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➢ The Non-Degenerated Case

• Perturbation theory is a very powerful tool used to solve problems in 
theoretical physics. It is used to find approximative solutions in cases 
where an exact solution is not possible.

• Assume that we know the exact solution of the original problem

• Let‘s assume the new Hamiltonian operator is given by

• This means we are looking for the solution of

• We assume that the perturbing potential ෠𝑉 is small.

perturbing potential!



➢ The Non-Degenerated Case

• It is convenient to write

• Here λ is a small parameter.

• We expand

• For λ=0 we find the (exact) unperturbed case.

• By setting λ=1 we find the solution to our problem.



➢ The Non-Degenerated Case

• We can write

• With our two expansions this becomes

• After factoring this out, we obtain



➢ The Non-Degenerated Case

• We derived

• From this we can read off the terms zeroth order in λ:

• First order in λ we have:

• And second order in λ we obtain



➢ The Non-Degenerated Case

• In the same way we could obtain higher order terms but in this 
course we only do perturbation theory up to second order.

• Note, the        form a complete set. Therefore, we can expand

• On the previous slide we found in first order

• With our expansion this becomes



➢ The Non-Degenerated Case

• The unperturbed Hamiltonian acts on the unperturbed eigenket

• We can use the unperturbed eigenvalues therein to obtain

• We can easily rearrange this to write

• Multiplying this from the left with the unperturbed eigenbra       yields



➢ The Non-Degenerated Case

• In the latter equation we use the orthonormality relation

• We can easily derive

• After evaluating the sum we find

• For the case k=n this becomes

• This is the first important result. These are (first-order) corrections to 
the energy eigenvalues!



➢ The Non-Degenerated Case

• For general k and n we have

• If n≠k this becomes

• This can easily be rewritten to obtain for the expansion coefficients

• Problem: this does not work for

• This means that we need to discuss the degenerated case separately!



➢ The Non-Degenerated Case

• Furthermore, we cannot determine the coeffcients ann
(1)!

• Remember, we have used the expansion

• With the obtained coefficients this can be written as

• Up to first order in λ we, therefore, find

• The only quantity therein which is not known is the coefficient ann
(1)!



➢ The Non-Degenerated Case

• However, the new (corrected) states need to be normalized

• Therein we use the expansion

• For the needed bra we can simply use

• Those two formulas can be used in the normalization condition.



➢ The Non-Degenerated Case

• Up to first order in λ we find

• This can be simplified significantly by using that the unperturbed 
states are orthonormal

• Therewith, we obtain

=0 =0



➢ The Non-Degenerated Case

• We derived

• This means that up to the considered order

• We conclude that the coefficients ann
(1) are imaginary.

• Therefore, we can write

• We can use this result in our expansion



➢ The Non-Degenerated Case

• We find

• Furthermore, we can write

• We obtain

• However, multiplying a state with a phase does not change the 
physics.



➢ The Non-Degenerated Case

• Therefore, we can set

• This corresponds to

• Therewith our expansion becomes

• The corrections to energy are

First-order 
perturbation 
theory!



➢ The Non-Degenerated Case

• We now determine the second-order corrections to the energies.

• Previously we have derived the relation

• Therein we expand

• Using this in our formula above yields



➢ The Non-Degenerated Case

• We derived

• First we can use the unperturbed eigenvalue equation.

• Thereafter we multiply this equation from the left with        to obtain

• Therein we use orthonormality of the unperturbed states.



➢ The Non-Degenerated Case

• We find

• The sums can easily be evaluated to get

• After rearranging this becomes

sum is over all m and 
contains the case m=n.



➢ The Non-Degenerated Case

• In the latter result we can use

• Therewith, our formula turns into

=0



➢ The Non-Degenerated Case

• We often approximate

• This means we go up to second-order in the energy and up to first 
order in the states.

• Note: everything we have done so far is only valid if

First-order 
perturbation 
theory!

Second-order 
perturbation 
theory!



➢ Degenerate Perturbation Theory

• Assume that N ≥ 2 states have the same (unperturbed)     so that

• The       are the degenerate states and ε the corresponding energies.

• In the following we are only interested in first-order corrections.

• What we have used before is

and

• Furthermore this does not work anymore!



➢ Degenerate Perturbation Theory

• Let‘s do the following

• For energy we use

• Schrödinger‘s equation is

• Therein we now use our two expansions and keep terms in lowest 
and first order in λ.

all states with same 
energy contribute

as before, but we split the sum

This notation means 
sum over all non-
degenerate states



➢ Degenerate Perturbation Theory

• We find

• Up to first order this becomes
use eigenvalue 
equation



➢ Degenerate Perturbation Theory

• After using the eigenvalue equation and cancelling the λ, we find

• We now multiply this from the left with one of the degenerate states, 
namely

• Note, we have

• We get



➢ Degenerate Perturbation Theory

• We found

• We can write this as the a matrix equation of the form

• From this we obtain the eigenvectors c and eigenvalues E(1).

• We find the corrections

matrix of the potential operator

eigenvalue with number γ α-component of eigenvector with number γ



➢ A Simple Example

• We consider a case where the quantum system has only two 
unperturbed states so that

• We now add a perturbing potential so that the new Hamiltonian is

• The corresponding Schrödinger equation is

• In the following we only determine the (perturbed) energy 
eigenvalues En and don‘t care about the states.

• The perturbed states can be expanded via



➢ A Simple Example

• Therewith, Schrödinger‘s equation can be written as

• Multiplying this from the left by       yields

• Furthermore, we can multiply the equation above from the left 
with       to obtain

• To continue we use the notation



➢ A Simple Example

• Furthermore, our two equations can be written as the following 
matrix equation

• Furthermore, we consider a potential so that V11=V22=0.

• Non-trivial solutions are obtained if the determinant of the above 
matrix is zero. Therefore, we find

• This can easily be written as



➢ A Simple Example

• This quadratic equation has the solutions

• Note, we looked at a very special case but our result for the energy is 
exact.

• In the following we look at the non-degenerated case meaning that 
ε1≠ε2.

• In this case we can write



➢ A Simple Example

• To continue we assume that λ is small and we Taylor-expand our 
result to find

• From this we can easily read off



➢ A Simple Example

• We found

• Compare this with non-degenerated perturbation theory

• We can easily see that the two results are the same.

• What about the degenerated case where we have ε1=ε2?

• We derived the exact result



➢ A Simple Example

• For ε1=ε2 our formula

simplifies to

• For the degenerated case we derived

• Note, here we have used the matrix V of the perturbing potential 
with respect to the unperturbed states.

• E(1) corresponds to the first order energy corrections.



➢ A Simple Example

• We can write the matrix equation out and make the same 
assumption concerning V as above.

• We find

• Setting the determinant equal to zero gives us

• Therefore, the corresponding (corrected) energy eigenvalues are

in agreement with the exact result derived above.
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