is called the <u>Hermite differential equation</u> (named after Charles Hermite).

One-Dimensional Problems

• We found the Hermite differential equation

$$h'' - 2yh' + (\epsilon - 1)h = 0.$$

• The solutions are the <u>Hermite polynomials</u> $H_n(y)$ with the integer number

$$n = \frac{1}{2}(\epsilon - 1).$$

• For the energy eigenvalues we derive the discrete spectrum

$$E_n = \frac{1}{2}\hbar\omega (2n+1) = \hbar\omega \left(n + \frac{1}{2}\right)$$
 with $n = 0, 1, 2, \dots$

• The eigenfunctions are given by

$$u_n(y) = C_n H_n(y) e^{-\frac{1}{2}y^2}$$
 with $y = \sqrt{\frac{m\omega}{\hbar}} x$.

One-Dimensional Problems

• Note, the Hermite polynomials $H_n(y)$ can be obtained from tables (see, e.g., https://en.wikipedia.org/wiki/Hermite_polynomials):

$$egin{aligned} H_0(x)&=1,\ H_1(x)&=2x,\ H_2(x)&=4x^2-2,\ H_3(x)&=8x^3-12x,\ H_4(x)&=16x^4-48x^2+12,\ H_5(x)&=32x^5-160x^3+120x,\ H_6(x)&=64x^6-480x^4+720x^2-120 \end{aligned}$$

Some important properties are (see, e.g., Abramowitz & Stegun):

$$H_{n+1} - 2yH_n + 2nH_{n-1} = 0,$$

$$H_{n+1} + \frac{dH_n}{dy} - 2yH_n = 0.$$

One-Dimensional Problems

Also very important is the <u>orthogonality relation</u>

$$\int_{-\infty}^{+\infty} dy \ H_n(y) H_m(y) e^{-y^2} = 2^n \sqrt{\pi} n! \delta_{nm}.$$

- The orthogonality relation and the aforementioned recurrence relations are useful in order to compute expectation values.
- Plot of some Hermite polynomials (from https://en.wikipedia.org/wiki/Hermite_polynomials):

