
➢ Operators in Quantum Mechanics

• The energy-momentum relation is given by

• Multiply this by the wave function to obtain

• Replace the quantities E and p by the following operators

• Using this formal replacement of classical quantities by the 
corresponding operators gives us



➢ Normalization and Moments

• Assume that we describe the bound state of a single particle. Then 
we require that the following normalization condition is satisfied

• Consider the time-independent one-dimensional case. Then we have

• In this case the normalization condition becomes simply

• We define the nth moment via



➢ The Heisenberg Uncertainty Relation

• Consider a simple 1D Gaussian wave of the form

• Determine the constant Ψ0 via the normalization condition

• By using the Gaussian integral

we find



➢ The Heisenberg Uncertainty Relation

• Therefore, we find

• The second moment is given by

• We use the Fourier transforms



➢ The Heisenberg Uncertainty Relation

• Compute the Fourier transform of the Gaussian

• Calculate the second moment in Fourier space

Is also a Gaussian!!!



➢ The Heisenberg Uncertainty Relation

• We derived for the two moments

• Therefore, we find for the product of the two second moments

• Note that the widths of the two Gaussians are

This is a property of the 
Fourier transform!



➢ The Heisenberg Uncertainty Relation

• For the product of the two widths we, therefore, obtain

• Using the de Broglie relation               , this becomes

• Note that this was derived for a Gaussian wave. In general we have

• This is the famous uncertainty relation!

• The proof will be discussed later.



➢ The Continuity Equation

• Schrödinger‘s equation is given by

• Its complex conjugate is

• Remember that the probability density is ΨΨ*.

• The time-derivative of the probability density is

Assume a real potential

Use Schrödinger‘s equation



➢ The Continuity Equation

• With the help of the Schrödinger equation we derive

• To rewrite this we consider the following (just product rule)

Subtract these two 
equations



➢ The Continuity Equation

• By combining all this, we derive

• For the probability density we can use ρ=ΨΨ*.

• Furthermore, we define the particle current density via

• Using this above yields
This is a typical 
continuity equation.



➢ The Continuity Equation

• We found the continuity equation

• Integrating this over the volume V yields

• We rewrite the left-hand-side and for the right-hand-side we use the 
divergence theorem to derive

Number of 
particles in V

Particle flux through 
surface of the volume V

Describes 
conservation of 
particles!



➢ Momentum in Wave Mechanics

• In classical mechanics momentum is given by

• We now consider the following

• To make this easier we consider the 1D case (x-direction).

• Using the definition of the first moment / expectation value yields

Use Schrödinger‘s eq.



➢ Momentum in Wave Mechanics

• After using the Schrödinger equation in the formula for the 
expecation value, we obtain

• To rewrite this we use integration by parts.



➢ Momentum in Wave Mechanics

• After integration by parts we find

• To continue we use integration by parts for the first term to obtain

Momentum operator!



➢ Momentum in Wave Mechanics

• We conclude that momentum is represented by the operator

• In 3D this becomes

• Note, we derived

• We can use again integration by parts to write



➢ Hermitian Operators

• We found for the momentum operator the following relation

• In general we call an operator Â an Hermitian operator if it satisfies

• We defined the expectation value of an operator Â via

• The complex conjugate is then

• We conclude: if an operator is Hermitian, its expectation value is real!

Charles Hermite



➢ The Hamiltonian Operator

• We now go back to Schrödinger‘s equation

• We can write the right-hand side via

• The following operator is called the Hamiltonian operator

See Classical Mechanics II for more 
about the Hamiltonian!

Sir William R. Hamilton



➢ Wave Functions in Momentum Space

• In 1D the Fourier transform is given by

• However, in quantum mechanics we prefer to use momentum p=ћk
instead of wave number k. Therefore, we use



➢ Wave Functions in Momentum Space

• Check whether Ф(p) is normalized by performing the following 
calculations

• To evaluate the k-integral we use the (very important) relation

• Therewith we derive
Dirac‘s delta



➢ Wave Functions in Momentum Space

• By performing this type of calculation one can easily show that

• We conclude that in momentum space

• In configuration space (x-space), on the other hand, we found



➢ The Commutation Relation

• Problem: what happens if we have products of operators?

• In classical physics we have xp = px. What about QM?

• Consider the following product in configuration space

• Then, on the other hand, we have

• Consider the following

This is not the 
same!



➢ The Commutation Relation

• We found

• This result does not depend on the wave function Ψ!

• We define the commutation relation (short: the commutator) via

• Therewith we can write

• Additional rule used in QM (e.g., in the Hamiltonian operator)

This is related to Heisenberg‘s 
uncertainty relation!



➢ The Time-Dependent Schrödinger Equation

• We consider the one-dimensional but time-dependent equation

• Note, we consider a potential which does not depend on time!

• Partial Differential Equations (PDEs) are usually solved via the 
product ansatz

• Using this in the Schrödinger equation yields



➢ The Time-Dependent Schrödinger Equation

• To continue we divide the equation

by u(x)T(t) to find

• Both sides of this equation depend on different variables, namely t
and x.

• Since this equation must be correct for all t and x, both sides are 
constant.

• We denote this constant by E since it is related to energy.



➢ The Time-Dependent Schrödinger Equation

• Therefore, we find two equations.

• The first equation is

• This can easily be written as

• This very basic Ordinary Differential Equation (ODE) has the 
solution



➢ The Time-Dependent Schrödinger Equation

• The second equation is

• This equation is often called the time-independent Schrödinger 
equation.

• Note, in 3D this equation is still a PDE with the three variables (x,y,z) 
or in spherical coordinates (r,Θ,Ф).

• This equation is a so-called eigenvalue equation.

• Alternatively, we can write this equation as

Hamiltonian operator Energy eigenvalues Eigenfunctions



➢ The Time-Dependent Schrödinger Equation

• The solution of 

provides the eigenvalues E as well as the eigenfunctions u(x).

• The eigenfunctions depend on E as well. Therefore, we often write

• Important: the solution can have a continuous or a discrete spectrum!

• Discrete spectrum means

and



➢ The Time-Dependent Schrödinger Equation

• In general we can have both, discrete and continuous eigenvalues.

• The general solution has the form

• Note, some books use the following symbol if it is unknown 
whether we have discrete, continuous, or combined spectra:

Discrete contribution Continuous contribution
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