> Operators in Quantum Mechanics

• The energy-momentum relation is given by

$$E = \frac{p^2}{2m} + V(\vec{r}, t).$$

Multiply this by the wave function to obtain

$$E\Psi = \frac{p^2}{2m}\Psi + V\Psi.$$

• Replace the quantities *E* and *p* by the following operators

$$E \to \hat{E} = i\hbar \frac{\partial}{\partial t}$$
 and $p_n \to \hat{p}_n = -i\hbar \frac{\partial}{\partial x_n}$.

 Using this formal replacement of classical quantities by the corresponding operators gives us

$$\hat{E}\Psi = \frac{\hat{p}^2}{2m}\Psi + V\Psi \quad \rightarrow \quad i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m}\Delta\Psi + V(\vec{r},t)\Psi.$$

Normalization and Moments

Assume that we describe the <u>bound state</u> of a single particle. Then
we require that the following normalization condition is satisfied

$$\int d^3r \ \Psi(\vec{r},t)\Psi^*(\vec{r},t) = 1.$$

- Consider the time-independent one-dimensional case. Then we have $\Psi(\vec{r},t)=\Psi(x).$
- In this case the normalization condition becomes simply

$$\int_{-\infty}^{+\infty} dx \ \Psi(x) \Psi^*(x) = 1.$$

• We define the *n*th moment via

$$\langle x^n \rangle = \int_{-\infty}^{+\infty} dx \ \Psi(x) x^n \Psi^*(x).$$

- ➤ The Heisenberg Uncertainty Relation
 - Consider a simple 1D Gaussian wave of the form

$$\Psi(x) = \Psi_0 e^{-ax^2}.$$

• Determine the constant Ψ_0 via the normalization condition

$$\int_{-\infty}^{+\infty} dx \ \Psi(x) \Psi^*(x) = \Psi_0 \Psi_0^* \int_{-\infty}^{+\infty} dx \ e^{-2ax^2} \stackrel{!}{=} 1.$$

By using the Gaussian integral

$$\int_0^\infty dx \ e^{-bx^2} = \frac{\sqrt{\pi}}{2\sqrt{b}}$$

we find

$$\Psi_0 \Psi_0^* \int_{-\infty}^{+\infty} dx \ e^{-2ax^2} = \Psi_0 \Psi_0^* \sqrt{\frac{\pi}{2a}} = 1.$$

- > The Heisenberg Uncertainty Relation
 - Therefore, we find

$$\Psi_0 \Psi_0^* = \sqrt{\frac{2a}{\pi}}.$$

The second moment is given by

$$\langle x^2 \rangle = \int_{-\infty}^{+\infty} dx \ \Psi(x) x^2 \Psi^*(x) = \Psi_0 \Psi_0^* \int_{-\infty}^{+\infty} dx \ x^2 e^{-2ax^2} = \frac{1}{4a}.$$

We use the <u>Fourier transforms</u>

$$\Psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dk \, \Phi(k) e^{ikx}$$

$$\Phi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx \, \Psi(x) e^{-ikx}.$$

- ➤ The Heisenberg Uncertainty Relation
 - Compute the Fourier transform of the Gaussian

$$\Phi(k) = \frac{\Psi_0}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx \, e^{-ax^2} e^{-ikx}$$
$$= \frac{\Psi_0}{\sqrt{2a}} e^{-k^2/(4a)}.$$

Is also a Gaussian!!!

Calculate the second moment in Fourier space

$$\langle k^2 \rangle = \int_{-\infty}^{+\infty} dk \, \Phi(k) k^2 \Phi^*(k)$$

$$= \frac{\Psi_0 \Psi_0^*}{2a} \int_{-\infty}^{+\infty} dk \, k^2 e^{-k^2/(2a)}$$

$$= a.$$

- ➤ The Heisenberg Uncertainty Relation
 - We derived for the two moments

$$\langle x^2 \rangle = \frac{1}{4a}$$
$$\langle k^2 \rangle = a.$$

• Therefore, we find for the product of the two second moments

$$\langle x^2 \rangle \langle k^2 \rangle = \frac{1}{4}$$
. This is a property of the Fourier transform!

Note that the widths of the two Gaussians are

$$\Delta x = \sqrt{\langle x^2 \rangle} = \frac{1}{2\sqrt{a}}$$

$$\Delta k = \sqrt{\langle k^2 \rangle} = \sqrt{a}.$$

- ➤ The Heisenberg Uncertainty Relation
 - For the product of the two widths we, therefore, obtain

$$\Delta x \Delta k = \frac{1}{2}.$$

• Using the de Broglie relation $p = \hbar k$, this becomes

$$\Delta x \Delta p = \frac{\hbar}{2}.$$

Note that this was derived for a Gaussian wave. In general we have

$$\Delta x \Delta p \ge \frac{\hbar}{2}.$$

- This is the famous uncertainty relation!
- The proof will be discussed later.

➤ The Continuity Equation

Schrödinger's equation is given by

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \Delta \Psi + V(\vec{r}, t) \Psi.$$

• Its complex conjugate is

Assume a real potential

$$-i\hbar\frac{\partial\Psi^*}{\partial t} = -\frac{\hbar^2}{2m}\Delta\Psi^* + V(\vec{r},t)\Psi^*.$$

- Remember that the probability density is $\Psi\Psi^*$.
- The time-derivative of the probability density is

$$\frac{\partial}{\partial t}\Psi\Psi^* = \Psi\frac{\partial\Psi^*}{\partial t} + \Psi^*\frac{\partial\Psi}{\partial t}.$$

➤ The Continuity Equation

With the help of the Schrödinger equation we derive

$$\begin{split} \frac{\partial}{\partial t} \Psi \Psi^* &= \Psi \frac{\partial \Psi^*}{\partial t} + \Psi^* \frac{\partial \Psi}{\partial t} \\ &= \frac{\Psi}{-i\hbar} \left[-\frac{\hbar^2}{2m} \Delta \Psi^* + V \Psi^* \right] + \frac{\Psi^*}{i\hbar} \left[-\frac{\hbar^2}{2m} \Delta \Psi + V \Psi \right] \\ &= \frac{\hbar}{2im} \Psi \Delta \Psi^* - \frac{1}{j\hbar} V \Psi^* \Psi - \frac{\hbar}{2im} \Psi^* \Delta \Psi + \frac{1}{j\hbar} V \Psi \Psi^* \\ &= \frac{\hbar}{2im} \left(\Psi \Delta \Psi^* - \Psi^* \Delta \Psi \right). \end{split}$$

To rewrite this we consider the following (just product rule)

$$\vec{\nabla} \cdot \left(\Psi \vec{\nabla} \Psi^* \right) = \vec{\nabla} \Psi \cdot \vec{\nabla} \Psi^* + \Psi \Delta \Psi^*$$

$$\vec{\nabla} \cdot \left(\Psi^* \vec{\nabla} \Psi \right) = \vec{\nabla} \Psi^* \cdot \vec{\nabla} \Psi + \Psi^* \Delta \Psi.$$
Subtract these two equations

➤ The Continuity Equation

By combining all this, we derive

$$\frac{\partial}{\partial t} \Psi \Psi^* = \frac{\hbar}{2im} \left(\Psi \Delta \Psi^* - \Psi^* \Delta \Psi \right)
= -\vec{\nabla} \cdot \left[\frac{\hbar}{2im} \left(\Psi^* \vec{\nabla} \Psi - \Psi \vec{\nabla} \Psi^* \right) \right].$$

- For the probability density we can use $\rho = \Psi \Psi^*$.
- Furthermore, we define the particle current density via

$$\vec{j} := \frac{\hbar}{2im} \left(\Psi^* \vec{\nabla} \Psi - \Psi \vec{\nabla} \Psi^* \right).$$

Using this above yields

$$\frac{\partial}{\partial t}\rho + \vec{\nabla} \cdot \vec{j} = 0.$$

This is a typical continuity equation.

➤ The Continuity Equation

We found the continuity equation

$$\frac{\partial}{\partial t}\rho + \vec{\nabla} \cdot \vec{j} = 0.$$

• Integrating this over the volume *V* yields

$$\int_{V} d^{3}r \, \frac{\partial \rho}{\partial t} = -\int_{V} d^{3}r \, \vec{\nabla} \cdot \vec{j}.$$

We rewrite the left-hand-side and for the right-hand-side we use the divergence theorem to derive

$$\frac{d}{dt} \int_{V} d^{3}r \; \rho = - \int_{\partial V} d\vec{S} \cdot \vec{j}.$$
 Describes conservation of particles!

Number of particles in *V*

Particle flux through surface of the volume *V*

➤ Momentum in Wave Mechanics

In classical mechanics momentum is given by

$$\vec{p} = m\vec{v} = m\frac{d}{dt}\vec{r}.$$

We now consider the following

$$\langle \vec{p} \rangle = m \frac{d}{dt} \langle \vec{r} \rangle.$$

- To make this easier we consider the 1D case (x-direction).
- Using the definition of the first moment / expectation value yields

$$\langle p \rangle = m \frac{d}{dt} \int dx \, \Psi^* x \Psi$$

$$= m \int dx \, \left(\frac{\partial \Psi^*}{\partial t} x \Psi + \Psi^* x \frac{\partial \Psi}{\partial t} \right).$$

Momentum in Wave Mechanics

 After using the Schrödinger equation in the formula for the expecation value, we obtain

$$\langle p \rangle = m \int dx \left(\frac{\partial \Psi^*}{\partial t} x \Psi + \Psi^* x \frac{\partial \Psi}{\partial t} \right)$$

$$= \frac{m}{i\hbar} \int dx \left(\frac{\hbar^2}{2m} \frac{\partial^2 \Psi^*}{\partial x^2} x \Psi - V \Psi^* x \Psi \right)$$

$$- \frac{m}{i\hbar} \int dx \left(\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} x \Psi^* - V \Psi x \Psi^* \right)$$

$$= \frac{\hbar}{2i} \int dx \left(\frac{\partial^2 \Psi^*}{\partial x^2} x \Psi - \frac{\partial^2 \Psi}{\partial x^2} x \Psi^* \right).$$

To rewrite this we use integration by parts.

Momentum in Wave Mechanics

After integration by parts we find

$$\langle p \rangle = \frac{\hbar}{2i} \int dx \left(\frac{\partial^2 \Psi^*}{\partial x^2} x \Psi - \frac{\partial^2 \Psi}{\partial x^2} x \Psi^* \right)$$

$$= -\frac{\hbar}{2i} \int dx \left[\frac{\partial \Psi^*}{\partial x} \left(\Psi + x \frac{\partial \Psi}{\partial x} \right) - \frac{\partial \Psi}{\partial x} \left(\Psi^* + x \frac{\partial \Psi^*}{\partial x} \right) \right]$$

$$= -\frac{\hbar}{2i} \int dx \left(\frac{\partial \Psi^*}{\partial x} \Psi - \frac{\partial \Psi}{\partial x} \Psi^* \right).$$

To continue we use integration by parts for the first term to obtain

$$\langle p \rangle = -\frac{\hbar}{2i} \int dx \left(-2\Psi^* \frac{\partial \Psi}{\partial x} \right)$$

$$= \int dx \, \Psi^* \left(-i\hbar \frac{\partial}{\partial x} \right) \Psi.$$
Momentum operator!

➤ Momentum in Wave Mechanics

We conclude that momentum is represented by the operator

$$\hat{p} = -i\hbar \frac{\partial}{\partial x}.$$

• In 3D this becomes

$$\hat{\vec{p}} = -i\hbar \vec{\nabla}.$$

• Note, we derived

$$\langle p \rangle = \int dx \ \Psi^* \Big(-i\hbar \frac{\partial}{\partial x} \Big) \Psi = \int dx \ \Psi^* \Big(\hat{p} \Psi \Big).$$

• We can use again integration by parts to write

$$\langle p \rangle = \int dx \ \Psi \left(i\hbar \frac{\partial}{\partial x} \right) \Psi^* = \int dx \ \Psi \left(\hat{p} \Psi \right)^*.$$

> Hermitian Operators

We found for the momentum operator the following relation

$$\langle p \rangle = \int dx \ \Psi^* \Big(\hat{p} \Psi \Big) = \int dx \ \Psi \Big(\hat{p} \Psi \Big)^*.$$

• In general we call an operator \hat{A} an Hermitian operator if it satisfies

$$\int dx \; \Phi^* \left(\hat{A} \Psi \right) = \int dx \; \Psi \left(\hat{A} \Phi \right)^*.$$

- We defined the expectation value of an operator \hat{A} via $\langle \hat{A} \rangle := \int dx \ \Psi^* \Big(\hat{A} \Psi \Big).$
- The complex conjugate is then

$$\langle \hat{A} \rangle^* = \int dx \ \Psi \Big(\hat{A} \Psi \Big)^*.$$

Charles Hermite

• We conclude: if an operator is Hermitian, its expectation value is real!

➤ The Hamiltonian Operator

We now go back to Schrödinger's equation

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \Delta \Psi + V \Psi.$$

• We can write the right-hand side via

$$i\hbar \frac{\partial \Psi}{\partial t} = \frac{1}{2m} \left(-i\hbar \vec{\nabla} \right)^2 \Psi + V \Psi$$
$$= \frac{1}{2m} \left(\hat{\vec{p}} \right)^2 \Psi + V \Psi$$
$$= \left(\frac{1}{2m} \hat{\vec{p}}^2 + V \right) \Psi.$$

Sir William R. Hamilton

The following operator is called the <u>Hamiltonian operator</u>

$$\hat{H} := \frac{1}{2m}\hat{\vec{p}}^2 + V$$
. See Classical Mechanics II for more

about the Hamiltonian!

- ➤ <u>Wave Functions in Momentum Space</u>
 - In 1D the Fourier transform is given by

$$\Psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dk \, \Phi(k) e^{ikx}$$

$$\Phi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx \, \Psi(x) e^{-ikx}.$$

• However, in quantum mechanics we prefer to use momentum $p=\hbar k$ instead of wave number k. Therefore, we use

$$\Psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} dp \, \Phi(p) e^{ipx/\hbar}$$

$$\Phi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} dx \, \Psi(x) e^{-ipx/\hbar}.$$

Ouantum Mechanics I

- Wave Functions in Momentum Space
 - Check whether $\Phi(p)$ is normalized by performing the following calculations

$$\int dp \, \Phi^*(p) \Phi(p) = \frac{1}{2\pi\hbar} \int dp \, \int dx \, \Psi^*(x) e^{ipx/\hbar} \int dx' \, \Psi(x') e^{-ipx'/\hbar}$$
$$= \frac{1}{2\pi} \int dx \, \int dx' \, \Psi^*(x) \Psi(x') \int dk \, e^{ik(x-x')}.$$

To evaluate the *k*-integral we use the (very important) relation

$$\int_{-\infty}^{+\infty} dk \; e^{ik(x-x')} = 2\pi\delta\left(x-x'\right). \qquad \int_{-\infty}^{+\infty} dx \, f(x) \, \delta\left(x-x_0\right) = f\left(x_0\right)$$
 Therewith we derive

$$\int dp \; \Phi^* \Phi = \int dx \; \int dx' \; \Psi^*(x) \Psi(x') \delta(x - x') = \int dx \; \Psi^*(x) \Psi(x) = 1.$$

- Wave Functions in Momentum Space
 - By performing this type of calculation one can easily show that

$$\langle p \rangle = \int_{-\infty}^{+\infty} dp \; \Phi^*(p) \; p \; \Phi(p)$$

$$\langle x \rangle = \int_{-\infty}^{+\infty} dp \, \Phi^* \left(i\hbar \frac{\partial}{\partial p} \right) \Phi.$$

• We conclude that in momentum space

$$\hat{x} = i\hbar \frac{\partial}{\partial p}$$
 and $\hat{p} = p$.

• In configuration space (*x*-space), on the other hand, we found

$$\hat{x} = x$$
 and $\hat{p} = -i\hbar \frac{\partial}{\partial x}$.

➤ The Commutation Relation

- Problem: what happens if we have products of operators?
- In classical physics we have xp = px. What about QM?
- Consider the following product in configuration space

$$\hat{x}\hat{p}\Psi = x\frac{\hbar}{i}\frac{\partial}{\partial x}\Psi. \quad \longleftarrow$$

• Then, on the other hand, we have

$$\hat{p}\hat{x}\Psi = \frac{\hbar}{i}\frac{\partial}{\partial x}(x\Psi) = \frac{\hbar}{i}\left(\Psi + x\frac{\partial\Psi}{\partial x}\right).$$

Consider the following

$$(\hat{p}\hat{x} - \hat{x}\hat{p})\Psi = \frac{\hbar}{i}\left(\Psi + x\frac{\partial\Psi}{\partial x}\right) - x\frac{\hbar}{i}\frac{\partial}{\partial x}\Psi = -i\hbar\Psi.$$

➤ The Commutation Relation

We found

$$(\hat{p}\hat{x} - \hat{x}\hat{p})\Psi = -i\hbar\Psi.$$

- This result does not depend on the wave function Ψ!
- We define the commutation relation (short: the commutator) via

$$[\hat{A}, \hat{B}] := \hat{A}\hat{B} - \hat{B}\hat{A}.$$

Therewith we can write

$$[\hat{p},\hat{x}] = -i\hbar.$$

This is related to Heisenberg's uncertainty relation!

• Additional rule used in QM (e.g., in the Hamiltonian operator)

$$pf(x) \rightarrow \frac{\hat{p}f(x) + f(x)\hat{p}}{2}.$$

- > The Time-Dependent Schrödinger Equation
 - We consider the one-dimensional but time-dependent equation

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t).$$

- Note, we consider a potential which does not depend on time!
- Partial Differential Equations (PDEs) are usually solved via the product *ansatz*

$$\Psi(x,t) = T(t)u(x).$$

• Using this in the Schrödinger equation yields

$$i\hbar u(x)\frac{\partial T(t)}{\partial t} = \left[-\frac{\hbar^2}{2m}\frac{\partial^2 u(x)}{\partial x^2} + V(x)u(x)\right]T(t).$$

- ➤ The Time-Dependent Schrödinger Equation
 - To continue we divide the equation

$$i\hbar u(x)\frac{\partial T(t)}{\partial t} = \left[-\frac{\hbar^2}{2m}\frac{\partial^2 u(x)}{\partial x^2} + V(x)u(x)\right]T(t)$$

by u(x)T(t) to find

$$i\hbar \frac{1}{T(t)} \frac{\partial T(t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2 u(x)}{\partial x^2} + V(x)u(x) \right] \frac{1}{u(x)}.$$

- Both sides of this equation depend on different variables, namely *t* and *x*.
- Since this equation must be correct for all *t* and *x*, both sides are constant.
- We denote this constant by E since it is related to energy.

- ➤ The Time-Dependent Schrödinger Equation
 - Therefore, we find two equations.
 - The first equation is

$$i\hbar \frac{1}{T(t)} \frac{\partial T(t)}{\partial t} = E$$
 with $E = const.$

This can easily be written as

$$\frac{\partial T(t)}{\partial t} = -\frac{iE}{\hbar}T(t).$$

This very basic Ordinary Differential Equation (ODE) has the solution

$$T(t) = Ce^{-iEt/\hbar}$$
 with $C = const.$

- ➤ The Time-Dependent Schrödinger Equation
 - The second equation is

$$-\frac{\hbar^2}{2m}\frac{d^2u(x)}{dx^2} + V(x)u(x) = Eu(x).$$

- This equation is often called the <u>time-independent Schrödinger</u> equation.
- Note, in 3D this equation is still a PDE with the three variables (x,y,z) or in spherical coordinates (r,Θ,Φ) .
- This equation is a so-called <u>eigenvalue equation</u>.
- Alternatively, we can write this equation as

- ➤ The Time-Dependent Schrödinger Equation
 - The solution of

$$\hat{H}u(x) = Eu(x)$$

provides the eigenvalues E as well as the eigenfunctions u(x).

• The eigenfunctions depend on *E* as well. Therefore, we often write

$$\hat{H}u_E(x) = Eu_E(x)$$

- Important: the solution can have a continuous or a discrete spectrum!
- Discrete spectrum means

$$E=E_n \qquad {
m with} \qquad n=1,2,3,...$$
 and
$$u(x)=u_n(x) \qquad {
m with} \qquad n=1,2,3,....$$

- ➤ The Time-Dependent Schrödinger Equation
 - In general we can have both, discrete and continuous eigenvalues.
 - The general solution has the form

$$\Psi(x,t) = \sum_{n} C_n u_n(x) e^{iE_n t/\hbar} + \int dE \ C(E) u_E(x) e^{iEt/\hbar}.$$

Discrete contribution

Continuous contribution

 Note, some books use the following symbol if it is unknown whether we have discrete, continuous, or combined spectra:

