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Abstract—In a previous paper [2], we developed a new Lebesgue-like measure on the Levi-Civita
field R that proved to be a strict improvement over the previously defined S-measure defined in
[9, 13]. Nevertheless, we were only at first able to define such a measure for the one dimensional
case leaving the case for higher dimensions as an open-ended question to be further researched. In
another paper [15], the authors developed a generalization of the S-measure into higher dimensions
using simplexes as their basic building blocks instead of boxes as simplexes proved to be more
suitable for the topological structure of the Levi-Civita field R. However, the resulting measure
naturally inherited the same limitations that the original S-measure on R had. In this new paper,
we expand the same characterization given in [2] for the one-dimensional S-measurable sets to the
S-measurable sets in Rj as defined in [15] and develop our own generalization to higher dimensions
for the measure given in [2].
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1. INTRODUCTION

In this section, we will introduce the reader to preliminary results about the Levi-Civita field R as well
as previous work on measure theory on R and Rj , j > 1 in N.

1.1. The Levi-Civita Field R

We recall that the elements of the Levi-Civita field R are functions from Q to R with left-finite support
(denoted by supp). That is, for every q ∈ Q there are only finitely many elements in the support that are
smaller than q. For the further discussion, it is convenient to introduce the following terminology.

Definition 1.1. (λ, =r, ∼, ≈) We define λ : R → Q by

λ(x) =

⎧
⎨

⎩

min(supp(x)) if x �= 0

∞ if x = 0.

The minimum exists because of the left-finiteness of supp(x) when x �= 0. Moreover, we denote
the value of x at q ∈ Q with brackets like x[q].

Given x, y ∈ R and r ∈ Q, we say that x =r y if x[q] = y[q] for all q ≤ r.

Given x, y �= 0 in R, we say x ∼ y if λ(x) = λ(y); and we say x ≈ y if λ(x) = λ(y) and x[λ(x)] =
y[λ(y)].
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At this point, these definitions may feel somewhat arbitrary; but after having introduced an order on R,
we will see that λ describes orders of magnitude, ∼ corresponds to agreement of the order of magnitude,
while ≈ corresponds to agreement up to infinitely small relative error.

The set R is endowed with formal power series multiplication and componentwise addition, which
make it into a field [8] in which we can isomorphically embed the field of real numbers R as a subfield via
the map E : R → R defined by

E(x)[q] =

⎧
⎨

⎩

x if q = 0

0 else.
(1.1)

Definition 1.2. (Order in R) Let x, y ∈ R be given. Then we say that x > y (or y < x) if x �= y and
(x− y)[λ(x− y)] > 0; and we say x ≥ y (or y ≤ x) if x = y or x > y.

It follows that the relation ≥ (or ≤) defines a total order on R which makes it into an ordered field.
Note that, given a < b in R, we define the R-interval [a, b] = {x ∈ R : a ≤ x ≤ b}, with the obvious
adjustments in the definitions of the intervals [a, b), (a, b], and (a, b). Moreover, the embedding E in
Equation (1.1) of R into R is compatible with the order.

The order leads to the definition of an ordinary absolute value on R:

|x| = max{x,−x} =

⎧
⎨

⎩

x if x ≥ 0

−x if x < 0;

which induces the same topology on R (called the order topology or valuation topology) as that induced
by the ultrametric absolute value | · |u : R → R, given by

|x|u =

⎧
⎨

⎩

e−λ(x) if x �= 0

0 if x = 0,

as was shown in [14].
We note in passing here that |·|u is a non-Archimedean valuation on R; and hence (R, | · |u) is a non-

Archimedean valued field. Moreover, |.|u induces a metric Δ on R given by Δ(x, y) = |y − x|u which
satisfies the strong triangle inequality and is thus an ultrametric, making (R,Δ) an utrametric space.

Definition 1.3. (The Number d) Let d be the element of R given by d[1] = 1 and d[t] = 0 for t �= 1.

Remark 1.4. Given q ∈ Q, then it can be shown [2] that

dq[t] =

⎧
⎨

⎩

1 if t = q

0 otherwise.

It is easy to check that dq is infinitely small if q > 0 and infinitely large if q < 0 in Q. Moreover,
for all x ∈ R, the elements of supp(x) can be arranged in ascending order, say supp(x) =
{q1, q2, . . .} with qj < qj+1 for all j; and x can be written as x =

∑

j
x[qj]d

qj , where the series

converges in the order (valuation) topology [1].

Altogether, it follows that R is a non-Archimedean (valued and ordered) field extension of R. For
a detailed study of this field, we refer the reader to the survey paper [10] and the references therein. In
particular, it is shown that R is complete with respect to the natural (valuation) topology or, equivalently,
with respect to the ultrametric Δ.

It follows therefore that R is just a special case of the class of fields discussed in [7]. For a general
overview of the algebraic properties of formal power series fields, we refer to the comprehensive overview
by Ribenboim [6], and for an overview of the related valuation theory, to the book by Krull [4]. A thorough
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and complete treatment of ordered structures can also be found in [5]. A more comprehensive survey of
all non-Archimedean fields can be found in [3].

Besides being the smallest non-Archimedean ordered field extension of the real numbers that is both
complete in the order topology and real closed, the Levi-Civita field R is of particular interest because
of its practical usefulness. Because of the left-finiteness of the supports of the Levi-Civita numbers,
those numbers can be used on a computer, thus allowing for many useful computational applications.
One such application is the computation of derivatives of real functions representable on a computer
[11], where both the accuracy of formula manipulators and the speed of classical numerical methods are
achieved.

The following result is not special to R but it holds in any non-Archimedean valued field; its proof can
be found in [8, 12].

Proposition 1.5. Let {an}n∈N be a sequence in R. Then {an} is a Cauchy sequence in the valuation
topology if and only if lim

n→∞
(an+1 − an) = 0.

Since R is Cauchy complete, we readily obtain the following result.

Corollary 1.6. Let {an}n∈N be a sequence in R. Then {an} converges in R if and only if
lim
n→∞

(an+1 − an) = 0.

Corollary 1.7. Let {an}n∈N be a sequence in R. Then
∑

n∈N
an converges in R if and only if lim

n→∞
an =

0.

Moreover, thanks to the non-Archimedean (ultrametric) nature of R, the order of limits, including
double infinite sums, can be interchanged more conveniently than in R.

1.2. The S-Measure on R

In [9, 13], we developed a measure and integration theory on R that uses the R-analytic functions
(functions given locally by power series) as the building blocks for measurable functions instead of the
step functions used in the real case. We will refer to that measure by the S-measure henceforth in this
paper.

Notation 1.8. Let a < b in R be given. Then by l(I(a, b)) we will denote the length of the interval
I(a, b), that is

l(I(a, b)) = length of I(a, b) = b− a.

Definition 1.9. Let A ⊂ R be given. Then we say that A is S-measurable if for every ε > 0 in R,
there exist a sequence of pairwise disjoint intervals {In}∞n=1 and a sequence of pairwise disjoint

intervals {Jn}∞n=1 such that
∞⋃

n=1
In ⊂ A ⊂

∞⋃

n=1
Jn,

∞∑

n=1
l(In) and

∑∞
n=1 l(Jn) converge in R, and

∞∑

n=1
l(Jn)−

∞∑

n=1
l(In) ≤ ε.

Given an S-measurable set A, then for every k ∈ N, we can select a sequence of pairwise disjoint

intervals
{
Ikn
}∞
n=1

and a sequence of pairwise disjoint intervals
{
Jk
n

}∞
n=1

such that
∞∑

n=1
l
(
Ikn
)

and

∞∑

n=1
l
(
Jk
n

)
converge in R for all k,

∞⋃

n=1

Ikn ⊂
∞⋃

n=1

Ik+1
n ⊂ A ⊂

∞⋃

n=1

Jk+1
n ⊂

∞⋃

n=1

Jk
n and

∞∑

n=1

l
(
Jk
n

)
−

∞∑

n=1

l
(
Ikn

)
≤ dk
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for all k ∈ N. Since R is Cauchy complete in the order (valuation) topology, it follows that lim
k→∞

∑∞
n=1 l

(
Ikn
)

and lim
k→∞

∞∑

n=1
l
(
Jk
n

)
both exist and they are equal. We call the common value of the limits the S-measure

of A and we denote it by Ms(A). Thus,

Ms(A) = lim
k→∞

∞∑

n=1

l
(
Ikn

)
= lim

k→∞

∞∑

n=1

l
(
Jk
n

)
.

Contrary to the real case,

sup

{ ∞∑

n=1

l(In) : In’s are pairwise disjoint intervals and
∞⋃

n=1

In ⊂ A

}

and

inf

{ ∞∑

n=1

l(Jn) : Jn’s are pairwise disjoint intervals and A ⊂
∞⋃

n=1

Jn

}

need not exist for a given set A ⊂ R. However, as shown in [13], if A is S-measurable then both
the supremum and infimum exist and they are equal to Ms(A). This shows that the definition of S-
measurable sets in Definition 2.2 is a good generalization of that of the Lebesgue measurable sets of real
analysis that corrects for the lack of suprema and infima in non-Archimedean ordered fields.

It follows directly from the definition that Ms(A) ≥ 0 for any S-measurable set A ⊂ R and that any
interval I(a, b) is S-measurable with S-measure Ms(I(a, b)) = l(I(a, b)) = b− a. It also follows that

if A is a countable union of pairwise disjoint intervals (In(an, bn)) such that
∞∑

n=1
(bn − an) converges

then A is S-measurable with Ms(A) =
∞∑

n=1
(bn − an). Moreover, if B ⊂ A ⊂ R and if A and B are S-

measurable, then Ms(B) ≤ Ms(A).
In [13] we show that the S-measure defined on R above satisfies many of the nice properties of the

Lebesgue measure on R. For example, we show that any subset of an S-measurable set of S-measure 0
is itself S-measurable and has S-measure 0. We also show that any countable unions of S-measurable
sets whose S-measures form a null sequence is S-measurable and the S-measure of the union is less
than or equal to the sum of the S-measures of the original sets; moreover, the S-measure of the union
is equal to the sum of the S-measures of the original sets if the latter are pairwise disjoint. Furthermore,
we show that any finite intersection of S-measurable sets is also S-measurable and that the sum of
the S-measures of two S-measurable sets is equal to the sum of the S-measures of their union and
intersection.

However, the S-measure on R has its shortcomings. For example, the complement of an S-
measurable set in an S-measurable set need not be S-measurable: [0, 1] and [0, 1] ∩Q are both S-
measurable with S-measures 1 and 0, respectively; but the complement of [0, 1] ∩Q in [0, 1] is not
S-measurable. On the other hand, if B ⊂ A ⊂ R and if A, B and A \B are all S-measurable, then
Ms(A) = Ms(B) +Ms(A \B).

The example of [0, 1] \ [0, 1] ∩Q above shows that the axiom of choice is not needed here to construct
a set that is not S-measurable, as there are many simple examples of such sets. Indeed, any uncountable
real subset of R, like [0, 1] ∩R for example, is not S-measurable. This ease of finding subsets of R
that are not S-measurable may seem surprising; however, through closer inspection and the following
characterization (proved in [2]), it becomes obvious that the family of S-measurable sets is simply too
narrow, thus the need for a new measure on R that will extend the family of S-measurable sets and will
share more of the nice properties of the Lebesgue measure on R.

Theorem 1.10. Let A ⊂ R be S-measurable. Then A can be written as a disjoint union A =( ∞⋃

n=1
Kn

)

∪ S, where Kn is an interval in R for each n ∈ N and where
∞∑

n=1
l(Kn) = Ms(A) and

Ms(S) = 0.
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1.3. The L-Measure on R

The effect of having too small a family of S-measurable sets impedes further progress into more
significant results that the reader associates with the Lebesgue measure in R. So we introduced in [2]
a new definition that enlarged the pool of measurable sets while still circumventing the fact that not all
bounded sets in R have an infimum or a supremum. We first introduced the notion of an outer measure
on R and showed some key properties the outer measure has.

Definition 1.11. Let A ⊂ R be given. Then we say that A is outer measurable if

inf

{ ∞∑

n=1

l(Sn) : Sn’s are intervals and A ⊆
∞⋃

n=1

Sn

}

exists in R. If so, we call that number the outer measure of A and denote it by Mu(A).

Then, we used the notion of outer measure and Caratheodory’s criterion to define a new measure on
R similarly to how the Lebesgue measure of real analysis is defined in terms of the outer measure on R.

Definition 1.12. Let A ⊂ R be an outer measurable set. Then we say that A is L-measurable if for
every other outer measurable set B ⊂ R both A ∩B and Ac ∩B are outer measurable and

Mu(B) = Mu(A ∩B) +Mu(A
c ∩B).

In this case, we define the L-measure of A to be M(A) := Mu(A). The family of L-measurable sets
in R will be denoted by ML.

As shown in [2], the L-measure proves to be a better generalization of the Lebesgue measure from R

to R than the S-measure and it leads to a family of measurable sets in R that strictly contains the family
of S-measurable sets from [13], and for which most of the classic results for Lebesgue measurable sets
in R hold. We present here a summary of the key results for L-measurable sets and refer the reader to [2]
for the proofs. We will prove the analogues of these results for the L-measure that we will develop on Rj

in Section 4 below.

• If a < b in R then I(a, b) ∈ ML and M(I(a, b)) = b− a.

• If C ⊂ R is outer measurable with Mu(C) = 0 then C ∈ ML with M(C) = 0. Consequently, if
A ∈ ML with M(A) = 0 and if B ⊂ A then B ∈ ML and M(B) = 0.

• If {Jn}∞n=1 is a sequence of pairwise disjoint intervals in R such that lim
n→∞

l(Jn) = 0 then
∞⋃

n=1
Jn

is L-measurable, and

M

( ∞⋃

n=1

Jn

)

=

∞∑

n=1

l(Jn).

• If A ⊂ R is S-measurable then A is L-measurable and M(A) = Ms(A). The converse is not true.

• If A,B ∈ ML then A ∩B,A ∪B,A ∩Bc ∈ ML. Moreover,

M(A ∪B) = M(A) +M(B)−M(A ∩B) and M(A ∩Bc) = M(A)−M(A ∩B).
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• If, for each n ∈ N, An ∈ ML and if lim
N→∞

M

(
N⋃

n=1
An

)

exists in R then
∞⋃

n=1
An ∈ ML and

M

( ∞⋃

n=1

An

)

= lim
N→∞

M

(
N⋃

n=1

An

)

.

If, in addition, the An’s are mutually disjoint then

M

( ∞⋃

n=1

An

)

=

∞∑

n=1

M (An) .

• If, for each n ∈ N, An ∈ ML and if lim
N→∞

M

(
N⋂

n=1
An

)

exists in R then
∞⋂

n=1
An ∈ ML and

M

( ∞⋂

n=1

An

)

= lim
N→∞

M

(
N⋂

n=1

An

)

.

2. THE S-MEASURE ON Rj

Notation 2.1. We define the volume of a simplex S ⊆ Rj spanned by the vectors (v0, ..., vj) by

1

j!
|det(v1 − v0, ..., vj − v0)|

and denote it by V (S).

In the following we give an adjusted version of the definition in [15] of a measurable set in Rj .

Definition 2.2. Let A ⊂ Rj be given. Then we say that A is S-measurable if for every ε > 0
in R, there exist two sequences of pairwise disjoint symplexes {In}∞n=1 and {Jn}∞n=1 such that
∞⋃

n=1
In ⊂ A ⊂

∞⋃

n=1
Jn,

∞∑

n=1
V (In) and

∑∞
n=1 V (Jn) converge in R, and

∞∑

n=1
V (Jn)−

∞∑

n=1
V (In) ≤ ε.

Given an S-measurable set A, then for every k ∈ N, we can select a sequence of pairwise disjoint

symplexes
{
Ikn
}∞
n=1

and a sequence of pairwise disjoint symplexes
{
Jk
n

}∞
n=1

such that
∞∑

n=1
V
(
Ikn
)

and

∞∑

n=1
V
(
Jk
n

)
converge in R for all k,

∞⋃

n=1

Ikn ⊂
∞⋃

n=1

Ik+1
n ⊂ A ⊂

∞⋃

n=1

Jk+1
n ⊂

∞⋃

n=1

Jk
n and

∞∑

n=1

V
(
Jk
n

)
−

∞∑

n=1

V
(
Ikn

)
≤ dk

for all k ∈ N. Since R is Cauchy complete in the order (valuation) topology, it follows that

lim
k→∞

∑∞
n=1 V

(
Ikn
)

and lim
k→∞

∞∑

n=1
V
(
Jk
n

)
both exist and they are equal. We call the common value of the

limits the S-measure of A and we denote it by Ms(A). Thus,

Ms(A) = lim
k→∞

∞∑

n=1

V
(
Ikn

)
= lim

k→∞

∞∑

n=1

V
(
Jk
n

)
.

It follows directly from the definition that Ms(A) ≥ 0 for any S-measurable set A ⊂ Rj and that any
symplex S is S-measurable with S-measure Ms(S) = V (S). It also follows that if A is a countable

union of pairwise disjoint symplexes (Sn) such that
∞∑

n=1
V (Sn) converges then A is S-measurable
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with Ms(A) =
∞∑

n=1
V (Sn). Moreover, if B ⊂ A ⊂ Rj and if A and B are S-measurable, then Ms(B) ≤

Ms(A).

The following theorem is a generalization of Theorem 1.10 to the multi-dimensional case.

Theorem 2.3. Let A ⊂ Rj be S-measurable. Then A can be written as a disjoint union A =( ∞⋃

n=1
Kn

)

∪ S, where Kn is a symplex in Rj for each n ∈ N and where
∞∑

n=1
V (Kn) = Ms(A) and

Ms(S) = 0.

Proof. Let ε > 0 in R be given. Then there exist two sequences of pairwise disjoint symplexes {In}∞n=1

and {Jn}∞n=1 such that
∞⋃

n=1
In ⊆ A ⊆

∞⋃

n=1
Jn,

∞∑

n=1
V (In) and

∞∑

n=1
V (Jn) both converge in the order

topology, and
∞∑

n=1
V (Jn)−

∞∑

n=1
V (In) < ε/2.

We can rewrite the collection {In}∞n=1 as
∞⋃

m=1
{In ∩ Jm}∞n=1 due to In ∩ Jm being a finite union of

simplexes [15], the sum of whose volumes we will denote by V (In ∩ Jm). Since, for every m ∈ N, we

have that lim
n→∞

V (In ∩ Jm) = 0, it follows that
∞∑

n=1
V (In ∩ Jm) converges for every m ∈ N. Thus, there

exists Nm ∈ N such that
∞∑

n=Nm+1

V (In ∩ Jm) < dmε. It follows that

∞∑

n=1

V (Jn)−
∞∑

m=1

Nm∑

n=1

V (In ∩ Jm) ≤
∞∑

n=1

V (Jn)−
∞∑

m=1

[ ∞∑

n=1

V (In ∩ Jm)− dmε

]

=

∞∑

n=1

V (Jn)−
∞∑

n=1

∞∑

m=1

V (In ∩ Jm) +

∞∑

m=1

dmε

=

∞∑

n=1

V (Jn)−
∞∑

n=1

V (In) +

∞∑

m=1

dmε

<
ε

2
+

d

1− d
ε

< ε.

Thus, we can replace the original collections of symplexes {In}∞n=1 and {Jn}∞n=1 with
∞⋃

m=1
{Jm ∩ In}Nm

n=1

and {Jn}∞n=1 which can be easily re-written as {Sn}∞n=1, {Xn}∞n=1 where Sn ⊆ Xn for each n. Moreover,
since Xn \ Sn is a finite disjoint union of symplexes [15], we can write {Xn}∞n=1 = {Sn}∞n=1 ∪ {Rn}∞n=1

where
∞∑

n=1
V (Rn) < ε.

Let ε = d. As shown, we can find two sequences of pairwise disjoint symplexes {S1
n}∞n=1 and {R1

n}∞n=1
such that

∞⋃

n=1

S1
n ⊆ A ⊆

( ∞⋃

n=1

S1
n

)

∪
( ∞⋃

n=1

R1
n

)

and
∞∑

n=1

V (R1
n) < d.

Now, given an arbitrary k ∈ N, assume that for every positive integer m ≤ k we have a pair of

sequences of pairwise disjoint symplexes {Sm
n }∞n=1 and {Rm

n }∞n=1 such that
∞⋃

n=1
Sm
n ⊆ A ⊆

( ∞⋃

n=1
Sm
n

)

∪
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( ∞⋃

n=1
Rm

n

)

,
∞∑

n=1
V (Rm

n ) < dm, and {Sm
n }∞n=1 ⊆ {Sm+1

n }∞n=1. Take now a pair of sequences of pairwise

disjoint symplexes {In}∞n=1 and {On}∞n=1 such that

∞⋃

n=1

In ⊆ A ⊆
( ∞⋃

n=1

In

)

∪
( ∞⋃

n=1

On

)

and
∞∑

n=1

V (On) < dk+1.

Consider the collections of pairwise disjoint symplexes
∞⋃

m=1
{In ∩Rk

m} and
∞⋃

m=1
{On ∩Rk

m}. We define

{Rk+1
n } :=

∞⋃

m=1

{On ∩Rk
m} and {Sk+1

n } := {Sk
n} ∪

( ∞⋃

m=1

{In ∩Rk
m}

)

.

Then {Sk+1
n } and {Rk+1

n } are pairwise disjoint collections of symplexes that satisfy

∞⋃

n=1

Sk+1
n ⊆ A ⊆

( ∞⋃

n=1

Sk+1
n

)

∪
( ∞⋃

n=1

Rk+1
n

)

and
∞∑

n=1

V (Rk+1
n ) =

∞∑

n=1

∞∑

m=1

V (On ∩Rk
m) ≤

∞∑

n=1

V (On) < dk+1.

We define {S∞
n } =

∞⋃

k=1

{Sk
n}, which is a disjoint countable union of symplexes that are contained in A. It

follows that {Rk
n} is a sequence of covers of A \

∞⋃

n=1
S∞
n that satisfies the condition lim

k→∞

∞∑

n=1
V (Rk

n) = 0.

Thus,

∞∑

n=1

V (S∞
n ) ≤ Ms(A) ≤

∞∑

n=1

V (S∞
n ) + lim

k→∞

∞∑

n=1

V (Rk
n) =

∞∑

n=1

V (S∞
n ).

We conclude that A =

( ∞⋃

n=1
Kn

)

∪ S where Kn is a symplex,
∞∑

n=1
V (Kn) = Ms(A) and Ms(S) = 0.

3. THE OUTER MEASURE ON Rj

Notation 3.1. Whenever a set A can be written as a finite disjoint union of simplexes A =
N⋃

n=1
Sn

we write V (A) instead of
N∑

n=1
V (Sn).

Definition 3.2. We say that a set X ⊂ Rj is outer measurable if the set

CA :=

{ ∞∑

n=1

V (Sn) : A ⊆
∞⋃

n=1

Sn where Sn is a simplex

}

has an infimum. When this holds, we define

Mu(A) := inf(CA)
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3.1. General Properties

Proposition 3.3. Let A ⊂ Rj be outer measurable. Then there exists a sequence of sequences of

mutually disjoint simplexes
(
{Ikn}∞n=1

)∞
k=1

such that lim
k→∞

∞∑

n=1
V (Ikn) = Mu(A) and, for all k ∈ N,

we have

A ⊆
∞⋃

n=1

Ik+1
n ⊆

∞⋃

n=1

Ikn.

We say that such a sequence outer-converges to A.

Proof. We leave the proof as an exercise to the reader.

Lemma 3.4. Let A, B and C be outer measurable sets in Rj such that A ⊆ B ∪ C. Then, Mu(A) ≤
Mu(B) +Mu(C).

Proof. Let {In}, {Jn} be arbitrary coverings of B and C respectively. Then, {In} ∪ {Jn} is a covering
of A and hence

Mu(A) ≤
∞∑

n=1

V (In) +

∞∑

n=1

V (Jn)

It follows that

Mu(A)−
∞∑

n=1

V (In) ≤
∞∑

n=1

V (Jn)

and hence Mu(A) −
∞∑

n=1
V (In) is a lower bound for the set CC :=

{ ∞∑

n=1
V (Sn) : C ⊆

∞⋃

n=1
Sn

}

and thus

Mu(A)−
∞∑

n=1

V (In) ≤ inf(CC) = Mu(C).

It follows that

Mu(A)−Mu(C) ≤
∞∑

n=1

V (In),

Thus,

Mu(A)−Mu(C) ≤ inf(CB) = Mu(B),

and the result follows.

Proposition 3.5. Let A ⊂ Rj be outer measurable, and let T : Rj → Rj be an affine transformation
of the form T (x) := Mx+ r where M is a matrix and r ∈ Rj is fixed. Then T (A) is outer
measurable and has measure

Mu(T (A)) = |det(M)| ·Mu(A).

Proof. The result follows immediately from the fact that affine transformations map simplexes into
simplexes and from the definition of the volume of a simplex and that of the outer measure.

It turns out that sets of measure zero in this definition inherit one of the key properties present in the
traditional Lebesgue measure for Rj . Namely, we have the following result

Proposition 3.6. Let A,B ⊆ Rj be outer measurable with Mu(B) = 0. Then, for any subset C ⊆ B
we have that Mu(C) = 0 and Mu(A \ C) = Mu(A).
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Proof. It follows immediately from Definition 3.2 that Mu(C) = 0. To see that Mu(A \ C) = Mu(A)

it is enough to notice that if {Jk
n} outer-converges to A then it outer-converges to A \ C, for if {Sn}

covers A \C and
∞∑

n=1
V (Sn) < Mu(A), we can find {In} covering C such that

∞∑

n=1
V (In) +

∞∑

n=1
V (Sn) <

Mu(A). This is a contradiction, since {In} ∪ {Sn} covers A.

3.2. Simplexes and the Outer Measure

We now introduce a series of results showing that simplexes behave particularly well with the
definition of the outer measure.

Proposition 3.7. Let A ⊆ Rj be outer measurable and let I ⊂ Rj be a simplex. Then A ∩ I is outer
measurable.

Proof. Let {Jk
n} outer-converge to A. We define

Ikn := I ∩ Jk
n .

Clearly V (Ikn) ≤ V (Jk
n), implying that for every k, the series

∞∑

n=1
V (Ikn) converges. We show that

lim
k→∞

∞∑

n=1
V (Ikn) exists and is equal to Mu(A ∩ I).

First we note that since, for every k ∈ N,
∞⋃

n=1
(Jk+1

n ∩ Ic) ⊆
∞⋃

n=1
(Jk

n ∩ Ic), we have that
∞∑

n=1
V (Jk+1

n ∩

Ic) ≤
∞∑

n=1
V (Jk

n ∩ Ic). It follows that

∞∑

n=1

V (Ikn)−
∞∑

n=1

V (Ik+1
n ) =

∞∑

n=1

V (Jk
n ∩ I)−

∞∑

n=1

V (Jk+1
n ∩ I)

=

∞∑

n=1

(V (Jk
n)− V (Jk

n ∩ Ic))−
∞∑

n=1

(V (Jk+1
n )− V (Jk+1

n ∩ Ic))

=

∞∑

n=1

V (Jk
n)−

∞∑

n=1

V (Jk+1
n ) +

∞∑

n=1

V (Jk+1
n ∩ Ic)−

∞∑

n=1

V (Jk
n ∩ Ic)

≤
∞∑

n=1

V (Jk
n)−

∞∑

n=1

V (Jk+1
n ).

And thus x := lim
k→∞

∞∑

n=1
V (Ikn) exists.

Suppose now that (Jn) is a covering of A∩ I by mutually disjoint simplexes. By way of contradiction,

suppose
∞∑

n=1
V (Jn) < x. Then

Mu(A) = lim
k→∞

∞∑

n=1

V (Jk
n)

= lim
k→∞

∞∑

n=1

V (I ∩ Jk
n) + lim

k→∞

∞∑

n=1

V (Ic ∩ Jk
n)

= x+ lim
k→∞

∞∑

n=1

V (Ic ∩ Jk
n)
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>

∞∑

n=1

V (Jn) + lim
k→∞

∞∑

n=1

V (Ic ∩ Jk
n).

It follows that Mu(A) >
∞∑

n=1
V (Jn) +

∞∑

n=1
V (Ic ∩ Jk

n) for k big enough. This is a contradiction, since

{Jn} ∪ {Ic ∩ Jk
n} is a covering of A. We conclude that A ∩ I is outer measurable.

Remark 3.8. Using a similar argument, one can prove that A ∩ Ic is also outer measurable for
any simplex I and outer measurable set A in Rj .

Corollary 3.9. Let A be outer measurable in Rj and, for each n ∈ N, let In be a simplex in Rj . Then

A ∩
N⋃

n=1

In and A \
N⋃

n=1

In

are outer measurable.

Proposition 3.10. Let A be outer measurable and I, J two disjoint simplexes in Rj . Then (A ∩
I) ∪ (A ∩ J) is outer measurable. Moreover,

Mu((A ∩ I) ∪ (A ∩ J)) = Mu(A ∩ I) +Mu(A ∩ J).

Proof. Since A∩ I and A∩ J are outer measurable, there exist two sequences of sequences of simplexes
{Ikn}, {Jk

n} outer-converging to A ∩ I and A ∩ J , respectively. Now, the sequence of sequences {Ikn} ∪
{Jk

n} is a covering of (A ∩ I) ∪ (A ∩ J) that satisfies

lim
k→∞

∑

X∈{Ikn}∪{Jk
n}

V (X) = lim
k→∞

[ ∞∑

n=1

V (Ikn) +

∞∑

n=1

V (Jk
n)

]

= Mu(A ∩ I) +Mu(A ∩ J).

Now let {Sn} be a covering of (A ∩ I) ∪ (A ∩ J). Without loss of generality, we may assume that
Sn = Sn ∩ I or Sn = Sn ∩ J . We now may subdivide {Sn} into {Sn ∩ I} ∪ {Sn ∩ J} := {In} ∪ {Jn}.
It follows that {In} covers A ∩ I and {Jn} covers A ∩ J . Thus

∞∑

n=1

V (Sn) =
∞∑

n=1

V (In) +
∞∑

n=1

V (Jn) ≥ Mu(A ∩ I) +Mu(A ∩ J).

We conclude that (A ∩ I) ∪ (A ∩ J) is outer measurable and that

Mu((A ∩ I) ∪ (A ∩ J)) = Mu(A ∩ I) +Mu(A ∩ J).

Corollary 3.11. Let A ⊂ Rj be outer measurable, let N ∈ N be given and, for each n ∈ {1, . . . , N},
let Jn be a simplex in Rj such that Jn ∩ Jm = ∅ if m �= n. Then

Mu

(

A ∩
(

N⋃

n=1

Jn

))

=

N∑

n=1

Mu(A ∩ Jn).

Proposition 3.12. Let A ⊂ Rj be measurable and, for each n ∈ N, let Jn be a simplex in Rj such
that Jn ∩ Jm = ∅ if m �= n and lim

n→∞
V (Jn) = 0. Then

Mu

(

A ∩
( ∞⋃

n=1

Jn

))

=

∞∑

n=1

Mu(A ∩ Jn).
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Proof. Since Jn ∩A ⊆ Jn, we have that Mu(A ∩ Jn) ≤ V (Jn) for all n ∈ N. Thus,
∞∑

n=1
Mu(A ∩ Jn)

converges. Let {Jk
n,m}∞m=1 be a sequence that converges to A ∩ Jn. The covering

∞⋃

n=1
{Jk

n,m} satisfies

lim
k→∞

∑

X∈
∞⋃

n=1
{Jk

n,m}

V (X) = lim
k→∞

∞∑

n=1

∞∑

m=1

V (Jk
n,m) =

∞∑

n=1

(

lim
k→∞

∞∑

m=1

V (Jk
n,m)

)

=
∞∑

n=1

Mu(A ∩ Jn).

Suppose now that {Sn} is another covering of A ∩
( ∞⋃

n=1
Jn

)

. Then, for every natural number N , we

have
∞∑

n=1

V (Sn) ≥
N∑

n=1

Mu(A ∩ Jn) = Mu

(

A ∩
(

N⋃

n=1

Jn

))

.

Hence
∞∑

n=1
V (Sn) ≥

∞∑

n=1
Mu(A ∩ Jn).

We conclude that Mu

(

A ∩
( ∞⋃

n=1
Jn

))

=
∞∑

n=1
Mu(A ∩ Jn).

Proposition 3.13. Let A be outer measurable and I a simplex in Rj such that I ∩A = ∅. Then
A ∪ I is outer measurable and

Mu(A ∪ I) = Mu(A) + V (I).

Proof. Let {Jk
n} be a sequence that outer-converges to A. Without loss of generality, suppose Jk

n =

Jk
n ∩ Ic. For each k ∈ N, let

Ik0 := I and Ikn := Jk
n for n ≥ 1.

Then we have that the sequence {Ikn} satisfies thatA∪ I ⊆
∞⋃

n=0
Ik+1
n ⊆

∞⋃

n=0
Ikn and that lim

k→∞

∞∑

n=0
V (Ikn) =

Mu(A) + V (I).

Let {Sn} be a covering of A ∪ I. We can subdivide {Sn} into {Sn ∩ I} and {Sn ∩ Ic} coverings of I
and A respectively. Thus,

∞∑

n=0

V (Sn) =

∞∑

n=0

(V (Sn ∩ I) + V (Sn ∩ Ic))

=

∞∑

n=0

V (Sn ∩ I) +

∞∑

n=0

V (Sn ∩ Ic)

≥ V (I) +Mu(A).

We conclude that Mu(A ∪ I) = Mu(A) + V (I).

Corollary 3.14. Let A ⊂ Rj be outer measurable, let N ∈ N be given and, for each n ∈ {1, . . . , N},
let In be a simplex in Rj such that A ∩ In = ∅ for all n ∈ {1, . . . , N} and In ∩ Jm = ∅ for m �= n in
{1, . . . , N}. Then

Mu

(

A ∪
(

N⋃

n=1

In

))

= Mu(A) +

N∑

n=1

V (In).
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Corollary 3.15. Let A ⊂ Rj be outer measurable, let N ∈ N be given and, for each n ∈ {1, . . . , N},

let In be a simplex in Rj . Then A ∪
(

N⋃

n=1
In

)

is outer measurable.

Proof. It is enough to see that A ∪ In = (A ∩ Icn) ∪ In, for each n ∈ {1, . . . , N}; moreover, A ∩ Icn is
outer measurable and (A ∩ Icn) ∩ In = ∅ for each n ∈ {1, . . . , N}.

Proposition 3.16. Let A ⊂ Rj be outer measurable and, for each n ∈ N, let In be a simplex in Rj

such that A ∩ In = ∅ for all n ∈ N, In ∩ Jm = ∅ for m �= n in N and lim
n→∞

V (In) = 0. Then

Mu

(

A ∪
( ∞⋃

n=1

In

))

= Mu(A) +

∞∑

n=1

V (In).

Proof. Let {Jk
n} be a sequence outer-converging to A. Then, {Jk

n} ∪ {In} covers A ∪
( ∞⋃

n=1
In

)

and

lim
k→∞

∑

X∈{Jk
n}∪{In}∞n=1

V (X) = lim
k→∞

∞∑

n=1

V (Jk
n) +

∞∑

n=1

V (In) = Mu(A) +

∞∑

n=1

V (In).

Now, let {Sn} be a covering of {A} ∪ {In}∞n=1. It follows that, for every natural number N ,

Mu

(

A ∪
(

N⋃

n=1

In

))

= Mu(A) +
N∑

n=1

V (In) ≤
∞∑

n=1

V (Sn).

Hence

Mu(A) +
∞∑

n=1

V (In) ≤
∞∑

n=1

V (Sn).

Proposition 3.17. Let A ⊂ Rj be outer measurable and, for each n ∈ N, let In be a simplex in Rj

such that lim
n→∞

V (In) = 0. Then A ∪
( ∞⋃

n=1
In

)

is outer measurable.

Proof. Without loss of generality, suppose {In}∞n=1 is a mutually disjoint collection that’s arranged
in the order of decreasing volume. For each m ∈ N there exists some natural number Nm and some

covering {Sm
n } of Am := A ∪

(
Nm⋃

n=1
In

)

such that

∞∑

n=Nm+1

V (In) < dm

and
∞∑

n=1

V (Sm
n )−Mu(Am) < dm.

Then, Cm := {Sm
n } ∪ {In}∞n=Nm+1 is a sequence of coverings for A ∪

( ∞⋃

n=1
In

)

that satisfies

∣
∣
∣
∣
∣
∣

∑

X∈Cm+1

V (X)−
∑

X∈Cm

V (X)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∞∑

n=Nm+1+1

V (In) +

∞∑

n=1

V (Sm+1
n )−

∞∑

n=Nm+1

V (In)−
∞∑

n=1

V (Sm
n )

∣
∣
∣
∣
∣
∣
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≤

∣
∣
∣
∣
∣
∣

∞∑

n=Nm+1+1

V (In)

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∞∑

n=Nm+1

V (In)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∞∑

n=1

V (Sm+1
n )−

∞∑

n=1

V (Sm
n )

∣
∣
∣
∣
∣

< 2dm +

∣
∣
∣
∣
∣

∞∑

n=1

V (Sm+1
n )−

∞∑

n=1

V (Sm
n )

∣
∣
∣
∣
∣

≤ 2dm +

∣
∣
∣
∣
∣

∞∑

n=1

V (Sm+1
n )−Mu(Am+1)

∣
∣
∣
∣
∣
+ |Mu(Am+1)−Mu(Am)|+

∣
∣
∣
∣
∣
Mu(Am)−

∞∑

n=1

V (Sm
n )

∣
∣
∣
∣
∣

< 4dm + |Mu(Am+1)−Mu(Am)|

≤ 4dm +

∞∑

n=Nm+1

V (In)

< 5dm.

Thus x := lim
m→∞

∑

X∈Cm

V (X) exists since R is Cauchy-completee. Suppose now that {Sn} is a covering

of A ∪
( ∞⋃

n=1
In

)

such that
∞∑

n=1
V (Sn) < x. We choose k such that dk +

∞∑

n=1
V (Sn) < x and m > k such

that dk +
∞∑

n=1
V (Sn) <

∑

X∈Cm

V (X). It follows that

Mu(Am) >
∞∑

n=1

V (Sm
n )− dm

=
∑

X∈Cm

V (X)−
∞∑

n=Nm+1

V (In)− dm

>
∑

X∈Cm

V (X)− 2dm

>
∑

X∈Cm

V (X)− dk

>

∞∑

n=1

V (Sn),

which is a contradiction, since {Sn} covers Am. We conclude that A ∪
( ∞⋃

n=1
In

)

is outer measurable.

Lemma 3.18. Let A be outer measurable and let {In}∞n=1 be a sequence of pairwise disjoint
simplexes in Rj whose volumes form a vanishing sequence. Then the set

A \
∞⋃

n=1

In

is outer measurable and

Mu

(

A \
∞⋃

n=1

In

)

= lim
N→∞

Mu

(

A \
N⋃

n=1

In

)

.

Proof. We define

Ak := A \
k⋃

n=1

In
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and

A∞ := A \
∞⋃

n=1

In.

Clearly, Ak+1 ⊆ Ak and thus Mu(Ak+1) ≤ Mu(Ak). We note that

Ak = Ak+1 ∪ (A ∩ Ik+1).

Hence

Mu(Ak)−Mu(Ak+1) ≤ Mu(A ∩ Ik+1) ≤ V (Ik+1).

Thus, the sequence Mu(Ak) is Cauchy and therefore convergent. We define

x := lim
N→∞

Mu

(

A \
N⋃

n=1

In

)

.

Since each Ak is outer measurable, there exists a covering {Sk
n} of Ak such that

∞∑

n=1
V (Sk

n)−Mu(Ak) <

dk. Now, the sequence {Sk
n} is a sequence of coverings of A∞ that satisfies

lim
k→∞

∞∑

n=1

V (Sk
n) = x.

It remains to show that x is a lower bound for the sum of volumes of any countable collection of simplexes
covering A∞. We proceed by way of contradiction and suppose that {Jn} is a covering of A∞ such that

∞∑

n=1

V (Jn) < x.

We now take N ∈ N such that
∞∑

n=1

V (Jn) +
∞∑

n=N

V (In) < x ≤ Mu(AN ),

which yields a contradiction given that {Jn} ∪ {In}∞n=N covers AN .

Proposition 3.19. Let A and B be outer measurable sets in Rj such that A ⊆
⋃∞

n=1 In and
B ⊆ (

⋃∞
n=1 In)

c, where the In’s are pairwise disjoint simplexes in Rj with lim
n→∞

V (In) = 0. Then,

A ∪B is outer measurable, and

Mu(A ∪B) = Mu(A) +Mu(B)

Proof. Let {Sk}∞k=1 be a simplex covering of A ∪B in Rj . Then, for every M ∈ N, we have that

A ⊆
∞⋃

k=1

Sk ∩
∞⋃

n=1

In =
∞⋃

k=1

∞⋃

n=1

Sk ∩ In

and

B ⊆
∞⋃

k=1

Sk \
∞⋃

n=1

In ⊆
∞⋃

k=1

Sk \
M⋃

n=1

In.

Thus,
∞∑

k=1

V (Sk) =
∞∑

k=1

(

V

(

Sk ∩
M⋃

n=1

In

)

+ V

(

Sk \
M⋃

n=1

In

))
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=

∞∑

k=1

(
M∑

n=1

V (Sk ∩ In) + V

(

Sk \
M⋃

n=1

In

))

=

∞∑

k=1

∞∑

n=1

V (Sk ∩ In) +

∞∑

k=1

V

(

Sk \
M⋃

n=1

In

)

−
∞∑

k=1

∞∑

n=M+1

V (Sk ∩ In)

≥ Mu(A) +Mu(B)−
∞∑

k=1

∞∑

n=M+1

V (Sk ∩ In) .

Taking the limit as M → ∞ yields the inequeality
∞∑

k=1

V (Sk) ≥ Mu(A) +Mu(B).

Now we simply note that if {Ak
n} and {Bk

n} outer-converge to A and B, respectively, then {Ak
n} ∪ {Bk

n}
outer-converges to A ∪B.

Theorem 3.20. Let A and B be outer measurable in Rj . Then A ∪B is outer measurable.

Proof. Let {Ikn} be a sequence that outer-converges to A. We define

Bk := B ∩
∞⋂

n=1

(
Ikn

)c

where
(
Ikn
)c

denotes the complement of Ikn . Since each Bk is outer measurable, there exists a covering

{Jk
n} of Bk such that

∞∑

n=1
V (Jk

n)−Mu(Bk) < dk. We note that, since

∞⋃

n=1

Ik+1
n ⊆

∞⋃

n=1

Ikn,

then
∞⋂

n=1

(
Ikn

)c
⊆

∞⋂

n=1

(
Ik+1
n

)c

and hence Bk ⊆ Bk+1. Moreover,

Bk+1 = Bk ∪ (Bk+1 \Bk)

= Bk ∪
(

B ∩
( ∞⋃

n=1

Ikn \
∞⋃

n=1

Ik+1
n

))

= Bk ∪
( ∞⋃

n=1

Ikn ∩
(

B \
∞⋃

n=1

Ik+1
n

))

⊆ Bk ∪
( ∞⋃

n=1

Ikn \
∞⋃

n=1

Ik+1
n

)

.

Thus, Bk+1 \Bk is outer measurable and Mu(Bk+1 \Bk) ≤
∞∑

n=1
V (Ikn)−

∞∑

n=1
V (Ik+1

n ). It now follows

that the sequence Mu(Bk) is Cauchy, and therefore

lim
k→∞

∞∑

n=1

V (Jk
n) = lim

k→∞
Mu(Bk) ∈ R.
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We define B∞ :=
∞⋃

n=1
Bk. Let {Sn} be a cover of B∞. It follows that {Sn} covers Bk and hence

Mu(Bk) ≤
∞∑

n=1
V (Sn). Thus, lim

k→∞
Mu(Bk) =: x ≤

∞∑

n=1
V (Sn).

Now, given that every Bk+1 \Bk is outer measurable and lim
k→∞

Mu(Bk+1 \Bk) = 0, there exists {Rk
n}

covering of Bk+1 \Bk such that
∞∑

n=1
V (Rk

n)−Mu(Bk+1 \Bk) < dk. It follows that {Jk
n} ∪

∞⋃

m=k

{Rm
n }

covers B∞ = Bk ∪
( ∞⋃

m=k

(Bm+1 \Bm)

)

and

lim
k→∞

∞∑

n=1

V (Jk
n) +

∞∑

m=k

∞∑

n=1

V (Rm
n ) = x.

We conclude that B∞ is outer measurable and has measure x.
Now, {Jk

n} ∪ {Ikn} covers A ∪B and

lim
k→∞

∞∑

n=1

V (Jk
n) +

∞∑

n=1

V (Imn ) = Mu(A) + x.

Finally, if {Tn} covers A ∪B, then it does also cover A ∪Bk, which is measurable by Proposition 3.19.
Hence

Mu(A) +Mu(Bk) = Mu(A ∪Bk) ≤
∞∑

n=1

V (Sn),

implying that

Mu(A) + x = Mu(A) + lim
k→∞

Mu(Bk) ≤
∞∑

n=1

V (Sn).

We conclude that A ∪B is outer measurable.

4. THE L-MEASURE ON Rj : A LEBESGUE-LIKE MEASURE

With the last theorem from the previous section, we are ready to define a new family of measurable
sets.

Definition 4.1. We say that an outer measurable set A ⊆ Rj is L-measurable if for every other
outer measurable set B ⊆ Rj both A ∩B and Ac ∩B are outer measurable, and

Mu(B) = Mu(A ∩B) +Mu(A
c ∩B)

If so, we define the L-measure of A to be M(A) := Mu(A). We call the family of L-measurable sets
ML.

4.1. General Properties

Proposition 4.2. Let A,B ∈ ML. Then A ∩B,A ∪B,A ∩Bc ∈ ML.

Proof. Let X be outer measurable. By definition, the sets

• A ∩X

• B ∩X

• Ac ∩X
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• Bc ∩X

are outer measurable, implying that

• A ∩B ∩X

• (A ∪B) ∩X

• Ac ∩Bc ∩X

• (Ac ∪Bc) ∩X

• X ∩ A ∩Bc

• X ∩ Ac ∩B

• (Ac ∪B) ∩X

• (A ∪Bc) ∩X

and

• X ∩ (Ac ∪Bc) ∩A

• X ∩ (Ac ∪Bc) ∩Ac

• X ∩ (A ∪B) ∩A

• X ∩ (A ∪B) ∩Ac

• X ∩ (Ac ∪B) ∩A

• X ∩ (Ac ∪B) ∩Ac

are outer measurable too.

Now, we simply check that
Mu(X) = Mu(X ∩A) +Mu(X ∩Ac)

= Mu(X ∩A ∩B) +Mu(X ∩A ∩Bc) +Mu(X ∩Ac)

= Mu(X ∩A ∩B) +Mu(X ∩ (Ac ∪Bc) ∩A) +Mu(X ∩ (Ac ∪Bc) ∩Ac)

= Mu(X ∩A ∩B) +Mu(X ∩ (Ac ∪Bc))

= Mu(X ∩ (A ∩B)) +Mu(X ∩ (A ∩B)c),

Mu(X) = Mu(X ∩Ac) +Mu(X ∩A)

= Mu(X ∩Ac ∩Bc) +Mu(X ∩Ac ∩B) +Mu(X ∩A)

= Mu(X ∩Ac ∩Bc) +Mu(X ∩ (A ∪B) ∩Ac) +Mu(X ∩ (A ∪B) ∩A)

= Mu(X ∩Ac ∩Bc) +Mu(X ∩ (A ∪B))

= Mu(X ∩ (A ∪B)c) +Mu(X ∩ (A ∪B)),

and
Mu(X) = Mu(X ∩A) +Mu(X ∩Ac)

= Mu(X ∩A ∩Bc) +Mu(X ∩A ∩B) +Mu(X ∩Ac)

= Mu(X ∩A ∩Bc) +Mu(X ∩ (Ac ∪B) ∩A) +Mu(X ∩ (Ac ∪B) ∩Ac)

= Mu(X ∩A ∩Bc) +Mu(X ∩ (Ac ∪B))

= Mu(X ∩ (A ∩Bc)) +Mu(X ∩ (A ∩Bc)c).

Thus A ∪B, A ∩B and A ∩Bc are L-measurable.
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This family of L-measurable sets naturally inherits some of the key properties of the Lebesgue
measure in R

j , as shown below.

Proposition 4.3. Let A,B ∈ ML. Then

M(A ∪B) = M(A) +M(B)−M(A ∩B).

Proof. We already know by Proposition 4.2 that A ∪B,A ∩B ∈ ML. It follows that

M(A ∪B) = Mu(A ∪B)

= Mu((A ∪B) ∩A) +Mu((A ∪B) ∩Ac))

= Mu(A) +Mu(B ∩Ac)

= Mu(A) +Mu(B)−Mu(A ∩B)

= M(A) +M(B)−M(A ∩B).

The L-measure also proves to be a direct improvement over the S-measure by strictly expanding the
family of measurable sets.

Proposition 4.4. For each n ∈ N let Jn be a simplex in Rj such that Jn ∩ Jm = ∅ for m �= n and
lim
n→∞

V (Jn) = 0. Then

M

( ∞⋃

n=1

Jn

)

=
∞∑

n=1

V (Jn).

Proof. The result follows directly from Lemma 3.18 and Proposition 3.19 and from the fact that

A =

(

A ∩
∞⋃

n=1

Jn

)

∪
(

A \
∞⋃

n=1

Jn

)

.

Proposition 4.5. Sets of outer measure zero are L-measurable.

Proof. The result follows directly from Proposition 3.6 and from the fact that if Mu(C) = 0 and A is
outer measurable, then

Mu(A) = Mu(A \ C) = Mu(A \ C) + 0 = Mu(A \ C) +Mu(A ∩ C).

Corollary 4.6. Let K ⊆ Rj be compact. Then K is L-measurable and its L-measure is equal to
zero.

Proof. Let ε > 0 in R be given. Then, for each x ∈ K, take Sx to be an open symplex containing x such
that V (Sx) is infinitely smaller than ε. Clearly, {Sx}x∈K is an open cover of K. Thus, by compactness,
we may extract a finite subcover {Sn}Nn=1 of K that satisfies

N∑

n=1

V (Sn) < ε.

It follows that K is outer-measurable with Mu(K) = 0, and hence K ∈ ML with M(K) = 0.
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4.2. Continuity of the Measure

One of the key results in probability theory is that of the continuity of the probability function. Despite
not being able to get the full result due to the topology of the Levi-Civita field R, we manage to get very
close to it.

Lemma 4.7. For each n ∈ N let An ∈ ML, with M(An) → 0 when n → ∞. Then, for any outer

measurable set X in Rj , we have that X ∩
∞⋃

n=1
An is outer measurable, with

Mu

(

X ∩
∞⋃

n=1

An

)

= lim
N→∞

Mu

(

X ∩
N⋃

n=1

An

)

.

Proof. We define XN := X ∩
N⋃

n=1
An and X∞ := X ∩

∞⋃

n=1
An. Then, since

XN+1 = X ∩
N+1⋃

n=1

An =

(

X ∩
N⋃

n=1

An

)

∪ (X ∩AN+1) ⊂ XN ∪AN+1,

we have that

Mu(XN+1) ≤ Mu(XN ) +Mu(AN+1).

Since the measures of An form a null sequence, it follows that the sequence (Mu(XN ))n∈N is Cauchy
and hence convergent in R. We define

t := lim
N→∞

Mu(XN ).

Given that each Xm and Ak are outer measurable, we can find {Jm
n } and {Ikn} covers of Xm and Ak,

respectively, such that

∞∑

n=1

V (Jm
n )−Mu(Xm) < dm

and
∞∑

n=1

V (Ikn)−Mu(Ak) < dk.

We define {Sk
n} := {Jk

n} ∪
∞⋃

m=k+1

{Imn }. Clearly, {Sk
n} is a covering of X∞ and

lim
k→∞

∞∑

n=1

V (Sk
n) = lim

k→∞

( ∞∑

n=1

V (Jk
n) +

∞∑

m=k+1

∞∑

n=1

V (Imn )

)

= t.

Finally, if {Pn} covers X∞, then it covers XN for all N . Thus,

Mu(XN ) ≤
∞∑

n=1

V (Pn)

and therefore

lim
N→∞

Mu(XN ) = t ≤
∞∑

n=1

V (Pn).
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We conclude that X∞ = X ∩
∞⋃

n=1
An is outer measurable and

Mu

(

X ∩
∞⋃

n=1

An

)

= lim
N→∞

Mu

(

X ∩
N⋃

n=1

An

)

.

Corollary 4.8. For each n ∈ N, let An ∈ ML be such that lim
N→∞

M

(
N⋃

n=1
An

)

∈ R. Then, for any

outer measurable set X in Rj , we have that X ∩
∞⋃

n=1
An is outer measurable, with

Mu

(

X ∩
∞⋃

n=1

An

)

= lim
N→∞

Mu

(

X ∩
N⋃

n=1

An

)

.

Proof. Since lim
N→∞

M

(
N⋃

n=1
An

)

∈ R, if we define A0 = ∅, we get

M

(
N⋃

n=0

An

)

−M

(
N−1⋃

n=0

An

)

= M

(
N⋃

n=0

An \
N−1⋃

n=0

An

)

→
N→∞

0.

Thus, defining BN :=
N⋃

n=0
An \

N−1⋃

n=0
An yields a sequence satisfying

N⋃

n=1
Bn =

N⋃

n=1
An,

∞⋃

n=1
Bn =

∞⋃

n=1
An

and lim
n→∞

M(Bn) = 0. The result then follows from Lemma 4.7.

Corollary 4.9. For each n ∈ N, let An ∈ ML be such that lim
N→∞

M

(
N⋃

n=1
An

)

∈ R. Then
∞⋃

n=1
An is

outer measurable, with

Mu

( ∞⋃

n=1

An

)

= lim
N→∞

Mu

(
N⋃

n=1

An

)

.

Proof. Without loss of generality, suppose that M(Am) forms a null sequence. Then, for each m ∈ N,

we can find a covering {Jm
n } of Am such that

( ∞∑

n=1
V (Jm

n )

)

m∈N
forms a null sequence. Thus,

∞⋃

m,n=1
Jm
n

is outer measurable and the result follows from Corollary 4.8, using X =
∞⋃

m,n=1
Jm
n .

Lemma 4.10. For eachn ∈ N, let An ∈ ML be such that lim
N→∞

M

(
N⋂

n=1
An

)

∈ R. Then, for any outer

measurable set X in Rj , we have that X ∩
∞⋂

n=1
An is outer measurable, with

Mu

(

X ∩
∞⋂

n=1

An

)

= lim
N→∞

Mu

(

X ∩
N⋂

n=1

An

)

.

Proof. For each N ∈ N, let BN :=
N⋂

n=1
An, and let B∞ :=

∞⋂

n=1
An, XN = X ∩BN and X∞ := X ∩B∞.

We notice that, since M(BN ) is convergent, then

Mu(BN \BN+1) = Mu(BN )−Mu(BN+1)
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is a null sequence. Now, XN+1 ⊆ XN ⊆ XN+1 ∪ (BN \BN+1), and hence

Mu(XN ) ≤ Mu(XN+1) +Mu(BN \BN+1).

Thus, the sequence (Mu(XN ))N∈N is Cauchy and therefore convergent. Let

t := lim
N→∞

Mu(XN ).

For each k ∈ N, let {Jk
n} be a covering of Xk such that

∞∑

n=1
V (Jk

n)−Mu(Xk) < dk. Now, {Jk
n} is a

sequence of coverings of X∞ satisfying lim
k→∞

∞∑

n=1
V (Jk

n) = t.

Suppose now, by way of contradiction, that there exists a covering {In} of X∞ such that
∞∑

n=1
V (In) <

t. Since for each m ∈ N, Bm \Bm+1 ∈ ML and since lim
m→∞

M(Bm \Bm+1) = 0, then there exists some

N ∈ N such that
∞∑

n=1
V (In) +

∞∑

m=N
M(Bm \Bm+1) < t. Thus, we can find covers {Jm

n } of Bm \Bm+1

so that
∞∑

n=1
V (In) +

∞∑

m=N

∞∑

n=1
V (Jm

n ) < t, which is a contradiction given that {In} ∪
⋃∞

m=N{Jm
n } covers

XN .

We conclude that X∞ = X ∩
∞⋂

n=1
An is outer measurable, and

Mu

(

X ∩
∞⋂

n=1

An

)

= lim
N→∞

Mu

(

X ∩
N⋂

n=1

An

)

.

Corollary 4.11. For each n ∈ N, let An ∈ ML be such that lim
N→∞

M

(
N⋂

n=1
An

)

∈ R. Then
∞⋂

n=1
An is

outer measurable, with

Mu

( ∞⋂

n=1

An

)

= lim
N→∞

Mu

(
N⋂

n=1

An

)

.

Proof. The result follows immediately by taking X = A1 in Lemma 4.10.

Theorem 4.12. For each n ∈ N, let An ∈ ML such that lim
N→∞

M

(
N⋃

n=1
An

)

∈ R. Then,
∞⋃

n=1
An is L-

measurable. Moreover,

M

( ∞⋃

n=1

An

)

= lim
N→∞

M

(
N⋃

n=1

An

)

.

Proof. We already know that
∞⋃

n=1
An is outer measurable. Let X ⊂ Rj be outer measurable and let {In}

be a cover of X. Since for each n ∈ N,
N⋃

n=1
An and

∞⋃

n=1
In \

N⋃

n=1
An are L-measurable and, since the

sequences of their measures are convergent, then

Mu(X) = lim
N→∞

Mu(X)
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= lim
N→∞

[

Mu

(

X ∩
N⋃

n=1

An

)

+Mu

(

X \
N⋃

n=1

An

)]

= lim
N→∞

[

Mu

(

X ∩
N⋃

n=1

An

)

+Mu

(

X ∩
∞⋃

n=1

In \
N⋃

n=1

An

)]

= Mu

(

X ∩
∞⋃

n=1

An

)

+Mu

(

X ∩
∞⋃

n=1

In \
∞⋃

n=1

An

)

= Mu

(

X ∩
∞⋃

n=1

An

)

+Mu

(

X \
∞⋃

n=1

An

)

.

The equality

M

( ∞⋃

n=1

An

)

= lim
N→∞

M

(
N⋃

n=1

An

)

follows then from Corollary 4.9.

Theorem 4.13. For each n ∈ N, let An ∈ ML be such that lim
N→∞

M

(
N⋂

n=1
An

)

∈ R. Then
∞⋂

n=1
An is

L-measurable. Moreover,

M

( ∞⋂

n=1

An

)

= lim
N→∞

M

(
N⋂

n=1

An

)

.

Proof. We already know that
∞⋂

n=1
An is outer measurable. Let X ⊆ Rj be outer measurable and let {In}

be a cover of X. Since for each n ∈ N,
N⋂

n=1
An and

∞⋃

n=1
In \

N⋂

n=1
An are L-measurable and, since the

sequences of their measures are convergent, then

Mu(X) = lim
N→∞

Mu(X)

= lim
N→∞

[

Mu

(

X ∩
N⋂

n=1

An

)

+Mu

(

X \
N⋂

n=1

An

)]

= lim
N→∞

[

Mu

(

X ∩
N⋂

n=1

An

)

+Mu

(

X ∩
∞⋃

n=1

In \
N⋂

n=1

An

)]

= Mu

(

X ∩
∞⋂

n=1

An

)

+Mu

(

X ∩
∞⋃

n=1

In \
∞⋂

n=1

An

)

= Mu

(

X ∩
∞⋂

n=1

An

)

+Mu

(

X \
∞⋂

n=1

An

)

.

The equality

M

( ∞⋂

n=1

An

)

= lim
N→∞

M

(
N⋂

n=1

An

)

follows then from Corollary 4.11.
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5. FUTURE WORK

Ongoing research aims at developing a Lebesgue-like integration theory for R-valued functions on
L-measurable subsets of Rj , for j ∈ N. We will develop the theory for j = 1 first, and then generalize it
to j > 1. Considering the success of the measure theory developed in [2] for the case of j = 1 and in this
paper for j > 1, we are hopeful that the sought after integral will satisfy most of the nice properties of the
Lebesgue integral on R

j .
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