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Abstract—The Levi-Civita field R is the smallest non-Archimidean ordered field extension of
the real numbers that is real closed and Cauchy complete in the topology induced by the order.
In an earlier paper [13], a measure was defined on R in terms of the limit of the sums of the
lengths of inner and outer covers of a set by countable unions of intervals as those inner and outer
sums get closer together. That definition proved useful in developing an integration theory over
R in which the integral satisfies many of the essential properties of the Lebesgue integral of real
analysis. Nevertheless, that measure theory lacks some intuitive results that one would expect in
any reasonable definition for a measure; for example, the complement of a measurable set within
another measurable set need not be measurable. In this paper, we will give a characterization for
the measurable sets defined in [13]. Then we will introduce the notion of an outer measure on R and
show some key properties the outer measure has. Finally, we will use the notion of outer measure to
define a new measure on R that proves to be a better generalization of the Lebesgue measure from R

to R and that leads to a family of measurable sets in R that strictly contains the family of measurable
sets from [13], and for which most of the classic results for Lebesgue measurable sets in R hold.
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1. INTRODUCTION

We recall that the elements of the Levi-Civita field R are functions from Q to R with left-finite support
(denoted by supp). That is, for every q ∈ Q there are only finitely many elements in the support that are
smaller than q. For the further discussion, it is convenient to introduce the following terminology.

Definition 1.1. (λ, =r, ∼, ≈) We define λ : R → Q by

λ(x) =

⎧
⎨

⎩

min(supp(x)) if x �= 0

∞ if x = 0.

The minimum exists because of the left-finiteness of supp(x). Moreover, we denote the value of x
at q ∈ Q with brackets like x[q].

Given x, y ∈ R and r ∈ Q, we say that x =r y if x[q] = y[q] for all q ≤ r.

Given x, y �= 0 in R, we say x ∼ y if λ(x) = λ(y); and we say x ≈ y if λ(x) = λ(y) and x[λ(x)] =
y[λ(y)].
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At this point, these definitions may feel somewhat arbitrary; but after having introduced an order on R,
we will see that λ describes orders of magnitude, ∼ corresponds to agreement of the order of magnitude,
while ≈ corresponds to agreement up to infinitely small relative error.

The set R is endowed with formal power series multiplication and componentwise addition, which
make it into a field [7] in which we can isomorphically embed the field of real numbers R as a subfield via
the map E : R → R defined by

E(x)[q] =

⎧
⎨

⎩

x if q = 0

0 else.
(1.1)

Definition 1.2. (Order in R) Let x, y ∈ R be given. Then we say that x > y (or y < x) if x �= y and
(x− y)[λ(x− y)] > 0; and we say x ≥ y (or y ≤ x) if x = y or x > y.

It follows that the relation ≥ (or ≤) defines a total order on R which makes it into an ordered field.
Note that, given a < b in R, we define the R-interval [a, b] = {x ∈ R : a ≤ x ≤ b}, with the obvious
adjustments in the definitions of the intervals [a, b), (a, b], and (a, b). Moreover, the embedding E in
Equation (1.1) of R into R is compatible with the order.

The order leads to the definition of an ordinary absolute value on R:

|x| = max{x,−x} =

⎧
⎨

⎩

x if x ≥ 0

−x if x < 0;

which induces the same topology on R (called the order topology or valuation topology) as that induced
by the ultrametric absolute value | · |u : R → R, given by

|x|u =

⎧
⎨

⎩

e−λ(x) if x �= 0

0 if x = 0,

as was shown in [14].

We note in passing here that |·|u is a non-Archimedean valuation on R; that is, it satisfies the
following properties

1. |v|u ≥ 0 for all v ∈ R and |v|u = 0 if and only if v = 0;

2. |vw|u = |v|u|w|u for all v,w ∈ R; and

3. |v + w|u ≤ max{|v|u, |w|u} for all v,w ∈ R: the strong triangle inequality.

Thus, (R, | · |u) is a non-Archimedean valued field. Moreover, |.|u induces a metric Δ on R given by
Δ(x, y) = |y − x|u which satisfies the strong triangle inequality and is thus an ultrametric, making
(R,Δ) an utrametric space.

Besides the usual order relations on R, some other notations are convenient.

Definition 1.3. (
,�) Let x, y ∈ R be non-negative. We say x is infinitely smaller than y (and
write x 
 y) if nx < y for all n ∈ N; we say x is infinitely larger than y (and write x � y) if
y 
 x. If x 
 1, we say x is infinitely small; if x � 1, we say x is infinitely large. Infinitely small
numbers are also called infinitesimals or differentials. Infinitely large numbers are also called
infinite. Non-negative numbers that are neither infinitely small nor infinitely large are also called
finite.

Definition 1.4. (The Number d) Let d be the element of R given by d[1] = 1 and d[t] = 0 for t �= 1.
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Remark 1.5. Given m ∈ Z, then dm is the positive R-number given by

dm =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dd · · · d︸ ︷︷ ︸
m times

if m > 0

1 if m = 0

1
d−m if m < 0

.

Moreover, given a rational number q = m/n (with n ∈ N and m ∈ Z), then dq is the positive nth
root of dm in R (that is, (dq)n = dm) and it is given by

dq[t] =

⎧
⎨

⎩

1 if t = q

0 otherwise.

It is easy to check that dq 
 1 if q > 0 and dq � 1 if q < 0 in Q. Moreover, for all x ∈ R,
the elements of supp(x) can be arranged in ascending order, say supp(x) = {q1, q2, . . .} with

qj < qj+1 for all j; and x can be written as x =
∞∑

j=1
x[qj]d

qj , where the series converges in the order

(valuation) topology [1].

Altogether, it follows that R is a non-Archimedean (valued and ordered) field extension of R. For
a detailed study of this field, we refer the reader to the survey paper [10] and the references therein. In
particular, it is shown that R is complete with respect to the natural (valuation) topology or, equivalently,
with respect to the ultrametric Δ.

It follows therefore that R is just a special case of the class of fields discussed in [6]. For a general
overview of the algebraic properties of formal power series fields, we refer to the comprehensive overview
by Ribenboim [5], and for an overview of the related valuation theory, to the book by Krull [3]. A thorough
and complete treatment of ordered structures can also be found in [4]. A more comprehensive survey of
all non-Archimedean fields can be found in [2].

Besides being the smallest non-Archimedean ordered field extension of the real numbers that is both
complete in the order topology and real closed, the Levi-Civita field R is of particular interest because
of its practical usefulness. Because of the left-finiteness of the supports of the Levi-Civita numbers,
those numbers can be used on a computer, thus allowing for many useful computational applications.
One such application is the computation of derivatives of real functions representable on a computer
[11], where both the accuracy of formula manipulators and the speed of classical numerical methods are
achieved.

The following result is not special to R but it holds in any non-Archimedean valued field; its proof can
be found in [7, 12].

Proposition 1.6. Let {an}n∈N be a sequence in R. Then {an} is a Cauchy sequence in the valuation
topology if and only if lim

n→∞
(an+1 − an) = 0.

Since R is Cauchy complete, we readily obtain the following result.

Corollary 1.7. Let {an}n∈N be a sequence in R. Then {an} converges in R if and only if
lim
n→∞

(an+1 − an) = 0.

Corollary 1.8. Let {an}n∈N be a sequence in R. Then
∑

n∈N
an converges in R if and only if lim

n→∞
an =

0.

Moreover, thanks to the non-Archimedean (ultrametric) nature of R, the order of limits, including
double infinite sums, can be interchanged more conveniently than in R.
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2. THE S-MEASURE ON R

Using the nice smoothness properties of power series (see [8] and the references therein), we
developed a measure and integration theory on R in [9, 13] that uses the R-analytic functions (functions
given locally by power series) as the building blocks for measurable functions instead of the step
functions used in the real case. We will refer to that measure by the S-measure henceforth in this paper.

Notation 2.1. Let a < b in R be given. Then by l(I(a, b)) we will denote the length of the interval
I(a, b), that is

l(I(a, b)) = length of I(a, b) = b− a.

Definition 2.2. Let A ⊂ R be given. Then we say that A is S-measurable if for every ε > 0 in R,
there exist a sequence of pairwise disjoint intervals {In}∞n=1 and a sequence of pairwise disjoint

intervals {Jn}∞n=1 such that
∞⋃

n=1
In ⊂ A ⊂

∞⋃

n=1
Jn,

∞∑

n=1
l(In) and

∑∞
n=1 l(Jn) converge in R, and

∞∑

n=1
l(Jn)−

∞∑

n=1
l(In) ≤ ε.

Given an S-measurable set A, then for every k ∈ N, we can select a sequence of pairwise disjoint

intervals
{
Ikn
}∞
n=1

and a sequence of pairwise disjoint intervals
{
Jk
n

}∞
n=1

such that
∞∑

n=1
l
(
Ikn
)

and

∞∑

n=1
l
(
Jk
n

)
converge in R for all k,

∞⋃

n=1

Ikn ⊂
∞⋃

n=1

Ik+1
n ⊂ A ⊂

∞⋃

n=1

Jk+1
n ⊂

∞⋃

n=1

Jk
n and

∞∑

n=1

l
(
Jk
n

)
−

∞∑

n=1

l
(
Ikn

)
≤ dk

for all k ∈ N. Since R is Cauchy complete in the order (valuation) topology, it follows that lim
k→∞

∑∞
n=1 l

(
Ikn
)

and lim
k→∞

∞∑

n=1
l
(
Jk
n

)
both exist and they are equal. We call the common value of the limits the S-measure

of A and we denote it by Ms(A). Thus,

Ms(A) = lim
k→∞

∞∑

n=1

l
(
Ikn

)
= lim

k→∞

∞∑

n=1

l
(
Jk
n

)
.

Contrary to the real case,

sup

{ ∞∑

n=1

l(In) : In’s are pairwise disjoint intervals and
∞⋃

n=1

In ⊂ A

}

and

inf

{ ∞∑

n=1

l(Jn) : Jn’s are pairwise disjoint intervals and A ⊂
∞⋃

n=1

Jn

}

need not exist for a given set A ⊂ R. However, as shown in [13], if A is S-measurable then both
the supremum and infimum exist and they are equal to Ms(A). This shows that the definition of S-
measurable sets in Definition 2.2 is a good generalization of that of the Lebesgue measurable sets of real
analysis that corrects for the lack of suprema and infima in non-Archimedean ordered fields.

It follows directly from the definition that Ms(A) ≥ 0 for any S-measurable set A ⊂ R and that any
interval I(a, b) is S-measurable with S-measure Ms(I(a, b)) = l(I(a, b)) = b− a. It also follows that

if A is a countable union of pairwise disjoint intervals (In(an, bn)) such that
∞∑

n=1
(bn − an) converges
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then A is S-measurable with Ms(A) =
∞∑

n=1
(bn − an). Moreover, if B ⊂ A ⊂ R and if A and B are S-

measurable, then Ms(B) ≤ Ms(A).
In [13] we show that the S-measure defined onR above has similar properties to those of the Lebesgue

measure on R. For example, we show that any subset of an S-measurable set of S-measure 0 is itself S-
measurable and has S-measure 0. We also show that any countable unions of S-measurable sets whose
S-measures form a null sequence is S-measurable and the S-measure of the union is less than or equal
to the sum of the S-measures of the original sets; moreover, the S-measure of the union is equal to the
sum of the S-measures of the original sets if the latter are pairwise disjoint. Furthermore, we show that
any finite intersection of S-measurable sets is also S-measurable and that the sum of the S-measures
of two S-measurable sets is equal to the sum of the S-measures of their union and intersection.

It is worth noting that the complement of an S-measurable set in an S-measurable set need not
be S-measurable. For example, [0, 1] and [0, 1] ∩Q are both S-measurable with S-measures 1 and 0,
respectively. However, the complement of [0, 1] ∩Q in [0, 1] is not S-measurable. On the other hand, if
B ⊂ A ⊂ R and if A, B and A \B are all S-measurable, then Ms(A) = Ms(B) +Ms(A \B).

The example of [0, 1] \ [0, 1] ∩Q above shows that the axiom of choice is not needed here to construct
a set that is not S-measurable, as there are many simple examples of such sets. Indeed, any uncountable
real subset of R, like [0, 1] ∩R for example, is not S-measurable. This ease of finding subsets of R
that are not S-measurable may seem surprising; however, through closer inspection and the following
characterization (Theorem 2.3), it will become obvious that the family of S-measurable sets is simply
too narrow, thus the need for a new measure on R that will extend the family of S-measurable sets and
will share more of the nice properties of the Lebesgue measure on R.

Theorem 2.3. Let A ⊂ R be S-measurable. Then A can be written as a disjoint union A =( ∞⋃

n=1
Kn

)

∪ S, where Kn is an interval in R for each n ∈ N and where
∞∑

n=1
l(Kn) = Ms(A) and

Ms(S) = 0.

Proof. Let ε > 0 in R be given. By definition, there exist two sequences of pairwise disjoint intervals

{In}∞n=1 and {Jn}∞n=1 such that
∞⋃

n=1
In ⊆ A ⊆

∞⋃

n=1
Jn,

∞∑

n=1
l(In) and

∞∑

n=1
l(Jn) both converge in the order

topology, and
∞∑

n=1
l(Jn)−

∞∑

n=1
l(In) < ε/2.

We can re-write the collection {In}∞n=1 as
∞⋃

m=1
{In ∩ Jm}∞n=1. Since, for every m ∈ N, we have that

lim
n→∞

l(In ∩ Jm) = 0, it follows that
∞∑

n=1
l(In ∩ Jm) converges for every m ∈ N, by Corollary 1.8. Thus,

there exists Nm ∈ N such that
∞∑

n=Nm+1
l(In ∩ Jm) < dmε. It follows that

∞∑

n=1

l(Jn)−
∞∑

m=1

Nm∑

n=1

l(In ∩ Jm) ≤
∞∑

n=1

l(Jn)−
∞∑

m=1

[ ∞∑

n=1

l(In ∩ Jm)− dmε

]

=
∞∑

n=1

l(Jn)−
∞∑

n=1

∞∑

m=1

l(In ∩ Jm) +
∞∑

m=1

dmε

=

∞∑

n=1

l(Jn)−
∞∑

n=1

l(In) +

∞∑

m=1

dmε

<
ε

2
+

d

1− d
ε

< ε.
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Thus, we can replace the original collections of intervals {In}∞n=1 and {Jn}∞n=1 with
∞⋃

m=1
{Jm ∩ In}Nm

n=1

and {Jn}∞n=1 which can be easily re-written as {Sn}∞n=1, {Xn}∞n=1 where Sn ⊆ Xn for each n. Moreover,
since Xn \ Sn is at most the disjoint union of two intervals, we can write {Xn}∞n=1 = {Sn}∞n=1 ∪
{Rn}∞n=1 where

∞∑

n=1
l(Rn) < ε.

Now, take ε = d. As shown, we can find two sequences of pairwise disjoint intervals {S1
n}∞n=1 and

{R1
n}∞n=1 such that

∞⋃

n=1

S1
n ⊆ A ⊆

( ∞⋃

n=1

S1
n

)

∪
( ∞⋃

n=1

R1
n

)

and
∞∑

n=1

l(R1
n) < d.

Now, given an arbitrary k ∈ N, assume that for every positive integer m ≤ k we have a pair of sequences

of pairwise disjoint intervals {Sm
n }∞n=1 and {Rm

n }∞n=1 such that
∞⋃

n=1
Sm
n ⊆ A ⊆

( ∞⋃

n=1
Sm
n

)

∪
( ∞⋃

n=1
Rm

n

)

,

∞∑

n=1
l(Rm

n ) < dm, and {Sm
n }∞n=1 ⊆ {Sm+1

n }∞n=1. Take now a pair of sequences of pairwise disjoint inter-

vals {In}∞n=1 and {On}∞n=1 such that
∞⋃

n=1

In ⊆ A ⊆
( ∞⋃

n=1

In

)

∪
( ∞⋃

n=1

On

)

and
∞∑

n=1

l(On) < dk+1.

Consider the collections of pairwise disjoint intervals
∞⋃

m=1
{In ∩Rk

m} and
∞⋃

m=1
{On ∩Rk

m}. We define

{Rk+1
n } :=

∞⋃

m=1

{On ∩Rk
m} and {Sk+1

n } := {Sk
n} ∪

( ∞⋃

m=1

{In ∩Rk
m}
)

.

Then {Sk+1
n } and {Rk+1

n } are pairwise disjoint collections of intervals that satisfy
∞⋃

n=1

Sk+1
n ⊆ A ⊆

( ∞⋃

n=1

Sk+1
n

)

∪
( ∞⋃

n=1

Rk+1
n

)

and
∞∑

n=1

l(Rk+1
n ) =

∞∑

n=1

∞∑

m=1

l(On ∩Rk
m) ≤

∞∑

n=1

l(On) < dk+1.

We define {S∞
n } =

∞⋃

k=1

{Sk
n}, which is a disjoint countable union of intervals that are contained in A. It

follows that {Rk
n} is a sequence of covers of A \

∞⋃

n=1
S∞
n that satisfies the condition lim

k→∞

∞∑

n=1
l(Rk

n) = 0.

Thus,
∞∑

n=1

l(S∞
n ) ≤ Ms(A) ≤

∞∑

n=1

l(S∞
n ) + lim

k→∞

∞∑

n=1

l(Rk
n) =

∞∑

n=1

l(S∞
n )

We conclude that A =

( ∞⋃

n=1
Kn

)

∪ S where
∞∑

n=1
l(Kn) = Ms(A) and Ms(S) = 0.

3. THE OUTER MEASURE
The effect of having too small a family of S-measurable sets impedes further progress into more

significant results that the reader associates with the Lebesgue measure in R. So we will introduce a
new definition that will enlarge the pool of measurable sets while still circumventing the fact that not all
bounded sets in R have an infimum or a supremum.
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Definition 3.1. Let A ⊂ R be given. Then we say that A is outer measurable if

inf

{ ∞∑

n=1

l(Sn) : Sn’s are intervals and A ⊆
∞⋃

n=1

Sn

}

exists in R. If so, we call that number the outer measure of A and denote it by Mu(A).

3.1. General Properties

As we shall see, this definition is going to assist us in defining a larger family of measurable sets than
that of the S-measurable sets. Unfortunately, working with the infimum of a set is often difficult and
labour intensive. To avoid that, we will make use of a variant of the assertion made immediately after
Definition 2.2, which was used to define the S-measure of an S-measurable set.

Proposition 3.2. Let A ⊂ R be outer measurable. Then there exists a sequence of sequences of

pairwise disjoint intervals
(
{Ikn}∞n=1

)∞
k=1

such that lim
k→∞

∞∑

n=1
l(Ikn) = Mu(A), and for all k ∈ N, we

have that

A ⊆
∞⋃

n=1

Ik+1
n ⊆

∞⋃

n=1

Ikn.

We say that such a sequence outer-converges to A.

Lemma 3.3. Let A, B and C be outer measurable sets in R such that A ⊆ B ∪C. Then Mu(A) ≤
Mu(B) +Mu(C).

Proof. Let {In}, {Jn} be arbitrary covers of B and C, respectively. Then, {In} ∪ {Jn} is a cover of A
and, by definition,

Mu(A) ≤
∞∑

n=1

l(In) +

∞∑

n=1

l(Jn)

It follows that

Mu(A)−
∞∑

n=1

l(In) ≤
∞∑

n=1

l(Jn)

Thus, Mu(A)−
∞∑

n=1
l(In) is a lower bound for the set XC :=

{ ∞∑

n=1
l(Sn) : C ⊆

∞⋃

n=1
Sn

}

and hence

Mu(A)−
∞∑

n=1

l(In) ≤ inf(XC) = Mu(C).

Thus,

Mu(A)−Mu(C) ≤
∞∑

n=1

l(In)

and hence

Mu(A)−Mu(C) ≤ inf(XB) = Mu(B),

from which the result follows.

It turns out that sets of outer measure zero inherit one of the key properties that hold for the classical
Lebesgue measurable subsets of R of measure 0, as shown in the following proposition.
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Proposition 3.4. Let A,B ⊂ R be outer measurable with Mu(B) = 0. Then, for any subset C ⊆ B

we have that Mu(C) = 0 and Mu(A \ C) = Mu(A).

Proof. It follows immediately from the definition that Mu(C) = 0. To see that Mu(A \ C) = Mu(A),
it is enough to notice that if {Jk

n}∞n=1 outer-converges to A when k → ∞ then it so outer-converges

to A \ C, for if {Sn} covers A \ C and
∞∑

n=1
l(Sn) < Mu(A), we can find {In} covering C such that

∞∑

n=1
l(In) +

∞∑

n=1
l(Sn) < Mu(A). This will yield a contradiction, since {In} ∪ {Sn} covers A.

3.2. Intervals and the Outer Measure
We now introduce a series of results showing that intervals behave particularly well with the notion

of outer measure.

Proposition 3.5. Let A ⊂ R be outer measurable and let I be an interval in R. Then A ∩ I is outer
measurable.

Proof. Let
(
{Jk

n}
)∞
k=1

outer-converge to A. For each n, k ∈ N, we define

Ikn := I ∩ Jk
n .

Then, clearly, l(Ikn) ≤ l(Jk
n) for all n, k ∈ N. It follows that, for every k ∈ N, the series

∞∑

n=1
l(Ikn)

converges. We will show that lim
k→∞

∞∑

n=1
l(Ikn) exists and is equal to Mu(A ∩ I).

First we note that since for every k,
∞⋃

n=1
(Jk+1

n ∩ Ic) ⊆
∞⋃

n=1
(Jk

n ∩ Ic) we have that
∞∑

n=1
l(Jk+1

n ∩ Ic) ≤
∞∑

n=1
l(Jk

n ∩ Ic). It follows that

∞∑

n=1

l(Ikn)−
∞∑

n=1

l(Ik+1
n ) =

∞∑

n=1

l(Jk
n ∩ I)−

∞∑

n=1

l(Jk+1
n ∩ I)

=

∞∑

n=1

(l(Jk
n)− l(Jk

n ∩ Ic))−
∞∑

n=1

(l(Jk+1
n )− l(Jk+1

n ∩ Ic))

=

∞∑

n=1

l(Jk
n)−

∞∑

n=1

l(Jk+1
n ) +

∞∑

n=1

l(Jk+1
n ∩ Ic)−

∞∑

n=1

l(Jk
n ∩ Ic)

≤
∞∑

n=1

l(Jk
n)−

∞∑

n=1

l(Jk+1
n ).

Since 0 ≤
∞∑

n=1
l(Ikn)−

∞∑

n=1
l(Ik+1

n ) ≤
∞∑

n=1
l(Jk

n)−
∞∑

n=1
l(Jk+1

n ) and since lim
k→∞

( ∞∑

n=1
l(Jk

n)−
∞∑

n=1
l(Jk+1

n )

)

=

0, we obtain that lim
k→∞

( ∞∑

n=1
l(Ikn)−

∞∑

n=1
l(Ik+1

n )

)

= 0. It follows then from Corollary 1.7 that lim
k→∞

∞∑

n=1
l(Ikn)

exists in R. Let x := lim
k→∞

∞∑

n=1
l(Ikn).

Suppose now that (Jn) is a cover of A ∩ I by pairwise disjoint open intervals. We will show that
∞∑

n=1
l(Jn) ≥ x. Suppose, to the contrary, that

∞∑

n=1
l(Jn) < x. It follows that

Mu(A) = lim
k→∞

∞∑

n=1

l(Jk
n)
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= lim
k→∞

∞∑

n=1

l(I ∩ Jk
n) + lim

k→∞

∞∑

n=1

l(Ic ∩ Jk
n)

= x+ lim
k→∞

∞∑

n=1

l(Ic ∩ Jk
n)

>

∞∑

n=1

l(Jn) + lim
k→∞

∞∑

n=1

l(Ic ∩ Jk
n).

It follows that Mu(A) >
∞∑

n=1
l(Jn) +

∞∑

n=1
l(Ic ∩ Jk

n) for k large enough. This is a contradiction, since

{Jn} ∪ {Ic ∩ Jk
n} is a cover of A by intervals. We conclude that A ∩ I is outer measurable.

Remark 3.6. Using a similar argument, one can prove that A ∩ Ic is also outer measurable for
any interval I and for any outer measurable set A.

Corollary 3.7. Let A ⊂ R be outer measurable and let {In}Nn=1 be a sequence of intervals in R.
Then

A ∩
N⋃

n=1

In and A \
N⋃

n=1

In

are outer measurable.

Proposition 3.8. Let A ⊂ R be outer measurable and let I, J be two disjoint intervals in R. Then
(A ∩ I) ∪ (A ∩ J) is outer measurable. Moreover,

Mu((A ∩ I) ∪ (A ∩ J)) = Mu(A ∩ I) +Mu(A ∩ J).

Proof. Since A ∩ I and A ∩ J are outer measurable by Proposition 3.5, there exist two sequences of
sequences of intervals {Ikn}, {Jk

n} outer-converging to A∩ I and A∩ J , respectively. Now, the sequence
of sequences {Ikn} ∪ {Jk

n} is a cover of (A ∩ I) ∪ (A ∩ J) satisfying that:

lim
k→∞

∑

X∈{Ikn}∪{Jk
n}

l(X) = lim
k→∞

[ ∞∑

n=1

l(Ikn) +

∞∑

n=1

l(Jk
n)

]

= Mu(A ∩ I) +Mu(A ∩ J).

Now let {Sn} be a cover of (A ∩ I) ∪ (A ∩ J). Without loss of generality, we may assume that Sn =
Sn ∩ I orSn = Sn ∩ J . We now may subdivide {Sn} into {Sn ∩ I} ∪ {Sn ∩ J} := {In} ∪ {Jn}. It follows
that {In} covers A ∩ I and {Jn} covers A ∩ J . Thus,

∞∑

n=1

l(Sn) =
∞∑

n=1

l(In) +
∞∑

n=1

l(Jn) ≥ Mu(A ∩ I) +Mu(A ∩ J).

It follows that (A ∩ I) ∪ (A ∩ J) is outer measurable and that

Mu((A ∩ I) ∪ (A ∩ J)) = Mu(A ∩ I) +Mu(A ∩ J).

Corollary 3.9. Let A ⊂ R be outer measurable and let {Jn}Nn=1 be pairwise disjoint intervals in

R. Then A ∩
(

N⋃

n=1
Jn

)

is outer measurable and

Mu

(

A ∩
(

N⋃

n=1

Jn

))

=

N∑

n=1

Mu(A ∩ Jn).
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Proposition 3.10. Let A ⊂ R be outer measurable and let {Jn}∞n=1 be a sequence of pairwise

disjoint intervals in R with lim
n→∞

l(Jn) = 0. Then A ∩
( ∞⋃

n=1
Jn

)

is outer measurable and

Mu

(

A ∩
( ∞⋃

n=1

Jn

))

=
∞∑

n=1

Mu(A ∩ Jn).

Proof. Since Jn ∩A ⊆ Jn, we have that Mu(A ∩ Jn) ≤ l(Jn). Thus, lim
n→∞

Mu(A ∩ Jn) = 0 and hence
∞∑

n=1
Mu(A ∩ Jn) converges, by Corollary 1.8. Let {Jk

n,m}∞m=1 be a sequence that outer-converges to

A ∩ Jn. The cover
∞⋃

n=1
{Jk

n,m}∞m=1 satisfies the following:

lim
k→∞

∑

X∈
∞⋃

n=1
{Jk

n,m}∞m=1

l(X) = lim
k→∞

∞∑

n=1

∞∑

m=1

l(Jk
n,m) =

∞∑

n=1

(

lim
k→∞

∞∑

m=1

l(Jk
n,m)

)

=

∞∑

n=1

Mu(A ∩ Jn).

That we can interchange the limits above follows from the fact that the limits are taken with respect to
the non-Archimedean order in R or, equivalently, with respect to the ultrametric Δ [7].

Suppose now that {Sn} is any cover of A ∩
( ∞⋃

n=1
Jn

)

. Then, for every N ∈ N, we have

∞∑

n=1

l(Sn) ≥
N∑

n=1

Mu(A ∩ Jn) = Mu

(

A ∩
(

N⋃

n=1

Jn

))

.

Hence
∞∑

n=1
l(Sn) ≥

∞∑

n=1
Mu(A ∩ Jn). We conclude that A ∩

( ∞⋃

n=1
Jn

)

is outer measurable and

Mu

(

A ∩
( ∞⋃

n=1

Jn

))

=

∞∑

n=1

Mu(A ∩ Jn).

Proposition 3.11. Let A ⊂ R be outer measurable and let I be an interval in R such that I ∩A = ∅.
Then A ∪ I is outer measurable with Mu(A ∪ I) = Mu(A) + l(I).

Proof. Let {Jk
n}∞n=1 be a sequence that outer-converges to A. Without loss of generality, we may

assume that Jk
n = Jk

n ∩ Ic. Then, if we define

Ik0 := I and Ikn := Jk
n for each n ∈ N,

we obtain that A ∪ I ⊆
∞⋃

n=0
Ik+1
n ⊆

∞⋃

n=0
Ikn and that lim

k→∞

∞∑

n=0
l(Ikn) = Mu(A) + l(I).

Let {Sn} be a cover of A ∪ I. We can subdivide {Sn} into {Sn ∩ I} and {Sn ∩ Ic} covers of I and A,
respectively. Thus,

∞∑

n=0

l(Sn) =

∞∑

n=0

(l(Sn ∩ I) + l(Sn ∩ Ic)) =

∞∑

n=0

l(Sn ∩ I) +

∞∑

n=0

l(Sn ∩ Ic) ≥ l(I) +Mu(A).

We conclude that A ∪ I is outer measurable with Mu(A ∪ I) = Mu(A) + l(I).
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Corollary 3.12. Let A ⊂ R be outer measurable, let N ≥ 2 in N be given, and let {In}Nn=1 be

pairwise disjoint intervals in R such that A ∩ In = ∅ for each n ∈ {1, . . . , N}. Then A ∪
(

N⋃

n=1
In

)

is outer measurable, with

Mu

(

A ∪
(

N⋃

n=1

In

))

= Mu(A) +

N∑

n=1

l(In).

Corollary 3.13. Let A ⊂ R be outer measurable, let N ∈ N be given, and let {In}Nn=1 be intervals

in R. Then A ∪
(

N⋃

n=1
In

)

is outer measurable.

Proof. It is enough to see that A ∪ I = (A ∩ Ic) ∪ I, which is outer measurable.

Proposition 3.14. Let A ⊂ R be outer measurable and let {In}∞n=1 be a collection of pairwise

disjoint intervals in R such that A ∩ In = ∅ for each n ∈ N and lim
n→∞

l(In) = 0. Then A ∪
( ∞⋃

n=1
In

)

is outer measurable, with

Mu

(

A ∪
( ∞⋃

n=1

In

))

= Mu(A) +
∞∑

n=1

l(In).

Proof. Let {Jk
n}∞n=1 be a sequence outer-converging to A. Then {Jk

n}∞n=1 ∪ {In}∞n=1 covers A ∪( ∞⋃

n=1
In

)

and

lim
k→∞

∑

X∈{Jk
n}∞n=1∪{In}∞n=1

l(X) = lim
k→∞

∞∑

n=1

l(Jk
n) +

∞∑

n=1

l(In) = Mu(A) +
∞∑

n=1

l(In).

Now, let {Sn} be a cover of {A} ∪ {In}∞n=1. It follows that

Mu

(

A ∪
(

N⋃

n=1

In

))

= Mu(A) +

N∑

n=1

l(In) ≤
∞∑

n=1

l(Sn)

for every N ∈ N, and hence Mu(A) +
∞∑

n=1
l(In) ≤

∞∑

n=1
l(Sn).

Proposition 3.15. Let A ⊂ R be outer measurable and let {In}∞n=1 be a collection of intervals in

R such that lim
n→∞

l(In) = 0. Then A ∪
( ∞⋃

n=1
In

)

is outer measurable.

Proof. Without loss of generality, we may assume that {In}∞n=1 is a pairwise disjoint collection that’s
arranged in the order of decreasing length. For each m ∈ N, there exist Nm ∈ N and some cover {Sm

n }

of Am := A ∪
(

Nm⋃

n=1
In

)

such that

∞∑

n=Nm+1

l(In) < dm and
∞∑

n=1

l(Sm
n )−Mu(Am) < dm.

Then Cm := {Sm
n } ∪ {In}∞n=Nm+1 is a sequence of covers for A ∪

( ∞⋃

n=1
In

)

that satisfies

∣
∣
∣
∣
∣
∣

∑

X∈Cm+1

l(X)−
∑

X∈Cm

l(X)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∞∑

n=Nm+1+1

l(In) +

∞∑

n=1

l(Sm+1
n )−

∞∑

n=Nm+1

l(In)−
∞∑

n=1

l(Sm
n )

∣
∣
∣
∣
∣
∣
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≤

∣
∣
∣
∣
∣
∣

∞∑

n=Nm+1+1

l(In)

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∞∑

n=Nm+1

l(In)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∞∑

n=1

l(Sm+1
n )−

∞∑

n=1

l(Sm
n )

∣
∣
∣
∣
∣

< 2dm +

∣
∣
∣
∣
∣

∞∑

n=1

l(Sm+1
n )−

∞∑

n=1

l(Sm
n )

∣
∣
∣
∣
∣

≤ 2dm +

∣
∣
∣
∣
∣

∞∑

n=1

l(Sm+1
n )−Mu(Am+1)

∣
∣
∣
∣
∣
+ |Mu(Am+1)−Mu(Am)|

+

∣
∣
∣
∣
∣
Mu(Am)−

∞∑

n=1

l(Sm
n )

∣
∣
∣
∣
∣

< 4dm + |Mu(Am+1)−Mu(Am)|

≤ 4dm +

∞∑

n=Nm+1

l(In)

< 5dm.

Thus, using Corollary 1.7, we infer that x := lim
m→∞

∑

X∈Cm

l(X) exists in R. Suppose now that {Jn} is a

cover of A ∪
( ∞⋃

n=1
In

)

such that
∞∑

n=1
l(Sn) < x. We choose k such that dk +

∞∑

n=1
l(Sn) < x and m > k

such that dk +
∞∑

n=1
l(Sn) <

∑

X∈Cm

l(X). It follows that

Mu(Am) >

∞∑

n=1

l(Sm
n )− dm =

∑

X∈Cm

l(X)−
∞∑

n=Nm+1

l(In)− dm

>
∑

X∈Cm

l(X)− 2dm >
∑

X∈Cm

l(X)− dk

>

∞∑

n=1

l(Sn),

which is a contradiction, since {Sn} covers Am. We conclude that A ∪
( ∞⋃

n=1
In

)

is outer measurable.

Lemma 3.16. Let A ⊂ R be outer measurable and let {In}∞n=1 be a sequence of pairwise disjoint

intervals in R such that lim
n→∞

l(In) = 0. Then the set A \
∞⋃

n=1
In is outer measurable, and

Mu

(

A \
∞⋃

n=1

In

)

= lim
k→∞

Mu

(

A \
k⋃

n=1

In

)

.

Proof. For each k ∈ N, let Ak := A \
k⋃

n=1
In and let A∞ := A \

∞⋃

n=1
In. Then, clearly, Ak+1 ⊆ Ak and

hence Mu(Ak+1) ≤ Mu(Ak) for all k ∈ N. We note that Ak = Ak+1 ∪ (A ∩ Ik+1), and hence

Mu(Ak)−Mu(Ak+1) ≤ Mu(A ∩ Ik+1) ≤ l(Ik+1).

Since 0 ≤ Mu(Ak)−Mu(Ak+1) ≤ l(Ik+1) and since lim
k→∞

l(Ik+1) = 0, we obtain that

lim
k→∞

(Mu(Ak)−Mu(Ak+1)) = 0. It follows then from Corollary 1.7 that lim
k→∞

Mu (Ak) exists in R. We
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define

x := lim
k→∞

Mu (Ak) = lim
k→∞

Mu

(

A \
k⋃

n=1

In

)

.

Since each Ak is outer measurable, there exists a cover {Sk
n} of Ak such that

∞∑

n=1
l(Sk

n)−Mu(Ak) < dk.

Now, the sequence {Sk
n} is a sequence of covers of A∞ that satisfies

lim
k→∞

∞∑

n=1

l(Sk
n) = x.

It remains to show that x is a lower bound for the sum of lengths of any countable collection of intervals

covering A∞. Assume to the contrary that {Jn} is a cover of A∞ such that
∞∑

n=1
l(Jn) < x. We now take

N ∈ N such that
∞∑

n=1

l(Jn) +
∞∑

n=N

l(In) < x ≤ Mu(AN )

which yields a contradiction to the fact that {Jn} ∪ {In}∞n=N covers AN .

Proposition 3.17. Let A,B ⊂ R be outer measurable such that A ⊆
⋃∞

n=1 In and B ⊆ (
⋃∞

n=1 In)
c,

where the In’s are pairwise disjoint intervals in R with lim
n→∞

l(In) = 0. Then A ∪B is outer

measurable, and

Mu(A ∪B) = Mu(A) +Mu(B).

Proof. First note that, for any N ∈ N, we have that
(

N⋃

n=1

In

)c

=
N+1⋃

n=1

JN
n ,

where JN
n are pairwise disjoint intervals (possibly infinite). The superscript N means that the partition

of
(⋃N

n=1 In

)c
into intervals depends on N . Now, let {Sn} be a cover of A ∪B. Then

∞∑

n=1

l(Sn) =

∞∑

n=1

l

(

Sn ∩
N⋃

m=1

Im

)

+ l

(

Sn ∩
(

N⋃

m=1

Im

)c)

=

∞∑

n=1

(
N∑

m=1

l(Sn ∩ Im) +

N+1∑

m=1

l(Sn ∩ JN
m )

)

=

∞∑

n=1

( ∞∑

m=1

l(Sn ∩ Im)−
∞∑

m=M+1

l(Sn ∩ Im) +

N+1∑

m=1

l(Sn ∩ JN
m )

)

=
∞∑

n=1

∞∑

m=1

l(Sn ∩ Im)−
∞∑

n=1

∞∑

m=N+1

l(Sn ∩ Im) +
∞∑

n=1

N+1∑

m=1

l(Sn ∩ JN
m ).

Note that {Sn ∩ Im | n,m ∈ N} is a cover for A (an appropriate indexing can be found easily). Also,
{Sn ∩ JN

m | n ∈ N, m = 1, 2, · · · , N + 1} is a cover for B since

B ⊆
( ∞⋃

m=1

Im

)c

⊆
(

N⋃

m=1

Im

)c

=

N+1⋃

m=1

JN
m .
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Thus,

∞∑

n=1

∞∑

m=1

l(Sn ∩ Im) ≥ Mu(A) and
∞∑

n=1

N+1∑

m=1

l(Sn ∩ JN
m ) ≥ Mu(B),

and hence
∞∑

n=1

l(Sn) ≥ Mu(A) +Mu(B)−
∞∑

n=1

∞∑

m=N+1

l(Sn ∩ Im).

It follows that
∞∑

n=1

l(Sn) ≥ Mu(A) +Mu(B)−
∞∑

m=N+1

∞∑

n=1

l(Sn ∩ Im).

Taking the limit as N → ∞ yields
∞∑

n=1

l(Sn) ≥ Mu(A) +Mu(B).

Finally, we check that if {Lk
n}, {T k

n} outer-converge to A and B, respectively, then {Lk
n} ∪ {T k

n} covers
A ∪B and

lim
k→∞

( ∞∑

n=1

l(Lk
n) +

∞∑

n=1

l(T k
n )

)

= Mu(A) +Mu(B).

We conclude that A ∪B is outer measurable and Mu(A ∪B) = Mu(A) +Mu(B).

Theorem 3.18. Let A,B ⊂ R be outer measurable. Then A ∪B is outer measurable.

Proof. Let {Ikn}∞n=1 be a sequence that outer-converges to A. We define

Bk := B ∩
∞⋂

n=1

(
Ikn

)c
.

Since each Bk is outer measurable, there exists a cover {Jk
n} of Bk such that

∞∑

n=1
l(Jk

n)−Mu(Bk) < dk.

We note that, since
∞⋃

n=1
Ik+1
n ⊆

∞⋃

n=1
Ikn , then

∞⋂

n=1

(
Ikn
)c ⊆

∞⋂

n=1

(
Ik+1
n

)c
and hence Bk ⊆ Bk+1. Moreover

Bk+1 = Bk ∪ (Bk+1 \ Bk)

= Bk ∪
(

B ∩
( ∞⋃

n=1

Ikn \
∞⋃

n=1

Ik+1
n

))

= Bk ∪
( ∞⋃

n=1

Ikn ∩
(

B \
∞⋃

n=1

Ik+1
n

))

⊆ Bk ∪
( ∞⋃

n=1

Ikn \
∞⋃

n=1

Ik+1
n

)

.

Hence Bk+1 \ Bk is outer measurable and Mu(Bk+1 \ Bk) ≤
∞∑

n=1
l(Ikn)−

∞∑

n=1
l(Ik+1

n ) → 0 as k → ∞. It

follows that the sequence Mu(Bk) is Cauchy, and it converges in R. That is,

lim
k→∞

∞∑

n=1

l(Jk
n) = lim

k→∞
Mu(Bk) ∈ R.
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We define B∞ :=
∞⋃

n=1
Bk. Let {Sn} be a cover of B∞. It follows that {Sn} covers Bk for each k ∈ N;

thus, Mu(Bk) ≤
∞∑

n=1
l(Sn) for each k ∈ N and hence x := lim

k→∞
Mu(Bk) ≤

∞∑

n=1
l(Sn).

Since Bk+1 \ Bk is outer measurable for each k ∈ N and lim
k→∞

Mu(Bk+1 \ Bk) = 0, there exists {Rk
n}

cover of Bk+1 \ Bk such that
∞∑

n=1
l(Rk

n)−Mu(Bk+1 \ Bk) < dk. It follows that {Jk
n} ∪

∞⋃

m=k

{Rm
n } covers

B∞ = Bk ∪
( ∞⋃

m=k

(Bm+1 \ Bm)

)

and lim
k→∞

∞∑

n=1
l(Jk

n) +
∞∑

m=k

∞∑

n=1
l(Rm

n ) = x. We conclude that B∞ is

outer measurable and has outer measure x.
Now, {Jk

n}∞n=1 ∪ {Ikn}∞n=1 covers A ∪Bk and

lim
k→∞

( ∞∑

n=1

l(Jk
n) +

∞∑

n=1

l(Ikn)

)

= Mu(A) + x.

Finally, if {Tn} covers A ∪B, then it does also cover A ∪Bk, which is outer measurable by Proposition
3.17. Thus,

Mu(A) +Mu(Bk) = Mu(A ∪Bk) ≤
∞∑

n=1

l(Sn)

and hence

Mu(A) + x = Mu(A) + lim
k→∞

Mu(Bk) ≤
∞∑

n=1

l(Sn).

We conclude that A ∪B is outer measurable.

3.3. The Problem with the Outer Measure

From the last result, one can see that the outer measure may be used to introduce a strong enough
definition of measurability to serve as a replacement for the S-measure in the Levi-Civita field R.
However, similar to the situation in classical real analysis, the new concept fails in extreme cases when
sets are too fuzzy or too tangled together as to pass the measurability test but fail for intersections and
additivity. We give an example (Example 3.21 below) that illustrates both cases. But first we prove the
following result which will be used in that example.

Proposition 3.19. Let I ⊂ R be an interval, X ⊆ I a dense subset of I, and {Sn}∞n=1 a cover of X.

Then
∞∑

n=1
l(Sn) ≥ l(I).

Proof. Let k ∈ Q be given. For every t ∈ R, we define the k-th truncation of t as follows:

t(k) =
∑

q≤k

t[q]dq.

Now, since X is dense in I, then, for every s ∈ I, there exists x ∈ X such that x =k s. Let N ∈ N

to be such that for every n > N , l(Sn) 
 dk. It follows that if s, t ∈ Sn, then s =k t. Consider now the
finite sub-collection of intervals {Sn}Nn=1 = {(an, bn)}Nn=1 arranged such that

a(k) ≤ a
(k)
1 ≤ b

(k)
1 ≤ a

(k)
2 ≤ b

(k)
2 ≤ ... ≤ a

(k)
N ≤ b

(k)
N ≤ b(k).

Suppose now that a(k) < a
(k)
1 . Since the interval A :=

(
a(k), a

(k)
1

)
is uncountable but the set

{x(m)
n }∞n=N+1 where x

(k)
n ∈ Sn is countable, there exists t ∈ A such that t(k) �= x

(k)
n for all n ∈ N . It
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follows that there exists x ∈ X such that x =k t(k). However, this is a contradiction, because x /∈ Sn

for all n ∈ N. We conclude that a(k) = a
(k)
1 . Using an identical argument one shows that b(k)n = a

(k)
n+1. It

follows that
∞∑

n=1

l(Sn) =k

∞∑

n=1

(
b(k)n − a(k)n

)
=k b(k) − a(k) =k b− a =k l(I).

Since this is true for any arbitrary k, one has that
∞∑

n=1
l(Sn) = l(I).

Corollary 3.20. Let X be a dense subset of an interval I in R. Then X is outer measurable and
Mu(X) = l(I).

Example 3.21. Consider the interval I = [0, 1] and the sets

T := {x ∈ [0, 1] | ∃N ∈ N;∀q > N, x[q] = 0}
S := {x ∈ [0, 1] | ∀N ∈ N;∃q > N, x[q] �= 0} .

Clearly T, S are both dense in [0, 1] and T ∩ S = ∅. Consider now the set

C :=

∞⋃

n=2

(
d(n−1)/n, 2d(n−1)/n

)
.

It is not difficult to show that C is not outer measurable; on the other hand, T ∪ C and S ∪ C are
both dense in [0, 1], and hence they are outer measurable. Moreover,

(T ∪C) ∩ (S ∪ C) = C ∪ (T ∩ S) = C.

Thus, the intersection of two outer measurable sets is not necessarily outer measurable.

4. A LEBESGUE-LIKE MEASURE

With the results from the previous section, we are ready to define a new measure and a new family
of measurable sets in R, applying Caratheodory’s criterion and making use of the outer measure on R,
similarly to how the Lebesgue measure of real analysis is defined in terms of the outer measure on R.

Definition 4.1. Let A ⊂ R be an outer measurable set. Then we say that A is L-measurable if for
every other outer measurable set B ⊂ R both A ∩B and Ac ∩B are outer measurable and

Mu(B) = Mu(A ∩B) +Mu(A
c ∩B).

In this case, we define the L-measure of A to be M(A) := Mu(A). The family of L-measurable sets
in R will be denoted by ML.

Proposition 4.2. Let A,B ∈ ML be given. Then A ∩B,A ∪B,A ∩Bc ∈ ML.

Proof. Let X ⊂ R be outer measurable. Then, by definition, the sets A∩X, B ∩X, Ac ∩X and Bc ∩X
are all outer measurable. It follows that the sets A∩B ∩X, (A ∪B)∩X, Ac ∩Bc ∩X, (Ac ∪Bc) ∩X,
X ∩A ∩Bc, X ∩Ac ∩B, (Ac ∪B)∩X, and (A ∪Bc) ∩X are all outer measurable; and so are the sets
X ∩ (Ac ∪Bc) ∩A, X ∩ (Ac ∪Bc) ∩Ac, X ∩ (A ∪B) ∩A, X ∩ (A ∪B) ∩Ac, X ∩ (Ac ∪B) ∩A, and
X ∩ (Ac ∪B) ∩ Ac.

Now, we simply check that

Mu(X) = Mu(X ∩ A) +Mu(X ∩Ac)

= Mu(X ∩ A ∩B) +Mu(X ∩A ∩Bc) +Mu(X ∩Ac)

= Mu(X ∩ A ∩B) +Mu(X ∩ (Ac ∪Bc) ∩A) +Mu(X ∩ (Ac ∪Bc) ∩Ac)

= Mu(X ∩ A ∩B) +Mu(X ∩ (Ac ∪Bc))

= Mu(X ∩ (A ∩B)) +Mu(X ∩ (A ∩B)c);

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 15 No. 1 2023



ON A NEW MEASURE 17

Mu(X) = Mu(X ∩ Ac) +Mu(X ∩A)

= Mu(X ∩ Ac ∩Bc) +Mu(X ∩Ac ∩B) +Mu(X ∩A)

= Mu(X ∩ Ac ∩Bc) +Mu(X ∩ (A ∪B) ∩Ac) +Mu(X ∩ (A ∪B) ∩A)

= Mu(X ∩ Ac ∩Bc) +Mu(X ∩ (A ∪B))

= Mu(X ∩ (A ∪B)c) +Mu(X ∩ (A ∪B));

and

Mu(X) = Mu(X ∩ A) +Mu(X ∩Ac)

= Mu(X ∩ A ∩Bc) +Mu(X ∩A ∩B) +Mu(X ∩Ac)

= Mu(X ∩ A ∩Bc) +Mu(X ∩ (Ac ∪B) ∩A) +Mu(X ∩ (Ac ∪B) ∩Ac)

= Mu(X ∩ A ∩Bc) +Mu(X ∩ (Ac ∪B))

= Mu(X ∩ (A ∩Bc)) +Mu(X ∩ (A ∩Bc)c).

Thus, A ∪B, A ∩B and A ∩Bc are L-measurable.

The family ML of L-measurable sets naturally inherits some of the key properties of the Lebesgue
measure in R.

Proposition 4.3. Let A,B ∈ ML be given. Then

M(A ∪B) = M(A) +M(B)−M(A ∩B).

Proof. We already know that A ∪B,A ∩B ∈ ML. It follows that

M(A ∪B) = Mu(A ∪B)

= Mu((A ∪B) ∩A) +Mu((A ∪B) ∩Ac))

= Mu(A) +Mu(B ∩Ac)

= Mu(A) +Mu(B)−Mu(A ∩B)

= M(A) +M(B)−M(A ∩B).

This family ML also proves to be a direct improvement over the S-measure by strictly expanding the
family of S-measurable sets.

Proposition 4.4. Let {Jn}∞n=1 be a sequence of pairwise disjoint intervals in R such that

lim
n→∞

l(Jn) = 0. Then
∞⋃

n=1
Jn is L-measurable, and

M

( ∞⋃

n=1

Jn

)

=

∞∑

n=1

l(Jn).

Proof. The result follows directly from Lemma 3.16 and Proposition 3.17 and from the fact that

A =

(

A ∩
∞⋃

n=1

Jn

)

∪
(

A \
∞⋃

n=1

Jn

)

.

Proposition 4.5. Let C ⊂ R be outer measurable with Mu(C) = 0. Then C is L-measurable with
M(C)=0.
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Proof. Let A ⊂ R be outer measurable. Then, using Proposition 3.4, we have that

Mu(A) = Mu(A \ C) = Mu(A \ C) + 0 = Mu(A \ C) +Mu(A ∩ C) = Mu(A ∩C) +Mu(A ∩ Cc).

Thus, C is L-measurable, with L-measure M(C) = Mu(C) = 0.

Corollary 4.6. Let A ⊂ R be S-measurable. Then A is L-measurable and M(A) = Ms(A).

Proof. Let A ⊂ R be S-measurable. Then, by Theorem 2.3, A can be written as a disjoint union

A =

( ∞⋃

n=1
Kn

)

∪ S, where Kn is an interval in R for each n ∈ N and where
∞∑

n=1
l(Kn) = Ms(A) and

Ms(S) = 0. Since Mu(S) = Ms(S) = 0, it follows from Proposition 4.5 that S is L-measurable, with

M(S) = 0. Moreover, by Proposition 4.4, we have that
∞⋃

n=1
Kn is L-measurable with

M

( ∞⋃

n=1

Kn

)

=
∞∑

n=1

l(Kn) = Ms(A).

It follows then from Proposition 4.2 and Proposition 4.3 that A is L-measurable, with

M(A) = M

( ∞⋃

n=1

Kn

)

+M(S) = Ms(A) + 0 = Ms(A).

One of the key results in probability theory is that of the continuity of the probability measure. Despite
not being able to get the full result due to the intrinsic characteristics of the set, we manage to get very
close to it.

Lemma 4.7. For each n ∈ N let An ⊂ R be L-measurable, with lim
n→∞

M(An) = 0, and let X ⊂ R be

outer measurable. Then

lim
N→∞

Mu

(

X ∩
N⋃

n=1

An

)

= Mu

(

X ∩
∞⋃

n=1

An

)

.

Proof. For each N ∈ N let XN := X ∩
N⋃

n=1
An, and let X∞ := X ∩

∞⋃

n=1
An. Then we have that

Mu(XN+1) ≤ Mu(XN ) +Mu(AN+1) for all N ∈ N.

Since the outer measures of An form a null sequence, then the sequence Mu(XN ) is Cauchy and
therefore convergent in R. We define

t := lim
N→∞

Mu(XN ).

Given that Xm and Ak are outer measurable for each m ∈ N and for each k ∈ N, we can find covers
{Jm

n }∞n=1 and {Ikn}∞n=1 of Xm and Ak, respectively, such that
∞∑

n=1

l(Jm
n )−Mu(Xm) < dm and

∞∑

n=1

l(Ikn)−Mu(Ak) < dk.

We define {Sk
n}∞n=1 := {Jk

n}∞n=1 ∪
∞⋃

m=k+1

{Imn }∞n=1. Then, clearly, {Sk
n}∞n=1 is a covering of X∞ and

lim
k→∞

∞∑

n=1

l(Sk
n) = lim

k→∞

( ∞∑

n=1

l(Jk
n) +

∞∑

m=k+1

∞∑

n=1

l(Imn )

)

= t.
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Finally, if {Pn}∞n=1 covers X∞, then it covers XN for all N ∈ N. Thus, Mu(XN ) ≤
∞∑

n=1
l(Pn) for all

N ∈ N and hence

lim
N→∞

Mu(XN ) = t ≤
∞∑

n=1

l(Pn).

We conclude that X∞ is outer measurable and t = Mu(X∞); that is, limN→∞Mu(XN ) = Mu(X∞) or

lim
N→∞

Mu

(

X ∩
N⋃

n=1

An

)

= Mu

(

X ∩
∞⋃

n=1

An

)

.

Corollary 4.8. For each n ∈ N let An ⊂ R be L-measurable such that lim
N→∞

M

(
N⋃

n=1
An

)

exists in

R, and let X ⊂ R be outer measurable. Then

lim
N→∞

Mu

(

X ∩
N⋃

n=1

An

)

= Mu

(

X ∩
∞⋃

n=1

An

)

.

Proof. Set A0 = ∅. Then, since lim
N→∞

M

(
N⋃

n=0
An

)

= lim
N→∞

M

(
N⋃

n=1
An

)

exists in R, we have that

M

(
N+1⋃

n=0

An

)

−M

(
N⋃

n=0

An

)

= M

(
N+1⋃

n=0

An \
N⋃

n=0

An

)

→
N→∞

0.

For each N ∈ N, let BN =
N⋃

n=0
An \

N−1⋃

n=0
An. Then the new sequence satisfies the following

N⋃

n=1

Bn =

N⋃

n=1

An,

∞⋃

n=1

Bn =

∞⋃

n=1

An and lim
n→∞

M(Bn) = 0.

The result follows from Lemma 4.7.

Corollary 4.9. For each n ∈ N let An ⊂ R be L-measurable such that lim
N→∞

M

(
N⋃

n=1
An

)

exists in

R. Then

lim
N→∞

Mu

(
N⋃

n=1

An

)

= Mu

( ∞⋃

n=1

An

)

.

Proof. Without loss of generality, we may assume that lim
m→∞

M(Am) = 0. Then, for each m ∈ N we

can find a cover {Jm
n }∞n=1 of Am such that lim

m→∞

( ∞∑

n=1
l(Jm

n )

)

= 0. Thus, X :=
∞⋃

m,n=1
Jm
n is outer

measurable and the result follows from Corollary 4.8.

Lemma 4.10. For each n ∈ N let An ⊂ R be L-measurable such that lim
N→∞

M

(
N⋂

n=1
An

)

exists in

R, and let X ⊂ R be outer measurable. Then X ∩
∞⋂

n=1
An is outer measurable, and

lim
N→∞

Mu

(

X ∩
N⋂

n=1

An

)

= Mu

(

X ∩
∞⋂

n=1

An

)

.
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Proof. For each N ∈ N, define BN :=
N⋂

n=1
An and XN := X ∩BN , and define B∞ :=

∞⋂

n=1
An and

X∞ := X ∩B∞. Since lim
N→∞

M(BN ) = 0, it follows that

Mu(BN \ BN+1) = Mu(BN )−Mu(BN+1) → 0 as N → ∞.

We have that XN+1 ⊆ XN ⊆ XN+1 ∪ (BN \ BN+1), and hence

Mu(XN ) ≤ Mu(XN+1) +Mu(BN \ BN+1).

It follows that the sequence (Mu(Xn))n∈N is Cauchy and therefore convergent in R. Let t =
lim

N→∞
Mu(XN ).

For each k ∈ N, let {Jk
n}∞n=1 be a cover by intervals of Xk such that

∞∑

n=1
l(Jk

n)−Mu(Xk) < dk. Thus,

{Jk
n} is a sequence of covers of X∞ satisfying lim

k→∞

∞∑

n=1
l(Jk

n) = t.

It remains to show that t ≤
∞∑

n=1
l(In) for any cover {In}∞n=1 of X∞. Suppose, to the contrary,

that there exists a cover {In}∞n=1 of X∞ such that
∞∑

n=1
l(In) < t. Since Bm \ Bm+1 ∈ ML for each

m ∈ N and since lim
m→∞

M(Bm \ Bm+1) = 0, then there exists some N ∈ N such that
∞∑

n=1
l(In) +

∞∑

m=N

M(Bm \ Bm+1) < t. Thus, we can find covers {Jm
n }∞n=1 of Bm \ Bm+1 for each m ≥ N so that

∞∑

n=1
l(In) +

∞∑

m=N

∞∑

n=1
l(Jm

n ) < t, which is a contradiction to the fact that {In}∞n=1 ∪
⋃∞

m=N{Jm
n }∞n=1

covers XN .

We conclude that X∞ = X ∩
∞⋂

n=1
An is outer measurable and t := lim

N→∞
Mu (XN ) = Mu (X∞). That

is,

lim
N→∞

Mu

(

X ∩
N⋂

n=1

An

)

= Mu

(

X ∩
∞⋂

n=1

An

)

.

Theorem 4.11. For each n ∈ N let An ⊂ R be L-measurable and such that lim
N→∞

M

(
N⋃

n=1
An

)

exists in R. Then,
∞⋃

n=1
An is L-measurable.

Proof. We already know that
∞⋃

n=1
An is outer measurable. Now let X ⊂ R be outer measurable and let

{In}∞n=1 be a cover of X. Since
N⋃

n=1
An and

∞⋃

n=1
In \

N⋃

n=1
An are L-measurable for each N ∈ N and since

lim
N→∞

M

(
N⋃

n=1
An

)

and lim
N→∞

M

( ∞⋃

n=1
In \

N⋃

n=1
An

)

both exist in R, we obtain that

Mu(X) = lim
N→∞

Mu(X)

= lim
N→∞

[

Mu

(

X ∩
N⋃

n=1

An

)

+Mu

(

X \
N⋃

n=1

An

)]
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= lim
N→∞

[

Mu

(

X ∩
N⋃

n=1

An

)

+Mu

(

X ∩
( ∞⋃

n=1

In \
N⋃

n=1

An

))]

= lim
N→∞

Mu

(

X ∩
N⋃

n=1

An

)

+ lim
N→∞

Mu

(

X ∩
( ∞⋃

n=1

In \
N⋃

n=1

An

))

= Mu

(

X ∩
∞⋃

n=1

An

)

+Mu

(

X ∩
( ∞⋃

n=1

In \
∞⋃

n=1

An

))

= Mu

(

X ∩
∞⋃

n=1

An

)

+Mu

(

X ∩
( ∞⋃

n=1

An

)c)

.

Thus,
∞⋃

n=1
An is L-measurable.

Theorem 4.12. For each n ∈ N let An ⊂ R be L-measurable and such that lim
N→∞

M

(
N⋂

n=1
An

)

exists in R. Then,
∞⋂

n=1
An is L-measurable.

Proof. We already know that
∞⋂

n=1
An is outer measurable. Now let X ⊂ R be outer measurable and let

{In}∞n=1 be a cover of X. Since
N⋂

n=1
An and

∞⋃

n=1
In \

N⋂

n=1
An are L-measurable for each N ∈ N and since

lim
N→∞

M

(
N⋂

n=1
An

)

and lim
N→∞

M

( ∞⋃

n=1
In \

N⋂

n=1
An

)

both exist in R, we obtain that

Mu(X) = lim
N→∞

Mu(X)

= lim
N→∞

[

Mu

(

X ∩
N⋂

n=1

An

)

+Mu

(

X \
N⋂

n=1

An

)]

= lim
N→∞

[

Mu

(

X ∩
N⋂

n=1

An

)

+Mu

(

X ∩
( ∞⋃

n=1

In \
N⋂

n=1

An

))]

= lim
N→∞

Mu

(

X ∩
N⋂

n=1

An

)

+ lim
N→∞

Mu

(

X ∩
( ∞⋃

n=1

In \
N⋂

n=1

An

))

= Mu

(

X ∩
∞⋂

n=1

An

)

+Mu

(

X ∩
( ∞⋃

n=1

In \
∞⋂

n=1

An

))

= Mu

(

X ∩
∞⋂

n=1

An

)

+Mu

(

X ∩
( ∞⋂

n=1

An

)c)

.

Thus,
∞⋂

n=1
An is L-measurable.

The converse of the results above do not hold in general due to the extremely strong criteria for
convergence in R.
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Example 4.13. For each n ∈ N, let An = (d1/n, 1/n). One can easily check that
∞⋂

n=1
An = ∅ which

is L-measurable and has L-measure zero. However,

lim
N→∞

M

(
N⋂

n=1

An

)

= lim
N→∞

M

(
N⋂

n=1

(
d1/n, 1/n

)
)

= lim
N→∞

M
(
d1/N , 1/N

)
= lim

N→∞

(
1

N
− d1/N

)

does not exist in R.
Similarly, if, for each n ∈ N, we let Bn = [0, 1 − 1/n] ∪ [1− d1/n, 1] then it’s easy to check that

∞⋃

n=1
Bn = [0, 1] which is L-measurable and of L-measure 1. However,

lim
N→∞

M

(
N⋃

n=1

Bn

)

= lim
N→∞

M

(
N⋃

n=1

(
[0, 1− 1/n] ∪ [1− d1/n, 1]

)
)

= lim
N→∞

M
((

[0, 1 − 1/N ] ∪ [1− d1/N , 1]
))

= lim
N→∞

(

1− 1

N
+ d1/N

)

does not exist in R.

FUNDING

The first two authors were supported by the MITACS Globalink program; and the research of the third
author was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC,
Grant # RGPIN/4965-2017).

REFERENCES
1. M. Berz, “Calculus and numerics on Levi-Civita fields,” in M. Berz, C. Bischof, G. Corliss, and A. Griewank,

editors, Computational Differentiation: Techniques, Applications, and Tools, pp. 19–35 (SIAM,
Philadelphia, 1996).

2. A. Barría Comicheo and K. Shamseddine, “Summary on non-archimedean valued fields,” Contemp. Math.
704, 1–36 (2018).

3. W. Krull, “Allgemeine Bewertungstheorie,” J. Reine Angew. Math. 167, 160–196 (1932).
4. S. Priess-Crampe, Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen (Springer, Berlin,

1983).
5. P. Ribenboim, “Fields: Algebraically closed and others,” Manuscripta Math. 75, 115–150 (1992).
6. W. H. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Analysis (Cambridge University Press,

1985).
7. K. Shamseddine, New Elements of Analysis on the Levi-Civita Field, PhD thesis, Michigan State

University, East Lansing (Michigan, USA, 1999). Also Michigan State University report MSUCL-1147.
8. K. Shamseddine, “A brief survey of the study of power series and analytic functions on the Levi-Civita fields,”

Contemp. Math. 596, 269–280 (2013).
9. K. Shamseddine, “New results on integration on the Levi-Civita field,” Indag. Math. (N.S.) 24 (1), 199–211

(2013).
10. K. Shamseddine, “Analysis on the Levi-Civita field and computational applications,” J. Appl. Math. Comp.

255, 44–57 (2015).
11. K. Shamseddine and M. Berz, “Exception handling in derivative computation with non-Archimedean

calculus,” in Computational Differentiation: Techniques, Applications, and Tools, pp. 37–51 (SIAM,
Philadelphia, 1996).

12. K. Shamseddine and M. Berz, “Convergence on the Levi-Civita field and study of power series,” in Proc.
Sixth International Conference on p-adic Functional Analysis, pp. 283–299 (Marcel Dekker, New York,
NY, 2000).

13. K. Shamseddine and M. Berz, “Measure theory and integration on the Levi-Civita field,” Contemp. Math.
319, 369–387 (2003).

14. K. Shamseddine and M. Berz, “Analytical properties of power series on Levi-Civita fields,” Ann. Math. Blaise
Pascal 12 (2), 309–329 (2005).

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 15 No. 1 2023


