Professor (this week)

Best way to reach me!

Dr. Andreas Shalchi

Office: 219 Allen Building

Email: Andreas.Shalchi@umanitoba.ca

Classes:

Monday & Wednesday 9:30-10:20, 527 Buller

Office Hours:

Monday 10:30-11:30

Course Website:

www2.physics.umanitoba.ca/u/shalchi/PHYS3386

➤ The Non-Degenerated Case

- Perturbation theory is a very powerful tool used to solve problems in theoretical physics. It is used to <u>find approximative solutions</u> in cases where an exact solution is not possible.
- Assume that we know the exact solution of the original problem $\hat{H}_0|n\rangle=\epsilon_n|n\rangle.$
- Let's assume the new Hamiltonian operator is given by $\hat{H} = \hat{H}_0 + \hat{V}$. Perturbing potential!
- This means we are looking for the solution of $\hat{H}|\psi_n\rangle=E_n|\psi_n\rangle.$
- We assume that the perturbing potential \hat{V} is small.

➤ The Non-Degenerated Case

It is convenient to write

$$\hat{H} = \hat{H}_0 + \lambda \hat{V}.$$

- Here λ is a small parameter.
- We expand

$$E_n(\lambda) = \epsilon_n + \sum_{\nu=1}^{\infty} \lambda^{\nu} E_n^{(\nu)},$$

$$|\psi_n(\lambda)\rangle = |n\rangle + \sum_{\nu=1}^{\infty} \lambda^{\nu} |\psi_n^{(\nu)}\rangle.$$

- For λ =0 we find the (exact) unperturbed case.
- By setting λ =1 we find the solution to our problem.

- ➤ The Non-Degenerated Case
 - We can write

$$\hat{H}|\psi_n\rangle = (\hat{H}_0 + \lambda \hat{V})|\psi_n\rangle = E_n|\psi_n\rangle.$$

With our two expansions this becomes

$$(\hat{H}_0 + \lambda \hat{V})(|n\rangle + \sum_{\nu} \lambda^{\nu} |\psi_n^{(\nu)}\rangle)$$

$$= \left(\epsilon_n + \sum_{\nu} \lambda^{\nu} E_n^{(\nu)}\right) \left(\left|n\right\rangle + \sum_{\nu} \lambda^{\nu} \left|\psi_n^{(\nu)}\right\rangle\right).$$

After factoring this out, we obtain

$$\hat{H}_0 |n\rangle + \sum_{\nu} \lambda^{\nu} \hat{H}_0 |\psi_n^{(\nu)}\rangle + \lambda \hat{V} |n\rangle + \sum_{\nu} \lambda^{\nu+1} \hat{V} |\psi_n^{(\nu)}\rangle$$

$$= \epsilon_n |n\rangle + \epsilon_n \sum_{\nu} \lambda^{\nu} |\psi_n^{(\nu)}\rangle + \sum_{\nu} \lambda^{\nu} E_n^{(\nu)} |n\rangle + \sum_{\nu,\mu} \lambda^{\nu+\mu} E_n^{(\nu)} |\psi_n^{(\mu)}\rangle.$$

Remember:

$$E_n = \epsilon_n + \sum_{\nu} \lambda^{\nu} E_n^{(\nu)}$$

$$|\psi_n\rangle = |n\rangle + \sum_{\nu} \lambda^{\nu} |\psi_n^{(\nu)}\rangle$$

➤ The Non-Degenerated Case

We derived

$$|\hat{H}_0|n\rangle + \sum_{\nu=1}^{\infty} \lambda^{\nu} \hat{H}_0|\psi_n^{(\nu)}\rangle + \lambda \hat{V}|n\rangle + \sum_{\nu=1}^{\infty} \lambda^{\nu+1} \hat{V}|\psi_n^{(\nu)}\rangle$$

$$= \epsilon_n |n\rangle + \epsilon_n \sum_{\nu=1}^{\infty} \lambda^{\nu} |\psi_n^{(\nu)}\rangle + \sum_{\nu=1}^{\infty} \lambda^{\nu} E_n^{(\nu)} |n\rangle + \sum_{\nu,\mu=1}^{\infty} \lambda^{\nu+\mu} E_n^{(\nu)} |\psi_n^{(\mu)}\rangle.$$

• From this we can read off the terms zeroth order in λ :

$$\hat{H}_0 |n\rangle = \epsilon_n |n\rangle.$$

• First order in λ we have:

$$\hat{H}_0 |\psi_n^{(1)}\rangle + \hat{V}|n\rangle = \epsilon_n |\psi_n^{(1)}\rangle + E_n^{(1)}|n\rangle.$$

• And second order in λ we obtain

$$\hat{H}_0 |\psi_n^{(2)}\rangle + \hat{V} |\psi_n^{(1)}\rangle = \epsilon_n |\psi_n^{(2)}\rangle + E_n^{(2)} |n\rangle + E_n^{(1)} |\psi_n^{(1)}\rangle.$$

➤ The Non-Degenerated Case

- In the same way we could obtain higher order terms but in this course we only do perturbation theory up to second order.
- Note, the $|n\rangle$ form a <u>complete set</u>. Therefore, we can expand

$$\left|\psi_n^{(1)}\right\rangle = \sum_m a_{nm}^{(1)} \left|m\right\rangle.$$

On the previous slide we found in <u>first order</u>

$$\hat{H}_0 |\psi_n^{(1)}\rangle + \hat{V}|n\rangle = \epsilon_n |\psi_n^{(1)}\rangle + E_n^{(1)}|n\rangle.$$

With our expansion this becomes

$$\hat{H}_0 \sum_{m} a_{nm}^{(1)} |m\rangle + \hat{V}|n\rangle = \epsilon_n \sum_{m} a_{nm}^{(1)} |m\rangle + E_n^{(1)} |n\rangle.$$

➤ The Non-Degenerated Case

• The unperturbed Hamiltonian acts on the unperturbed eigenket

$$\sum_{m} a_{nm}^{(1)} \hat{H}_0 | m \rangle + \hat{V} | n \rangle = \epsilon_n \sum_{m} a_{nm}^{(1)} | m \rangle + E_n^{(1)} | n \rangle.$$

We can use the unperturbed eigenvalues therein to obtain

$$\sum_{m} a_{nm}^{(1)} \epsilon_{m} |m\rangle + \hat{V}|n\rangle = \epsilon_{n} \sum_{m} a_{nm}^{(1)} |m\rangle + E_{n}^{(1)}|n\rangle.$$

We can easily rearrange this to write

$$\sum_{m} (\epsilon_n - \epsilon_m) a_{nm}^{(1)} |m\rangle + E_n^{(1)} |n\rangle = \hat{V} |n\rangle.$$

• Multiplying this from the left with the unperturbed eigenbra $\langle k |$ yields

$$\sum_{m} (\epsilon_{n} - \epsilon_{m}) a_{nm}^{(1)} \langle k | m \rangle + E_{n}^{(1)} \langle k | n \rangle = \langle k | \hat{V} | n \rangle.$$

➤ The Non-Degenerated Case

- In the latter equation we use the <u>orthonormality relation</u> $\langle k|m\rangle = \delta_{km}.$
- We can easily derive

$$\sum_{m} (\epsilon_n - \epsilon_m) a_{nm}^{(1)} \delta_{km} + E_n^{(1)} \delta_{kn} = \langle k | \hat{V} | n \rangle.$$

After evaluating the sum we find

$$(\epsilon_n - \epsilon_k)a_{nk}^{(1)} + E_n^{(1)}\delta_{kn} = \langle k|\hat{V}|n\rangle.$$

• For the case k=n this becomes

$$E_n^{(1)} = \langle n | \hat{V} | n \rangle.$$

• This is the first important result. These are (first-order) corrections to the energy eigenvalues!

➤ The Non-Degenerated Case

For general k and n we have

$$(\epsilon_n - \epsilon_k)a_{nk}^{(1)} + E_n^{(1)}\delta_{kn} = \langle k|\hat{V}|n\rangle.$$

• If $n \neq k$ this becomes

$$(\epsilon_n - \epsilon_k) a_{nk}^{(1)} = \langle k | \hat{V} | n \rangle.$$

• This can easily be rewritten to obtain for the expansion coefficients

$$a_{nk}^{(1)} = \frac{\langle k|\hat{V}|n\rangle}{\epsilon_n - \epsilon_k}$$
 if $n \neq k$.

• Problem: this does not work for

$$\epsilon_n = \epsilon_k$$
 if $n \neq k$.

This means that we need to <u>discuss the degenerated case separately!</u>

➤ The Non-Degenerated Case

- Furthermore, we cannot determine the coeffcients $a_{nn}^{(1)}$!
- Remember, we have used the expansion

$$\left|\psi_n^{(1)}\right\rangle = \sum_m a_{nm}^{(1)} \left|m\right\rangle.$$

With the obtained coefficients this can be written as

$$|\psi_n^{(1)}\rangle = a_{nn}^{(1)}|n\rangle + \sum_{m\neq n} \frac{\langle m|\hat{V}|n\rangle}{\epsilon_n - \epsilon_m}|m\rangle.$$

• Up to first order in λ we, therefore, find

$$|\psi_n(\lambda)\rangle = |n\rangle + \lambda a_{nn}^{(1)}|n\rangle + \lambda \sum_{m \neq n} \frac{\langle m|\hat{V}|n\rangle}{\epsilon_n - \epsilon_m}|m\rangle.$$

• The only quantity therein which is not known is the coefficient $a_{nn}^{(1)}$!

➤ The Non-Degenerated Case

- However, the new (corrected) states need to be normalized $\langle \psi_n | \psi_n \rangle = 1.$
- Therein we use the expansion

$$|\psi_n\rangle = |n\rangle + \lambda a_{nn}^{(1)}|n\rangle + \lambda \sum_{m\neq n} \frac{\langle m|V|n\rangle}{\epsilon_n - \epsilon_m}|m\rangle + \mathcal{O}(\lambda^2).$$

• For the needed *bra* we can simply use

$$\langle \psi_n | = \langle n | + \lambda a_{nn}^{(1)*} \langle n | + \lambda \sum_{m \neq n} \frac{\langle m | \hat{V} | n \rangle^*}{\epsilon_n - \epsilon_m} \langle m | + \mathcal{O}(\lambda^2).$$

Those two formulas can be used in the normalization condition.

➤ The Non-Degenerated Case

• Up to first order in λ we find

$$\langle \psi_{n} | \psi_{n} \rangle = \langle n | n \rangle + \lambda a_{nn}^{(1)} \langle n | n \rangle + \lambda a_{nn}^{(1)*} \langle n | n \rangle$$

$$+ \lambda \sum_{m \neq n} \frac{\langle m | \hat{V} | n \rangle}{\epsilon_{n} - \epsilon_{m}} \langle n | m \rangle + \lambda \sum_{m \neq n} \frac{\langle m | \hat{V} | n \rangle^{*}}{\epsilon_{n} - \epsilon_{m}} \langle m | n \rangle + \mathcal{O}(\lambda^{2}).$$

 This can be simplified significantly by using that the unperturbed states are orthonormal

$$\langle n|m\rangle = \delta_{nm}.$$

Therewith, we obtain

$$1 + \lambda a_{nn}^{(1)} + \lambda a_{nn}^{(1)*} + \mathcal{O}(\lambda^2) = 1.$$

➤ The Non-Degenerated Case

We derived

$$1 + \lambda a_{nn}^{(1)} + \lambda a_{nn}^{(1)*} + \mathcal{O}(\lambda^2) = 1.$$

This means that up to the considered order

$$a_{nn}^{(1)} + a_{nn}^{(1)*} = 0.$$

- We conclude that the coefficients $a_{nn}^{(1)}$ are imaginary.
- Therefore, we can write

$$a_{nn}^{(1)} = i\delta$$
 where δ is real.

We can use this result in our expansion

$$|\psi_n\rangle = |n\rangle + \lambda a_{nn}^{(1)}|n\rangle + \lambda \sum_{m \neq n} \frac{\langle m|\hat{V}|n\rangle}{\epsilon_n - \epsilon_m}|m\rangle + \mathcal{O}(\lambda^2).$$

➤ The Non-Degenerated Case

We find

$$|\psi_n\rangle = (1+i\lambda\delta)|n\rangle + \lambda \sum_{m\neq n} \frac{\langle m|\hat{V}|n\rangle}{\epsilon_n - \epsilon_m}|m\rangle + \mathcal{O}(\lambda^2).$$

Furthermore, we can write

$$1 + i\lambda\delta = e^{i\lambda\delta} + \mathcal{O}(\lambda^2).$$

We obtain

$$|\psi_n\rangle = e^{i\lambda\delta}|n\rangle + \lambda \sum_{m\neq n} \frac{\langle m|\hat{V}|n\rangle}{\epsilon_n - \epsilon_m}|m\rangle + \mathcal{O}(\lambda^2).$$

 However, multiplying a state with a phase does not change the physics.

➤ The Non-Degenerated Case

- Therefore, we can set $\delta = 0$.
- This corresponds to $a_{nn}^{(1)} = 0$.
- Therewith our expansion becomes

$$|\psi_n^{(1)}\rangle = \sum_{m \neq n} \frac{\langle m|\hat{V}|n\rangle}{\epsilon_n - \epsilon_m} |m\rangle.$$

• The corrections to energy are

$$E_n^{(1)} = \langle n | \hat{V} | n \rangle.$$

First-order perturbation theory!

- ➤ The Non-Degenerated Case
 - We now determine the <u>second-order corrections</u> to the energies.
 - Previously we have derived the relation

$$\hat{H}_0 |\psi_n^{(2)}\rangle + \hat{V} |\psi_n^{(1)}\rangle = E_n^{(2)} |n\rangle + \epsilon_n |\psi_n^{(2)}\rangle + E_n^{(1)} |\psi_n^{(1)}\rangle.$$

Therein we expand

$$|\psi_n^{(1)}\rangle = \sum_m a_{nm}^{(1)} |m\rangle$$
 and $|\psi_n^{(2)}\rangle = \sum_m a_{nm}^{(2)} |m\rangle$.

Using this in our formula above yields

$$\hat{H}_{0} \sum_{m} a_{nm}^{(2)} |m\rangle + \hat{V} \sum_{m} a_{nm}^{(1)} |m\rangle$$

$$= E_{n}^{(2)} |n\rangle + \epsilon_{n} \sum_{m} a_{nm}^{(2)} |m\rangle + E_{n}^{(1)} \sum_{m} a_{nm}^{(1)} |m\rangle.$$

The Non-Degenerated Case

We derived

$$\hat{H}_{0} \sum_{m} a_{nm}^{(2)} |m\rangle + \hat{V} \sum_{m} a_{nm}^{(1)} |m\rangle$$

$$= E_{n}^{(2)} |n\rangle + \epsilon_{n} \sum_{m} a_{nm}^{(2)} |m\rangle + E_{n}^{(1)} \sum_{m} a_{nm}^{(1)} |m\rangle.$$

- First we can use the unperturbed eigenvalue equation.
- Thereafter we multiply this equation from the left with $\langle n|$ to obtain

$$\sum_{m} \epsilon_{m} a_{nm}^{(2)} \langle n|m \rangle + \sum_{m} a_{nm}^{(1)} \langle n|\hat{V}|m \rangle$$

$$= E_{n}^{(2)} \langle n|n \rangle + \epsilon_{n} \sum_{m} a_{nm}^{(2)} \langle n|m \rangle + E_{n}^{(1)} \sum_{m} a_{nm}^{(1)} \langle n|m \rangle.$$

Therein we use orthonormality of the unperturbed states.

➤ The Non-Degenerated Case

We find

$$\sum_{m} \epsilon_{m} a_{nm}^{(2)} \delta_{nm} + \sum_{m} a_{nm}^{(1)} \langle n | \hat{V} | m \rangle$$

$$= E_{n}^{(2)} + \epsilon_{n} \sum_{m} a_{nm}^{(2)} \delta_{nm} + E_{n}^{(1)} \sum_{m} a_{nm}^{(1)} \delta_{nm}.$$

The sums can easily be evaluated to get

$$\epsilon_n a_{nn}^{(2)} + \sum_m a_{nm}^{(1)} \langle n | \hat{V} | m \rangle = E_n^{(2)} + \epsilon_n a_{nn}^{(2)} + E_n^{(1)} a_{nn}^{(1)}.$$

After rearranging this becomes

$$E_n^{(2)} = \sum_{m} a_{nm}^{(1)} \langle n | \hat{V} | m \rangle - a_{nn}^{(1)} E_n^{(1)}.$$
sum is over all m and contains the case $m=n$.

➤ The Non-Degenerated Case

In the latter result we can use

$$E_n^{(1)} = \langle n | \hat{V} | n \rangle$$
 and $a_{nm}^{(1)} = \frac{\langle m | V | n \rangle}{\epsilon_n - \epsilon_m}$ if $n \neq m$.

Therewith, our formula turns into

$$E_{n}^{(2)} = \sum_{m} a_{nm}^{(1)} \langle n | \hat{V} | m \rangle - a_{nn}^{(1)} E_{n}^{(1)}$$

$$= \sum_{m \neq n} \frac{\langle m | \hat{V} | n \rangle}{\epsilon_{n} - \epsilon_{m}} \langle n | \hat{V} | m \rangle$$

$$= \sum_{m \neq n} \frac{|\langle n | \hat{V} | m \rangle|^{2}}{\epsilon_{n} - \epsilon_{m}}.$$

- ➤ The Non-Degenerated Case
 - We often approximate

$$E_n \approx \epsilon_n + \langle n|\hat{V}|n\rangle + \sum_{m\neq n} \frac{\left|\langle n|\hat{V}|m\rangle\right|^2}{\epsilon_n - \epsilon_m}$$
 Second-order perturbation theory!

$$|\psi_n\rangle \approx |n\rangle + \sum_{m\neq n} \frac{\langle m|\hat{V}|n\rangle}{\epsilon_n - \epsilon_m} |m\rangle.$$

First-order
- perturbation
theory!

- This means we go up to second-order in the energy and up to first order in the states.
- Note: everything we have done so far is only valid if

$$\epsilon_n \neq \epsilon_m$$
 for $n \neq m$.

$$n \neq m$$
.

- Degenerate Perturbation Theory
 - Assume that $N \ge 2$ states have the same (unperturbed) ϵ so that

$$\hat{H}_0 | \alpha \rangle = \epsilon | \alpha \rangle, \qquad \alpha = 1, 2, \dots, N.$$

- The $|\alpha\rangle$ are the <u>degenerate states</u> and ε the corresponding energies.
- In the following we are only interested in <u>first-order</u> corrections.
- What we have used before is

$$\left|\psi_{n}\right\rangle = \left|n\right\rangle + \left|\psi_{n}^{(1)}\right\rangle = \left|n\right\rangle + \lambda \sum_{m \neq n} a_{nm}^{(1)} \left|m\right\rangle$$
 and

$$E_n = \epsilon_n + \lambda E_n^{(1)}.$$

Furthermore this does not work anymore!

$$a_{nm}^{(1)} = \frac{\langle m|\hat{V}|n\rangle}{\epsilon_n - \epsilon_m}$$
 for $n \neq m$.

- Degenerate Perturbation Theory
 - Let's do the following

$$|\psi\rangle = \sum_{\alpha=1}^{N} c_{\alpha} |\alpha\rangle + \lambda \sum_{\alpha=1}^{N} a_{\alpha}^{(1)} |\alpha\rangle + \lambda \sum_{m \neq \alpha} a_{m}^{(1)} |m\rangle.$$

all states with same energy contribute

as before, but we split the sum

• For energy we use

$$E = \epsilon + \lambda E^{(1)}.$$

This notation means sum over all non-degenerate states

Schrödinger's equation is

$$(\hat{H}_0 + \lambda \hat{V})|\psi\rangle = E|\psi\rangle.$$

• Therein we now use our two expansions and keep terms in lowest and first order in λ .

ime-Independent Perturbation

- Degenerate Perturbation Theory
 - We find

$$(\hat{H}_0 + \lambda \hat{V}) \left[\sum_{\alpha=1}^{N} c_{\alpha} |\alpha\rangle + \lambda \sum_{\alpha=1}^{N} a_{\alpha}^{(1)} |\alpha\rangle + \lambda \sum_{m \neq \alpha} a_{m}^{(1)} |m\rangle \right]$$

$$= (\epsilon + \lambda E^{(1)}) \left[\sum_{\alpha=1}^{N} c_{\alpha} |\alpha\rangle + \lambda \sum_{\alpha=1}^{N} a_{\alpha}^{(1)} |\alpha\rangle + \lambda \sum_{m \neq \alpha} a_{m}^{(1)} |m\rangle \right].$$

Up to first order this becomes

Up to first order this becomes
$$\sum_{\alpha=1}^{N} c_{\alpha} \hat{H}_{0} |\alpha\rangle + \lambda \sum_{\alpha=1}^{N} c_{\alpha} \hat{V} |\alpha\rangle + \lambda \sum_{\alpha=1}^{N} a_{\alpha}^{(1)} \hat{H}_{0} |\alpha\rangle + \lambda \sum_{m \neq \alpha} a_{m}^{(1)} \hat{H}_{0} |m\rangle$$

use eigenvalue

$$= \epsilon \sum_{\alpha=1}^{N} c_{\alpha} |\alpha\rangle + \lambda \epsilon \sum_{m \neq \alpha} a_{m}^{(1)} |m\rangle + \lambda \epsilon \sum_{\alpha=1}^{N} a_{\alpha}^{(1)} |\alpha\rangle + \lambda E^{(1)} \sum_{\alpha=1}^{N} c_{\alpha} |\alpha\rangle.$$

- Degenerate Perturbation Theory
 - After using the eigenvalue equation and cancelling the λ , we find

$$\sum_{\alpha=1}^{N} c_{\alpha} \hat{V} |\alpha\rangle + \sum_{m \neq \alpha} a_{m}^{(1)} \epsilon_{m} |m\rangle = \epsilon \sum_{m \neq \alpha} a_{m}^{(1)} |m\rangle + E^{(1)} \sum_{\alpha=1}^{N} c_{\alpha} |\alpha\rangle.$$

- We now multiply this from the left with one of the degenerate states, namely $\langle \beta |$.
- Note, we have

$$\langle \beta | m \rangle = 0$$
 if $m \neq \beta$.

• We get

$$\sum_{\alpha=1}^{N} c_{\alpha} \langle \beta | \hat{V} | \alpha \rangle = E^{(1)} \sum_{\alpha=1}^{N} c_{\alpha} \langle \beta | \alpha \rangle = E^{(1)} c_{\beta}.$$

- Degenerate Perturbation Theory
 - We found

$$\sum_{\alpha=1}^{N} c_{\alpha} \langle \beta | \hat{V} | \alpha \rangle = E^{(1)} \sum_{\alpha=1}^{N} c_{\alpha} \langle \beta | \alpha \rangle = E^{(1)} c_{\beta}.$$

We can write this as the a matrix equation of the form

$$Vc = E^{(1)}c.$$

matrix of the potential operator

- From this we obtain the eigenvectors c and eigenvalues $E^{(1)}$.
- We find the corrections

$$E_{\gamma} \approx \epsilon + E_{\gamma}^{(1)}$$
 and

$$E_{\gamma} pprox \epsilon + E_{\gamma}^{(1)}$$
 and $|\psi_{\gamma}\rangle pprox \sum_{\alpha=1}^{N} c_{\alpha}^{(\gamma)} |\alpha\rangle$.

➤ A Simple Example

 We consider a case where the quantum system has only <u>two</u> <u>unperturbed states</u> so that

$$\hat{H}_0 |1\rangle = \epsilon_1 |1\rangle$$
 and $\hat{H}_0 |2\rangle = \epsilon_2 |2\rangle$.

- We now add a perturbing potential so that the new Hamiltonian is $\hat{H} = \hat{H}_0 + \hat{V}$.
- The corresponding Schrödinger equation is $(\hat{H}_0 + \hat{V})|\psi_n\rangle = E_n|\psi_n\rangle.$
- In the following we only determine the (perturbed) energy eigenvalues E_n and don't care about the states.
- The perturbed states can be expanded via $|\psi_n\rangle = \alpha |1\rangle + \beta |2\rangle$.

➤ A Simple Example

Therewith, Schrödinger's equation can be written as

$$(\hat{H}_0 + \hat{V})(\alpha | 1\rangle + \beta | 2\rangle) = E_n(\alpha | 1\rangle + \beta | 2\rangle).$$

• Multiplying this from the left by $\langle 1 |$ yields

$$\alpha \epsilon_1 + \alpha \langle 1 | \hat{V} | 1 \rangle + \beta \langle 1 | \hat{V} | 2 \rangle = E \alpha.$$

• Furthermore, we can multiply the equation above from the left with $\langle 2|$ to obtain

$$\beta \epsilon_2 + \alpha \langle 2|\hat{V}|1\rangle + \beta \langle 2|\hat{V}|2\rangle = E\beta.$$

To continue we use the notation

$$V_{nm} = \langle n | \hat{V} | m \rangle.$$

➤ A Simple Example

• Furthermore, our two equations can be written as the following matrix equation

$$\begin{pmatrix} \epsilon_1 - E + V_{11} & V_{12} \\ V_{12}^* & \epsilon_2 - E + V_{22} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = 0.$$

- Furthermore, we consider a potential so that $V_{11}=V_{22}=0$.
- Non-trivial solutions are obtained if the determinant of the above matrix is zero. Therefore, we find

$$(\epsilon_1 - E)(\epsilon_2 - E) - |V_{12}|^2 = 0.$$

This can easily be written as

$$E^{2} - E(\epsilon_{1} + \epsilon_{2}) + \epsilon_{1}\epsilon_{2} - \left|V_{12}\right|^{2} = 0.$$

➤ A Simple Example

• This quadratic equation has the solutions

$$E = \frac{1}{2} (\epsilon_1 + \epsilon_2) \pm \frac{1}{2} \sqrt{(\epsilon_1 + \epsilon_2)^2 + 4 |V_{12}|^2 - 4\epsilon_1 \epsilon_2}$$
$$= \frac{1}{2} (\epsilon_1 + \epsilon_2) \pm \frac{1}{2} \sqrt{(\epsilon_1 - \epsilon_2)^2 + 4 |V_{12}|^2}.$$

- Note, we looked at a very special case but our result for the energy is <u>exact</u>.
- In the following we look at the <u>non-degenerated case</u> meaning that $\varepsilon_1 \neq \varepsilon_2$.
- In this case we can write

$$E = \frac{1}{2} (\epsilon_1 + \epsilon_2) \pm \frac{1}{2} (\epsilon_1 - \epsilon_2) \sqrt{1 + \lambda} \quad \text{with} \quad \lambda = \frac{4|V_{12}|^2}{(\epsilon_1 - \epsilon_2)^2}.$$

➤ A Simple Example

• To continue we assume that λ is small and we Taylor-expand our result to find

$$E = \frac{1}{2}(\epsilon_1 + \epsilon_2) \pm \frac{1}{2}(\epsilon_1 - \epsilon_2)\sqrt{1 + \lambda}$$

$$\approx \frac{1}{2}(\epsilon_1 + \epsilon_2) \pm \frac{1}{2}(\epsilon_1 - \epsilon_2)\left(1 + \frac{1}{2}\lambda\right)$$

$$= \frac{1}{2}(\epsilon_1 + \epsilon_2) \pm \frac{1}{2}(\epsilon_1 - \epsilon_2)\left(1 + \frac{2|V_{12}|^2}{(\epsilon_1 - \epsilon_2)^2}\right).$$

From this we can easily read off

$$E_1 = \epsilon_1 + \frac{|V_{12}|^2}{\epsilon_1 - \epsilon_2}$$
 and $E_2 = \epsilon_2 - \frac{|V_{12}|^2}{\epsilon_1 - \epsilon_2}$.

➤ A Simple Example

We found

$$E_1 = \epsilon_1 + \frac{|V_{12}|^2}{\epsilon_1 - \epsilon_2}$$
 and $E_2 = \epsilon_2 - \frac{|V_{12}|^2}{\epsilon_1 - \epsilon_2}$.

Compare this with <u>non-degenerated perturbation theory</u>

$$E_n \approx \epsilon_n + \langle n | \hat{V} | n \rangle + \sum_{m \neq n} \frac{|\langle n | \hat{V} | m \rangle|^2}{\epsilon_n - \epsilon_m}.$$

- We can easily see that the two results are the same.
- What about the <u>degenerated case</u> where we have $\varepsilon_1 = \varepsilon_2$?
- We derived the exact result

$$E = \frac{1}{2} (\epsilon_1 + \epsilon_2) \pm \frac{1}{2} \sqrt{(\epsilon_1 - \epsilon_2)^2 + 4 |V_{12}|^2}.$$

➤ A Simple Example

• For $\varepsilon_1 = \varepsilon_2$ our formula

$$E = \frac{1}{2} (\epsilon_1 + \epsilon_2) \pm \frac{1}{2} \sqrt{(\epsilon_1 - \epsilon_2)^2 + 4 |V_{12}|^2}$$

simplifies to

$$E = \epsilon \pm |V_{12}|.$$

For the degenerated case we derived

$$Vc = E^{(1)}c.$$

- Note, here we have used the matrix *V* of the perturbing potential with respect to the unperturbed states.
- $E^{(1)}$ corresponds to the first order energy corrections.

➤ A Simple Example

- We can write the matrix equation out and make the same assumption concerning *V* as above.
- We find

$$\begin{pmatrix} -E^{(1)} & V_{12} \\ V_{12}^* & -E^{(1)} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = 0.$$

Setting the determinant equal to zero gives us

$$E^{(1)} = \pm |V_{12}|.$$

• Therefore, the corresponding (corrected) energy eigenvalues are

$$E = \epsilon \pm |V_{12}|$$

in agreement with the exact result derived above.