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» Operators in Quantum Mechanics

* The energy-momentum relation is given by
2

p 4
o o + V(7,t).

» Multiply this by the wave function to obtain
2
ol R (S 74

2m
* Replace the quantities E and p by the following operators
) s, 0
e — h— and — Dp, = G

 Using this formal replacement of classical quantities by the
corresponding operators gives us
P ov _ n’

E\If——\IJ 1\ h— = — A t)w.
2m a4 et ot 2m +V( )
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» Normalization and Moments

« Assume that we describe the bound state of a single particle. Then
we require that the following normalization condition is satisfied

/d% ¥ (7, 1) (7 1) = 1.

» Consider the time-independent one-dimensional case. Then we have
(7, 8) = U(x).

* In this case the normalization condition becomes simply

/m dz U (2) U (z) = 1.

— O
e We define the nth moment via

+0o0
G — / de U(z)z" 0™ (x).

—
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» The Heisenberg Uncertainty Relation

» Consider a simple 1D Gaussian wave of the form
2

\Il(aj) = Wpe .
* Determine the constant ¥, via the normalization condition
+00 +00 -
/ dx ¥(z)U*(z) = \Ijoqf;*;f dz e~ 2*T =1
— 00 — OO

* By using the Gaussian integral

/OO dx e_wa = ﬁ
0 2v/b

we find

* = —2ax? * ™
0o s dz e = UoUgy /o = 1.
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view of Quantum Mechanics |

Heisenberg Uncertainty Relation

Therefore, we find

2a

The second mommby\
+0o0

e
(93 Q\Il* \IIOKIJ* dr 12e~20%° —

—oo —oo

We use the Fourier transforms

U(a) — \/% /:Odké(k)e”m

e :
CID(k) = \/%/_OO dx \If(sc)e_m.
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A
(A

» The Heisenberg Uncertainty Relation

» Compute the Fourier transform of the Gaussian
‘1]0 = —az? —ikx
P (k) - == dx e e
V2T
Vo

= e_k2/(4a)-\
v 2a

* Calculate the second moment in Fourier space

e = /m dk @ (k)k*@* (k)

— O

* + 00
- \IJOIIJO / dk k26—k2/(2a)
Ray.

== Q.

Is also a Gaussian!!!
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» The Heisenberg Uncertainty Relation

e We derived for the two moments

1
2
x = —
(z7) i
e — ..
* Therefore, we find for the product of the two second moments
2 2 1 A
<$ > (k ) = —, K € This is a property of the
4 Fourier transform!

 Note that the widths of the two Gaussians are

A @:2):2\1/a

Ak = (k2 = a.
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» The Heisenberg Uncertainty Relation

* For the product of the two widths we, therefore, obtain

1
AL — —.
2
» Using the de Broglie relation p = Nk, this becomes
h
AxAp = —.
2
» Note that this was derived for a Gaussian wave. In general we have
h

This is the famous uncertainty relation!

The proof will be discussed later.
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» The Continuity Equation

* Schrodinger’s equation is given by

oA h?
h— = —— AV + V (7, 1) V.
" o 2m D (T ) |
« Its complex conjugate is Assume a real potential
O * h2
R — AT V(R )T
ot 2m u )

* Remember that the probability density is P¥™.

» The time-derivative of the probability density is

Qw*ijaxp g 0Y 8\11

4 N

Use Schrodinger’s equation
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» The Continuity Equation

» With the help of the Schrodinger equation we derive

0 oU* oU
~ gyt = U [l
ot a Y o
U 72 U 2
_ LAV | L AT LV
—1h [ 2m i ] i 1h [ 2m i ]

IR IN S _W_ " praw 4 };/m/
21m

_ L (xm\y* \II*A\II

22m

» To rewrite this we consider the followmg (just product rule)

B (\N\IJ*) — VU.VU 4+ UAT

| Subtract these two

6 . (\11*6\1/) — 6\1}* . ﬁlIJ + \P*A\IJ - equations
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» The Continuity Equation

* By combining all this, we derive

%\P\IJ* A % (\qu* h fo*A\p)
— v [% (xy*ﬁxp B xﬁxp*)] |

» For the probability density we can use p=¥¥*.

» Furthermore, we define the particle current density via
n h
e (qj VU — OV )

27,m

» Using this above yields o :
5 ~ This is a typical

—p+ v j — (). € continuity equation.
ot
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» The Continuity Equation

* We found the continuity equation

0
atp—kv j=0.

* Integrating this over the volume V yields

3p -
dBT—Z—/dSTV°j.
/V ot v

« We rewrite the left-hand-side and for the right-hand-side we use the
divergence theorem to derive

g Describes
3 5 7 conservation of
dt d e — /8V ds - j. < particles!

Number of Particle flux through
particles in V' surface of the volume V



Review of Quantum Mechanics |

> Momentum in Wave Mechanics

* In classical mechanics momentum is given by

— — d—;
iy — m—r.

dt
» We now consider the following

(5) =m (7).

* To make this easier we consider the 1D case (x-direction).

« Using the definition of the first moment / expectation value yields
d
) — m— / de V*zW

— m/dw (6\1} W + \11*338—\11
ot

Use Schrodinger’s eq.
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> Momentum in Wave Mechanics

 After using the Schrodinger equation in the formula for the
expecation value, we obtain

O O
— U+ U*y
(p) m/dm(atm + 815)
m h? 02U
B ih % (Qm Ox? = _M>
m e :
- | (2m ol M)

3 52 520
2 dm(axz ‘I’_WW)

» To rewrite this we use integration by parts.
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> Momentum in Wave Mechanics

 After integration by parts we find

h D2 U* 02U
® = 5 [ d(G @”“I’—w”)

- 5/t us) - H (T sl

5/ (G- %")

» To continue we use integration by parts for the first term to obtain

h 8\11)

W = 53 dx (— pA\ 5
¢ L Momentum operator!
8 /
= /d:): \IJ*(— zh—)\IJ
ox
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> Momentum in Wave Mechanics

* We conclude that momentum is represented by the operator

0
D = —1h—.
P ox
 In 3D this becomes
p= —ihV.

 Note, we derived

(p)—/da: \P*(—ih(%)\lf—/dm \If*(ﬁ\l!).

* We can use again integration by parts to write

(p) = fdxqf(ma%)xp* :/dx\p(pq/)*.
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» Hermitian Operators

* We found for the momentum operator the following relation

(p) = /da: \I!*(ﬁ\ll) . /da: xp(ﬁxp)*.

In general we call an operator A an Hermitian operator if it satisfies

/da: o (Av) = /dm v(4e)

We defined the expectation value of an operator A via

(A) = /da: qf*(/’i\p).

The complex conjugate is then

(fi)* = /dﬂ? \I’(A\If) . Charles Hermite

We conclude: if an operator is Hermitian, its expectation value is real!
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» The Hamiltonian Operator

* We now go back to Schrodinger’s equation

o h?
h— = ——— AV + VU,
y ot 2m y
* We can write the right-hand side via
7Y E ('h6)2m44vm
ih— = — | —1
ot 2m -
1 A 2 ir William amilton
B (ﬁ) UL VU Sir William R. Hamilt
2m

7
= C—¢@+V)m.
2m

» The following operator is called the Hamiltonian operator

]:[ — i }%’ 2 + V. € See Classical Mechanics II for more
2m about the Hamiltonian!
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» Wave Functions in Momentum Space

* In 1D the Fourier transform is given by

e - \/% /;Oodkcp(k)eikw

T :
(ID(k) = \/%/_OO dx \If(x)e_m.

* However, in quantum mechanics we prefer to use momentum p=hk
instead of wave number k Therefore, we use

U(z) = F dpq> )eipe/n

o(p) = F " de 0 (z)e
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» Wave Functions in Momentum Space

* Check whether @(p) is normalized by performing the following
calculations

1 ,
/dp *(p)2(p) = 5= [dv /da; U*(z)e “p”/h/dx U (z')e~ P /M

— —/da: /d:c U™ (z )/dk e

* To evaluate the k-integral we use the (very important) relation

+ 00 +oo
/ dk *C—) —ong(z—ofy. [ S @iE—s0= s

e Therewith we derive

/dp P D = /dac /daz, U* ()W (2')d (x — x') = /dm U*(z)W(z) = 1.

Dirac’s delta
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» Wave Functions in Momentum Space
* By performing this type of calculation one can easily show that

p) = /+OO dp ®*(p) p @ (p)

— o0

o = [Car (o)

» We conclude that in momentum space

0 R
T =1h— and D = p.
dp
* In configuration space (x-space), on the other hand, we found
0
= 1 and p=—th—.
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» The Commutation Relation

» Problem: what happens if we have products of operators?

In classical physics we have xp = px. What about QM?

Consider the following product in configuration space

h O

Then, on the other hand, we have This is not the
same!
oAV ) /

s h O _h
pxqf—z%(xlﬂ)—;<qf—l—xam

Consider the following

h 0, h .
(b2 = p) ( +9a%)5 rps v = i
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» The Commutation Relation
e We found

(pz — &p) ¥ = —in .

This result does not depend on the wave function !

We define the commutation relation (short: the commutator) via

A, B] == AB - BA.

Therewith we can write
__ This is related to Heisenberg’s

[ﬁ ) QAT] = —ih. € uncertainty relation!

Additional rule used in QM (e.g., in the Hamiltonian operator)

pite) - KIS0
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» The Time-Dependent Schrodinger Equation

* We consider the one-dimensional but time-dependent equation

OV (x,1t) h? 020 (z,t)
= — \J :
ot om oa2 e

* Note, we consider a potential which does not depend on time!

1h

» Partial Differential Equations (PDEs) are usually solved via the
product ansatz

U(x,t) =T(t)u(x).
» Using this in the Schrodinger equation yields

or(t) h* 0%u(x)

) ot | 2m 0z

+ V(z)u(x)| T(t).
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» The Time-Dependent Schrodinger Equation

* To continue we divide the equation

, o1 (t) h? 0%u(x)
ihu(x) Py = [— ST + V(x)u(x)| T(t)
by u(x)T(t) to find
B OT'(t) h? 0%u(x) 1l
0 . _-i.
Y T(t) Ot [ 2m  Ox? T Viciaty u(x)
» Both sides of this equation depend on different variables, namely ¢
and x.

* Since this equation must be correct for all f and x, both sides are
constant.

* We denote this constant by E since it is related to energy.
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» The Time-Dependent Schrodinger Equation

» Therefore, we find two equations.

» The first equation is
1 9T(t)

NTE o

= I with FE = const.

* This can easily be written as

aT(t)  iE

B (7).
ot h (t)
» This very basic Ordinary Ditferential Equation (ODE) has the
solution

T(t) = Ce tB/P with C' = const.
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» The Time-Dependent Schrodinger Equation

* The second equation is

R dPu(z)
a + V(z)u(z) = Bu(z).
o+ V(@)u(z) = Bu(z)
* This equation is often called the time-independent Schrédinger
equation.

* Note, in 3D this equation is still a PDE with the three variables (x,1,z)
or in spherical coordinates (7,0, ®).

» This equation is a so-called eigenvalue equation.

« Alternatively, we can write this equation as

Hu

B 1 Operator Energy elgenvalues\ Eigenfunctions
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» The Time-Dependent Schrodinger Equation

* The solution of
provides the eigenvalues E as well as the eigenfunctions u(x).

* The eigenfunctions depend on E as well. Therefore, we often write

» Important: the solution can have a continuous or a discrete spectrum!

* Discrete spectrum means

E=F, with n=1223,..
and

i — 1., () with n = 1,235



|
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» The Time-Dependent Schrodinger Equation

In general we can have both, discrete and continuous eigenvalues.
The general solution has the form

U(x,t) = Z Cttr, () Ent/R +/dE C(E)ug(z)etFt/R,

Discrete contribution Continuous contribution

Note, some books use the following symbol if it is unknown
whether we have discrete, continuous, or combined spectra:

Y
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