
➢ Review: The Non-Degenerated Case

• Perturbation theory is a very powerful tool used to solve problems in 
theoretical physics. It is used to find approximative solutions in cases 
where an exact solution is not possible.

• Assume that we know the exact solution of the original problem

• Let‘s assume the new Hamiltonian operator is given by

• This means we are looking for the solution of

• We assume that the perturbing potential ෠𝑉 is small.

perturbing potential!



➢ Review: The Non-Degenerated Case

• We often approximate

• This means we go up to second-order in the energy and up to first 
order in the states.

• Note: everything we have done so far is only valid if

First-order 
perturbation 
theory!

Second-order 
perturbation 
theory!



➢ Degenerate Perturbation Theory

• Assume that N ≥ 2 states have the same (unperturbed)     so that

• The       are the degenerate states and є the corresponding energies.

• In the following we are only interested in first-order corrections.

• What we have used before is

and

• Furthermore this does not work anymore!



➢ Degenerate Perturbation Theory

• Let‘s do the following

• For energy we use

• Schrödinger‘s equation is

• Therein we now use our two expansions and keep terms in lowest 
and first order in λ.

all states with same 
energy contribute

as before, but we split the sum

This notation means 
sum over all non-
degenerate states



➢ Degenerate Perturbation Theory

• We find

• Up to first order this becomes
use eigenvalue 
equation



➢ Degenerate Perturbation Theory

• After using the eigenvalue equation and cancelling the λ, we find

• We now multiply this from the left with one of the degenerate states, 
namely

• Note, we have

• We get



➢ Degenerate Perturbation Theory

• We found

• We can write this as the a matrix equation of the form

• From this we obtain the eigenvectors c and eigenvalues E(1).

• We find the corrections

matrix of the potential operator

eigenvalue with number γ α-component of eigenvector with number γ



➢ A Simple Example

• We consider a case where the quantum system has only two 
unperturbed states so that

• We now add a perturbing potential so that the new Hamiltonian is

• The corresponding Schrödinger equation can be written as

• In the following we only determine the (perturbed) energy 
eigenvalues En and don‘t care about the states.

• The perturbed states can be expanded via



➢ A Simple Example

• Therewith, Schrödinger‘s equation can be written as

• Multiplying this from the left by       yields

• Furthermore, we can multiply the equation above from the left 
with       to obtain

• To continue we use the notation
matrix elements of the 
perturbing potential operator



➢ A Simple Example

• Furthermore, our two equations can be written as the following 
matrix equation

• Furthermore, we consider a potential so that V11=V22=0.

• Non-trivial solutions are obtained if the determinant of the above 
matrix is zero. Therefore, we find

• This can easily be written as



➢ A Simple Example

• This quadratic equation has the solutions

• Note, we looked at a very special case but our result for the energy is 
exact.

• In the following we look at the non-degenerated case meaning that 
we assume є1≠є2.

• In this case we can write



➢ A Simple Example

• To continue we assume that λ is small and we Taylor-expand our 
result to find

• From this we can easily read off



➢ A Simple Example

• We found

• Compare this with non-degenerated perturbation theory

• We can easily see that the two results are the same.

• What about the degenerate case where we have є1=є2?

• We derived the exact result



➢ A Simple Example

• For є1=є2, corresponding to the dengenerate case, our formula

simplifies to

• For the degenerated case we derived in first order perturbation theory

• Note, here we have used the matrix V of the perturbing potential with 
respect to the unperturbed states.

• E(1) corresponds to the first order energy corrections.



➢ A Simple Example

• We can write the matrix equation out and make the same 
assumptions concerning V as above.

• We find

• Setting the determinant equal to zero gives us

• Therefore, the corresponding (corrected) energy eigenvalues are

in agreement with the exact result derived above.



➢ The Stark Effect

• This is an application of perturbation theory.

• The effect is named after physicist Johannes Stark who received the 
Nobel Prize of Physics in 1919.

• Consider the effect of an external electric field on the energy levels of 
a hydrogen-like atom.

• The unperturbed Hamiltonian operator is given by

• The perturbing potential is in our case

• Here we assumed that the electric field is constant and points into 
the z-direction.

Coulomb potential 
in SI units.



➢ The Stark Effect

• We start our investigations by considering the ground state and use 
first-order perturbation theory.

• The unperturbed energy eigenvalues are

• Remember

• For n=1 (ground state) we have

• This also means that m=0.



➢ The Stark Effect

• We conclude that we obtain the ground state for only one set of 
quantum numbers, namely

• Therefore, the ground state is not degenerate.

• In the considered case we find in first-order perturbation theory

• In the following we evaluate this in position space

• For central potential problems such as the Coulomb potential we had

quantum numbers 
are n=1, ℓ=0, m=0.

spherical harmonics



➢ The Stark Effect

• In our case we only need

• Using this in our integral yields

• The Ф–integral gives 2π and the Θ-integral is

• Therefore we find

• There is no effect in first-order perturbation theory!



➢ The Stark Effect

• To find an effect we need to perform second-order perturbation 
theory.

• The corresponding energy eigenvalues are now computed via

• Again we consider the effect on the ground state and, thus, we need

• This means we need to compute the matrix elements



➢ The Stark Effect

• We need to evaluate

• Therein we use

• Furthermore, we employ

• Therewith our integral turns into



➢ The Stark Effect

• To simplify this we use the orthogonality relation for the spherical 
harmonics

• Using this in our integral yields

• Because of the two Kronecker deltas therein we find

We need only ℓ=1.



➢ The Stark Effect

• We found

• Therein we have

• Furthermore, we use another approximation, namely

• Note, this is an additional approximation usually not used in 
perturbation theory.

Consider only 
contributions 
with n=2.



➢ The Stark Effect

• We derived before

• We now compute

• The two needed radial functions can be looked up:



➢ The Stark Effect

• Therewith our integral becomes

• We need to evaluate an integral of the form



➢ The Stark Effect

• In our case we have n=4 and α=(3Z)/(2aB).

• Therefore, we obtain

• Using this in our formula for the matrix element yields

• Therewith, the second-order energy corrections become



➢ The Stark Effect

• We also need to consider the difference of the two unperturbed 
energy values.

• We found for the unperturbed energies

• Using this for our case yields

• Therewith the second-order energy corrections become for Z=1



➢ The Stark Effect

• For the fine-structure constant we can use

• By multiplying these two formulas with each other we can easily 
derive (in SI units)

• Using this in our formula to replace the fine-structure constant yields



➢ The Stark Effect

• This can be written as

• This result was obtained by taking into account only the state

• Taking into account all bound states gives

• In both cases we have

• Therefore, we call this the quadratic Stark effect!
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