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Abstract—We introduce a class of so-called very weakly locally uniformly differentiable (VWLUD)
functions at a point of a general non-Archimedean ordered field extension of the real numbers, N ,
which is real closed and Cauchy complete in the topology induced by the order, and whose Hahn
group is Archimedean. This new class of functions is defined by a significantly weaker criterion than
that of the class of weakly locally uniformly differentiable (WLUD) functions studied in [1], which
is nonetheless sufficient for a slight variation of the inverse function theorem and intermediate value
theorem. Similarly, a weaker second order criterion is derived from the previously studied WLUD2

condition for twice-differentiable functions. We show that VWLUD2 functions at a point of N
satisfy the mean value theorem in an interval around that point.
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1. INTRODUCTION

Let N be a non-Archimedean ordered field extension of R that is real closed and complete in the
order topology and whose Hahn group SN is Archimedean, i.e. (isomorphic to) a subgroup of R. Recall
that SN is the set of equivalence classes under the relation ∼ defined on N ∗ := N \ {0} as follows:
For x, y ∈ N ∗, we say that x is of the same order as y and write x ∼ y if there exist n,m ∈ N such
that n|x| > |y| and m|y| > |x|, where | · | denotes the ordinary absolute value on N : |x| = max {x,−x}.
SN is naturally endowed with an addition via [x] + [y] = [x · y] and an order via [x] ≤ [y] if [x] = [y] or
|y| � |x| (which means n|y| < |x| for all n ∈ N), both of which are readily checked to be well-defined.
It follows that (SN ,+, <) is an ordered group, often referred to as the Hahn group or skeleton group,
whose neutral element is [1], the class of 1.

The theorem of Hahn [3] provides a complete classification of non-Archimedean ordered field
extensions of R in terms of their skeleton groups. In fact, invoking the axiom of choice, it is shown
that the elements of our field N can be written as (generalized) formal power series (also called Hahn
series) over its skeleton group SN with real coefficients, and the set of appearing exponents forms a
well-ordered subset of SN . That is, for all x ∈ N , we have that x =

∑
q∈SN

aqd
q; with aq ∈ R for all q,

d a positive infinitely small element of N , and the support of x, given by supp(x) := {q ∈ SN : aq �= 0},
forming a well-ordered subset of SN .

We define for x �= 0 in N , λ(x) = min (supp(x)), which exists since supp(x) is well-ordered.
Moreover, we set λ(0) = ∞. Given a nonzero x =

∑
q∈supp(x) aqd

q, then x > 0 if and only if aλ(x) > 0.
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The smallest such field N is the Levi-Civita field R, first introduced in [5, 6]. In this case SR = Q, and
for any element x ∈ R, supp(x) is a left-finite subset of Q, i.e. below any rational bound r there are only
finitely many exponents in the Hahn representation of x. The Levi-Civita field R is of particular interest
because of its practical usefulness. Since the supports of the elements of R are left-finite, it is possible to
represent these numbers on a computer. Having infinitely small numbers allows for many computational
applications; one such application is the computation of derivatives of real functions representable on a
computer [11, 12], where both the accuracy of formula manipulators and the speed of classical numerical
methods are achieved. For a review of the Levi-Civita field R, see [10] and the references therein.

In the wider context of valuation theory, it is interesting to note that the topology induced by the
order on N is the same as the valuation topology τv introduced via the non-Archimedean (ultrametric)
valuation | · |v : N → R, given by

|x|v =

⎧
⎨

⎩

exp (−λ(x)) if x �= 0

0 if x = 0.

It follows therefore that the field N is just a special case of the class of fields discussed in [9]. For a
general overview of the algebraic properties of formal power series fields, we refer to the comprehensive
overview by Ribenboim [8], and for an overview of the related valuation theory, to the book by Krull [4]. A
thorough and complete treatment of ordered structures can also be found in [7]. A more comprehensive
survey of all non-Archimedean fields can be found in [2].

Because of the total disconnectedness of the field N in the order topology, the standard theorems of
real calculus like the intermediate value theorem, the inverse function theorem, the mean value theorem,
the implicit function theorem and Taylor’s theorem require stronger smoothness criteria of the functions
involved in order for the theorems to hold.

In [15] we studied the properties of locally uniformly differentiable (LUD) functions at a point
or on an open subset of N . In particular, we showed that this class of functions is closed under
addition, multiplication and composition of functions. Then we stated and proved local versions of
the inverse function theorem and the intermediate value theorem for N -valued LUD functions in an
open neighborhood of a point x0 ∈ N . Then, in [13], we generalized the definition of local uniform
differentiability to any order. Then we studied the properties of n-times locally uniformly differentiable
(LUDn) functions and we formulated and proved a local mean value theorem for N -valued functions
that are LUD2 in a neighborhood of a point of N .

In [1], we introduced a new smoothness criterion which we called weakly local uniform differentiability
(WLUD) which is strictly weaker than local uniform differentiability and strictly stronger than continu-
ous differentiability (C1). We studied the properties of N -valued WLUD and WLUDn functions and we
showed that this weaker criterion is sufficient to get all the nice calculus results obtained in [13, 15].

In this paper, we weaken the smoothness criterion further by introducing and studying the so-called
very weakly locally uniformly differentiable (VWLUD) functions. As the name implies, this class of
functions strictly contains all WLUD functions, but is still strictly contained in the class of continuous
functions. Since VWLUD functions may only be differentiable at a single point as we will see later in
the paper, this weakening of the WLUD criterion is not insignificant. Even so, we will show that the
new VWLUD criterion at just one point x0 ∈ N is sufficient for the local inverse function theorem and
intermediate value theorem, and a related VWLUD2 criterion at a point x0 ∈ N will suffice for the mean
value theorem to hold in an interval around x0.

2. DEFINITIONS
Throughout this paper, given x0 ∈ N and δ > 0 in N , the open interval {x ∈ N : |x− x0| < δ}, of

length 2δ centered at x0, will be denoted by B(x0, δ) and it will sometimes be referred to as the open
“bal” of radius δ centered at x0.

Definition 2.1 (WLUD). Let A be an open subset of N and let f : A → N . Given an element
x0 ∈ A, we say that f is weakly locally uniformly differentiable (WLUD) at x0 if there is an open
neighbourhood Ω of x0 in A in which f is differentiable, and if for every ε > 0 in N there exists
δ > 0 in N such that B(x0, δ) ⊂ Ω and

x, y ∈ B(x0, δ) =⇒ |f(y)− f(x)− f ′(x)(y − x)| ≤ ε|y − x|.
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Definition 2.2 (VWLUD). Let A ⊆ N be open and let f : A → N . Given x0 ∈ A, we say that f is
very weakly locally uniformly differentiable (VWLUD) at x0 if there exists an open neighbour-
hood Ω of x0 in which f is continuous, if f is differentiable at x0, and if for every ε > 0 in N there
exists δ > 0 in N such that B(x0, δ) ⊂ Ω and

x, y ∈ B(x0, δ) =⇒ |f(y)− f(x)− f ′(x0)(y − x)| ≤ ε|y − x|.

As WLUD functions are C1 [1], it is easily seen that if f is WLUD at x0 then it is VWLUD at x0.
Conversely, if f is VWLUD at x0 and if there exists a δ > 0 in N such that f is differentiable at all
x ∈ B(x0, δ), then it can be shown that f is WLUD at x0 (Proposition 11, [1]).

As well as to show that the VWLUD condition is strictly weaker than the WLUD condition, it is
useful to have an example of a function which is VWLUD at some point x0, but not WLUD at x0. From
the above observation, this function must then not be differentiable in any neighbourhood of x0. With
this in mind, we will construct such a function with x0 = 0 so that given any neighbourhood U of 0, the
function will be differentiable everywhere on U except at a countable number of points.

Example 2.3. Define g1 : [d, 1) → N by

g1(x) = (1− d)x.

and for all n ∈ #N \ {1}, define gn : [dn, dn−1) by

gn(x) = (1− dn)x−
2n−1∑

j=2

(−d)j .

Given x ∈ (0, 1), we remark that there exists a unique m ∈ #N with the property that dm ≤ x <
dm−1 and if dn ≤ x, then n ≥ m. That is, m is the smallest positive integer such that dm ≤ x <
dm−1. For x ∈ (−1, 0), we define the m corresponding to x to be exactly the m corresponding to
|x| = −x. With this in mind, let f : (−1, 1) → N be given by

f(x) =

⎧
⎪⎨

⎪⎩

gm(x) + d2

1+d , if x > 0

0, if x = 0

−gm(−x)− d2

1+d , if x < 0.

It can be checked that f is an odd function and continuous on (−1, 1).
Due to its piecewise characterization, it is clear that f is not differentiable at ±dn for every

n ∈ #N , but that f ′(x) = 1− dm for every x ∈ (−1, 1) \ {0} with x �= ±dn for any n ∈ #N . We now
show that f is differentiable at x = 0 with f ′(0) = 1.

Given ε > 0 in N , choose n ∈ #N such that dn� ε and let δ = dn. Then, given x ∈ (0, δ), we
have that

∣
∣
∣
∣
f(x)− f(0)

x− 0
− 1

∣
∣
∣
∣ =

∣
∣
∣
∣
f(x)

x
− 1

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(1− dm)x−
∑2m−1

j=2 (−d)j + d2

1+d

x
− 1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(1− dm)x− x

x
+

d2

1+d −
∑2m−1

j=2 (−d)j

x

∣
∣
∣
∣
∣

≤ |(1− dm)− 1|+ 1

|x|

∣
∣
∣
∣
∣
∣

d2

1 + d
−

2m−1∑

j=2

(−d)j

∣
∣
∣
∣
∣
∣

= dm +
1

x

∣
∣
∣
∣
∣
∣

∞∑

j=2

(−d)j −
2m−1∑

j=2

(−d)j

∣
∣
∣
∣
∣
∣
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< dm +
1

dm

∞∑

j=2m

(−d)j

= dm +
(
dm − dm+1 + dm+2 − · · ·

)

≤ dm + dm

= 2dm� 2dn � ε.

As f is odd, the same argument can be used for x ∈ (−δ, 0). Thus,

f ′(x) =

{
1− dm, if x �= 0 and x �= d±n for any n ∈ #N

1, if x = 0.

Next, we show that f is VWLUD at x = 0. Given ε > 0 in N , choose n ∈ #N such that dn � ε
and let δ = dn. Let x, y ∈ B(0, δ). We let l correspond to y as m corresponds to x, and consider a
few cases (and subcases):

Case 1. x, y > 0. Then we have that

∣
∣f(y)− f(x)− f ′(0)(y − x)

∣
∣ =

∣
∣
∣
∣
∣
∣
(1− dl)y −

2l−1∑

j=2

(−d)j − (1− dm)x+

2m−1∑

j=2

(−d)j − (y − x)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
dmx− dly +

2m−1∑

j=2

(−d)j −
2l−1∑

j=2

(−d)j

∣
∣
∣
∣
∣
∣

≤ |dmx− dly|+

∣
∣
∣
∣
∣
∣

2m−1∑

j=2

(−d)j −
2l−1∑

j=2

(−d)j

∣
∣
∣
∣
∣
∣
.

If l = m, then
∣
∣f(y)− f(x)− f ′(0)(y − x)

∣
∣ = |dmx− dmy| = dm|y − x|� dn|y − x|� ε|y − x|.

If l < m, then

∣
∣f(y)− f(x)− f ′(0)(y − x)

∣
∣ = |dmx− dly|+

2m−1∑

j=2l

(−d)j .

We remark that

λ(ε|y − x|) = λ(ε) + λ|y − x| < n+ λ(y) < l + λ(y) ≤ l + l = 2l.

So, as λ
(∑2m−1

j=2l (−d)j
)
= 2l > λ(ε|y − x|) and

λ(|dmx− dly|) = λ(dl|y − dm−lx|) = l + λ(y) > λ(ε|y − x|),
it follows that

|dmx− dly|� ε|y − x| and
2m−1∑

j=2l

(−d)j � ε|y − x|.

Thus,

|f(y)− f(x)− f ′(0)(y − x)|� ε|y − x|.
If l > m, the argument is essentially the same as in the case with l < m.

Case 2. x, y < 0. Then we can use the same arguments used in Case 1 above since f is an odd
function.
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Case 3. x and y have opposite signs. Then, without loss of generality, we may assume
x < 0 < y. Thus,

|f(y)− f(x)− f ′(0)(y − x)|

=

∣
∣
∣
∣
∣
∣
(1− dl)y −

2l−1∑

j=2

(−d)j +
d2

1 + d
+ (1− dm)(−x)−

2m−1∑

j=2

(−d)j +
d2

1 + d
− (y − x)

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣dmx− dly

∣
∣
∣+

∣
∣
∣
∣
∣
∣

d2

1 + d
−

2l−1∑

j=2

(−d)j

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

d2

1 + d
−

2m−1∑

j=2

(−d)j

∣
∣
∣
∣
∣
∣

= |dmx− dly|+

∣
∣
∣
∣
∣
∣

∞∑

j=2

(−d)j −
2l−1∑

j=2

(−d)j

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

∞∑

j=2

(−d)j −
2m−1∑

j=2

(−d)j

∣
∣
∣
∣
∣
∣

= |dmx− dly|+
∞∑

j=2l

(−d)j +
∞∑

j=2m

(−d)j .

In the exact same way as in Case 1, we can analyze the λ value of each term above to show that
every term is � ε|y − x|.

Thus, f is VWLUD at 0. However, f is not WLUD at 0, as there is no neighbourhood of 0 in
which f is differentiable.

3. PROPERTIES OF VWLUD FUNCTIONS

As noted earlier in the paper, if a function f is VWLUD and C1 at x0 then f is necessarily WLUD
at x0. As the theory of WLUD functions has already been investigated, we are interested in studying
functions which are VWLUD but not C1. So, we define a new class of functions which contains the
class of C1 functions.

Definition 3.1 (WC 1). Let A ⊆ N be open and let f : A → N . Given x0 ∈ A, we say that f is
weakly C1 (WC1) at x0 if f is differentiable at x0 and if for every ε > 0 in N there exists δ > 0 in
N such that

(x ∈ B(x0, δ) ∧ f ′(x) exists) =⇒ |f ′(x)− f ′(x0)| < ε.

Remark 3.2. It is readily seen that C1 functions at a point x0 are WC1 at x0.

Proposition 3.3. Let A ⊆ N be open and let f : A → N be VWLUD at x0 ∈ A. Then f is WC1 at
x0.

Proof. Let ε > 0 in N be given. Then there exists δ > 0 in N such that B(x0, δ) ⊂ A and, if s, t ∈
B(x0, δ) are distinct, then

|f(s)− f(t)− f ′(x0)(s− t)| < ε

2
|s− t|

or, equivalently,
∣
∣
∣
∣
f(s)− f(t)

s− t
− f ′(x0)

∣
∣
∣
∣ <

ε

2
.

Given x ∈ B(x0, δ) such that f ′(x) exists, then we can find a y �= x in B(x0, δ) such that
∣
∣
∣
∣
f(y)− f(x)

y − x
− f ′(x)

∣
∣
∣
∣ <

ε

2
.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 14 Suppl. 1 2022



S50 SHAMSEDDINE, SHALEV

Thus,

|f ′(x)− f ′(x0)| ≤
∣
∣
∣
∣f

′(x)− f(y)− f(x)

y − x

∣
∣
∣
∣+

∣
∣
∣
∣
f(y)− f(x)

y − x
− f ′(x0)

∣
∣
∣
∣

<
ε

2
+

ε

2
= ε.

With the following proposition, it is shown that though a function f which is VWLUD at x0 may not
be WLUD at this point, we may still find a small ball around x0 in which we obtain the WLUD inequality
at only the points at which f is differentiable. This demonstrates the fact that differentiability is the factor
which separates the VWLUD criterion from that of the WLUD.

Proposition 3.4. Let A ⊆ N be open and let f : A → N be VWLUD at x0 ∈ A. Then, for every ε > 0
in N , there exists δ > 0 in N such that B(x0, δ) ⊂ A and

(x, y ∈ B(x0, δ) ∧ f ′(x) exists) =⇒ |f(y)− f(x)− f ′(x)(y − x)| ≤ ε|y − x|.

Proof. Let ε > 0 in N be given. Since A is open and since f is both VWLUD and WC1 at x0, there
exists δ > 0 such that B(x0, δ) ⊂ A and

|f(y)− f(x)− f ′(x0)(y − x)| ≤ ε

2
|y − x|

for all x, y ∈ B(x0, δ), and

|f ′(x)− f ′(x0)| ≤
ε

2

for all x ∈ B(x0, δ) such that f ′(x) exists. Thus, given x, y ∈ B(x0, δ) such that f is differentiable at x,
we have that

|f(y)− f(x)− f ′(x)(y − x)| ≤ |f(y)− f(x)− f ′(x0)(y − x)|
+ |f ′(x0)(y − x)− f ′(x)(y − x)|

≤ ε

2
|y − x|+ ε

2
|y − x| = ε|y − x|.

Like WLUD functions, the class of VWLUD functions has the important quality of being closed
under addition, multiplication and composition.

Proposition 3.5. Let A ⊆ N be open, let f, g : A → N be VWLUD at x0 ∈ A, and let α ∈ N be
given. Then (f + αg) is VWLUD at x0.

Proof. If α = 0, then the result holds trivially, so assume α �= 0. Since f and g are both VWLUD at
x0, there exist open neighbourhoods Ωf and Ωg of x0 in A such that f is continuous on Ωf and g is
continuous on Ωg. Let Ω = Ωf ∩ Ωg. Then Ω is an open neighbourhood of x0 in A in which f + αg is
continuous. Now let ε > 0 in N be given. As f is VWLUD at x0, there exists a δf > 0 in N such that
B(x0, δf ) ⊂ Ω and, for every x, y ∈ B(x0, δf ), we have that

|f(y)− f(x)− f ′(x0)(y − x)| ≤ ε

2
|y − x|.

Likewise, there is a δg > 0 in N such that B(x0, δg) ⊂ Ω and, for every x, y ∈ B(x0, δg), we have that

|g(y) − g(x)− g′(x0)(y − x)| ≤ ε

2|α| |y − x|.

Let δ = min{δf , δg}. Then, B(x0, δ) ⊂ Ω and, for every x, y ∈ B(x0, δ), we have that

|(f + αg)(y) − (f + αg)(x) − (f ′ + αg′)(x0)(y − x)|
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≤ |f(y)− f(x)− f ′(x0)(y − x)|+ |α||g(y) − g(x)− g′(x0)(y − x)|

≤ ε

2
|y − x|+ |α| ε

2|α| |y − x|

= ε|y − x|.

Proposition 3.6. Let A ⊆ N be open and let f, g : A → N be VWLUD at x0 ∈ A. Then fg is VWLUD
at x0.

Proof. As in the proof of Proposition 3.5 above, since f and g are VWLUD at x0, there exists an open
neighbourhood Ω of x0 in A such that fg is continuous on Ω. Let ε > 0 in N be given. Then, as f and g
are VWLUD at x0, there exist δf > 0 and δg > 0 in N such that B(x0, δf ) ⊂ Ω, B(x0, δg) ⊂ Ω,

|f(y)− f(x)− f ′(x0)(y − x)| ≤ ε

4(|g(x0)|+ 1)
|y − x|

for all x, y ∈ B(x0, δf ), and

|g(y) − g(x)− g′(x0)(y − x)| ≤ ε

4(|f(x0)|+ 1)
|y − x|

for all x, y ∈ B(x0, δg).

By continuity of f and g at x0, there exist δ1 > 0 and δ2 > 0 in N such that B(x0, δ1) ⊂ Ω,
B(x0, δ2) ⊂ Ω,

|f(x)− f(x0)| < min

{
ε

4(|g′(x0)|+ 1)
, 1

}

for all x ∈ B(x0, δ1), and

|g(x)− g(x0)| < min

{
ε

4(|f ′(x0)|+ 1)
, 1

}

for all x ∈ B(x0, δ2).
Let δ = min{δf , δg, δ1, δ2}. Then B(x0, δ) ⊂ Ω and, for all x, y ∈ B(x0, δ), we have that

∣
∣f(y)g(y)− f(x)g(x)−

(
f ′(x0)g(x0) + f(x0)g

′(x0)
)
(y − x)

∣
∣

≤
∣
∣f(y)g(y)− f(x)g(y)− f ′(x0)g(y)(y − x)

∣
∣+

∣
∣f(x)g(y) − f(x)g(x) − f(x)g′(x0)(y − x)

∣
∣

+
∣
∣f ′(x0)g(y) − f ′(x0)g(x0)

∣
∣ |y − x|+

∣
∣f(x)g′(x0)− f(x0)g

′(x0)
∣
∣ |y − x|

= |g(y)|
∣
∣f(y)− f(x)− f ′(x0)(y − x)

∣
∣+ |f(x)|

∣
∣g(y) − g(x) − g′(x0)(y − x)

∣
∣

+ |f ′(x0)| |g(y)− g(x0)| |y − x|+ |g′(x0)| |f(x)− f(x0)| |y − x|

≤ |g(y)|
4(|g(x0)|+ 1)

ε|y − x|+ |f(x)|
4(|f(x0)|+ 1)

ε|y − x|

+
|f ′(x0)|

4(|f ′(x0)|+ 1)
ε|y − x|+ |g′(x0)|

4(|g′(x0)|+ 1)
ε|y − x|

≤ ε|y − x|.

Remark 3.7. It follows from Proposition 3.5 and Proposition 3.6 that VWLUD functions at a point
x0 ∈ N form an N -algebra.

Remark 3.8. As polynomials are WLUD at every t ∈ N [1], they are also VWLUD at every t ∈ N .
Alternatively, this can be shown by demonstrating that f(x) = x is VWLUD at every t ∈ N and
applying the previous two propositions.
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Proposition 3.9. Let A,B ⊆ N be open and let g : A → B be VWLUD at x0 ∈ A and f : B → N be
VWLUD at g(x0) ∈ B. Then f ◦ g : A → N is VWLUD at x0.

Proof. Since g is VWLUD at x0, there exists an open neighborhood Ωg of x0 in A such that g is
continuous on Ωg. Similarly, there exists an open neighbourhood Ωf of g(x0) in B such that f is
continuous on Ωf . Let

Ω = Ωg ∩ g−1(Ωf ).

Then Ω is an open neighborhood of x0 in A and g(Ω) ⊂ Ωf . Thus g is continuous on Ω and f is
continuous on g(Ω), and hence f ◦ g is continuous on Ω. Now, let ε > 0 in N be given. As g is VWLUD
at x0, there exists δg > 0 in N such that B(x0, δg) ⊂ Ω and

|g(y)− g(x) − g′(x0)(y − x)| ≤ ε

2(|f ′
(
g(x0)

)
|+ 1)

|y − x|

for all x, y ∈ B(x0, δg). Likewise, as f is VWLUD at g(x0), there exists δf > 0 in N such that
B(g(x0), δf ) ⊂ Ωf and

|f(y)− f(x)− f ′(g(x0))(y − x)| ≤ ε

2(|g′(x0)|+ 1)
|y − x|

and for all x, y ∈ B(g(x0), δf ).

As g is continuous at x0, there exists δc > 0 in N such that B(x0, δc) ⊂ Ω and |g(x) − g(x0)| < δf
for all x ∈ B(x0, δc).

Finally, as g is VWLUD at x0, there exists δ0 > 0 in N such that B(x0, δ0) ⊂ Ω,

|g(y) − g(x)− g′(x0)(y − x)| ≤ |y − x|
for all x, y ∈ B(x0, δ0), and hence

|g(y) − g(x)| ≤ |y − x|+ |g′(x0)||y − x| = (|g′(x0)|+ 1)|y − x|
for all x, y ∈ B(x0, δ0).

Let δ = min{δg, δc, δ0}. Then, B(x0, δ) ⊂ Ω and, for all x, y ∈ B(x0, δ), we have that
∣
∣f
(
g(y)

)
− f

(
g(x)

)
− g′(x0)f

′(g(x0)
)
(y − x)

∣
∣

≤
∣
∣f
(
g(y)

)
− f

(
g(x)

)
− f ′(g(x0)

)(
g(y)− g(x)

)∣
∣+

∣
∣f ′(g(x0)

)∣
∣
∣
∣g(y) − g(x) − g′(x0)(y − x)

∣
∣

≤ ε

2(|g′(x0)|+ 1)
|g(y) − g(x)| +

|f ′(g(x0)
)
|

2(|f ′(g(x0)
)
|+ 1)

ε|y − x|

≤ ε|y − x|.

4. VWLUDn FUNCTIONS AND THEIR PROPERTIES

Just as WLUDn extended the WLUD concept to higher orders of differentiability in [1], we now define
VWLUDn functions with the goal to later obtain a weaker sufficient criterion for the mean value theorem
for functions over N than that in [1].

Definition 4.1 (WLUDn). Let A ⊆ N be open and let f : A → N . Given n ∈ #N , we say that
f is WLUDn at x0 ∈ A if there is an open neighbourhood Ω of x0 in A in which f is n times
differentiable, and if for every ε > 0 in N there exists δ > 0 in N such that B(x0, δ) ⊂ Ω and

x, y ∈ B(x0, δ) =⇒
∣
∣
∣
∣
∣
f(y)−

n∑

k=0

f (k)(x)

k!
(y − x)k

∣
∣
∣
∣
∣
≤ ε|y − x|n.
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Definition 4.2 (VWLUDn). Let A ⊆ N be open and let f : A → N . Given n ∈ #N , we say that f
is VWLUDn at x0 ∈ A if there is an open neighbourhood Ω of x0 in A in which f is Cn−1, if f (n)(x0)
exists, and if for every ε > 0 in N there exists δ > 0 in N such that B(x0, δ) ⊂ Ω and

x, y ∈ B(x0, δ) =⇒
∣
∣
∣
∣
∣
f(y)−

n−1∑

k=0

f (k)(x)

k!
(y − x)k − f (n)(x0)

n!
(y − x)n

∣
∣
∣
∣
∣
≤ ε|y − x|n.

As WLUD2 functions are C2 [1], it is easily seen that a function which is WLUD2 at x0 is also
VWLUD2 at x0. We have seen that the fact that a VWLUD function might only be differentiable at
a single point is what differentiates this class of functions from the class of WLUD functions. The
exact definition of the VWLUDn criterion arises from a very similar idea, though we will focus on the
n = 2 case, as this is all that is needed for the mean value theorem. To show that WLUD2 functions
are VWLUD2, we first define a weaker second order continuity characterization analogous to the WC1

condition in the first order.

Definition 4.3 (WC 2). Let A ⊆ N be open and let f : A → N . Given x0 ∈ A, we say that f is
weakly C2 (WC2) at x0 if f is twice-differentiable at x0 and if for every ε > 0 in N there exists
δ > 0 in N such that

(x ∈ B(x0, δ) ∧ f ′′(x) exists) =⇒ |f ′′(x)− f ′′(x0)| < ε.

Proposition 4.4. Let A ⊆ N be open and let f : A → N be VWLUD2 at x0 ∈ A. Then f is WC2 at
x0.

Proof. Let ε > 0 in N be given. Then there exists δ > 0 in N such that B(x0, δ) ⊂ A, f is C1 on
B(x0, δ) and if x, y ∈ B(x0, δ) then

∣
∣
∣
∣f(y)− f(x)− f ′(x)(y − x)− 1

2
f ′′(x0)(y − x)2

∣
∣
∣
∣ ≤

ε

3
(y − x)2.

Let x ∈ B(x0, δ) be given with f twice-differentiable at x. As f ′′(x) exists, we can find a δ1 > 0 in N ,
δ1 < δ, such that if y ∈ B(x, δ1) and y �= x then

∣
∣
∣
∣
f ′(y)− f ′(x)

y − x
− f ′′(x)

∣
∣
∣
∣ <

ε

3
.

Choose a y ∈ B(x, δ1) with y �= x. Then,

∣
∣f ′′(x)− f ′′(x0)

∣
∣ ≤

∣
∣
∣
∣
f(y)− f(x)

(y − x)2
− f ′(x)

y − x
− 1

2
f ′′(x0)

∣
∣
∣
∣+

∣
∣
∣
∣f

′′(x)− f ′(y)− f ′(x)

y − x

∣
∣
∣
∣

+

∣
∣
∣
∣
f(x)− f(y)

(x− y)2
− f ′(y)

x− y
− 1

2
f ′′(x0)

∣
∣
∣
∣

<
ε

3
+

ε

3
+

ε

3
= ε.

Remark 4.5. From the above proposition, we observe that if f is VWLUD2 at x0 and twice-
differentiable in a neighbourhood of x0, then f is C2 at x0. It follows that f is then WLUD2 at
x0. For this reason, the definition of VWLUDn at a point x0 allows for functions which are not
necessarily n times differentiable in a neighbourhood of x0; otherwise, the VWLUDn and WLUDn

criteria would coincide for the n = 2 case.

Proposition 4.6. Let A ⊆ N be open and let f : A → N be VWLUDn at x0 ∈ A with n ≥ 2. Then f
is VWLUDn−1 at x0.
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Proof. First note that, since f is VWLUDn at x0, f is n times differentiable at x0 and there exists
an open neighbourhood Ω of x0 in A such that f is Cn−1 on Ω. In particular, f is (n− 1) times
differentiable at x0 and Cn−2 on Ω. Now let ε > 0 in N be given. Then there exists δ1 > 0 in N such
that B(x0, δ1) ⊂ Ω and

∣
∣
∣
∣
∣
f(y)−

n−1∑

k=0

f (k)(x)

k!
(y − x)k − f (n)(x0)

n!
(y − x)n

∣
∣
∣
∣
∣
≤ ε

3
|y − x|n

for all x, y ∈ B(x0, δ1). Moreover, since f is Cn−1 at x0, there exists δ2 > 0 in N such that B(x0, δ2) ⊂
Ω and

∣
∣
∣f (n−1)(x)− f (n−1)(x0)

∣
∣
∣ <

ε

3
(n− 1)!

for all x ∈ B(x0, δ2).

Let δ = min
{
δ1, δ2,

1
2 ,

n!ε
6(|f(n)(x0)|+1)

}
. Then B(x0, δ) ⊂ Ω and, for all x, y ∈ B(x0, δ), we have that

∣
∣
∣
∣
∣
f(y)−

n−2∑

k=0

f (k)(x)

k!
(y − x)k − f (n−1)(x0)

(n− 1)!
(y − x)n−1

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
f(y)−

n−1∑

k=0

f (k)(x)

k!
(y − x)k − f (n)(x0)

n!
(y − x)n

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

f (n−1)(x)

(n− 1)!
(y − x)n−1 − f (n−1)(x0)

(n− 1)!
(y − x)n−1

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

f (n)(x0)

n!
(y − x)n

∣
∣
∣
∣
∣

≤ ε

3
|y − x||y − x|n−1 +

ε

3
|y − x|n−1 +

|f (n)(x0)|
n!

|y − x||y − x|n−1

≤ ε

3
|y − x|n−1 +

ε

3
|y − x|n−1 +

ε

3
|y − x|n−1

= ε|y − x|n−1.

Proposition 4.7. Let A ⊆ N be open and let f : A → N be VWLUD2 at x0 ∈ A. Then f ′ is VWLUD
at x0.

Proof. Since f is VWLUD2 at x0, f is twice differentiable at x0 and there is an open neighbourhood Ω
of x0 in A such that f is C1 on Ω. Thus, f ′ is differentiable at x0 and is continuous on Ω. Now, let ε > 0
in N be given. Then, as f is VWLUD2 at x0, there exists δ > 0 in N such that B(x0, δ) ⊂ Ω and

∣
∣
∣
∣f(y)− f(x)− f ′(x)(y − x)− 1

2
f ′′(x0)(y − x)2

∣
∣
∣
∣ ≤

ε

2
(y − x)2

for all x, y ∈ B(x0, δ). It follows that
∣
∣
∣
∣
f(y)− f(x)

y − x
− f ′(x)− 1

2
f ′′(x0)(y − x)

∣
∣
∣
∣ ≤

ε

2
|y − x|

for all distinct x, y ∈ B(x0, δ).
Thus, for all x �= y in B(x0, δ), we have that

|f ′(y)− f ′(x)− f ′′(x0)(y − x)|

≤
∣
∣
∣
∣
f(y)− f(x)

y − x
− f ′(x)− 1

2
f ′′(x0)(y − x)

∣
∣
∣
∣+

∣
∣
∣
∣
1

2
f ′′(x0)(x− y) + f ′(y)− f(y)− f(x)

y − x

∣
∣
∣
∣

=

∣
∣
∣
∣
f(y)− f(x)

y − x
− f ′(x)− 1

2
f ′′(x0)(y − x)

∣
∣
∣
∣+

∣
∣
∣
∣
f(x)− f(y)

x− y
− f ′(y)− 1

2
f ′′(x0)(x− y)

∣
∣
∣
∣
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≤ ε

2
|y − x|+ ε

2
|y − x| = ε|y − x|.

Altogether, f ′ is differentiable at x0 and is continuous on the open neighbourhoodΩ of x0 inA; moreover,
for all ε > 0 in N there exists δ > 0 in N such that B(x0, δ) ⊂ Ω and

|f ′(y)− f ′(x)− f ′′(x0)(y − x)| ≤ ε|y − x|
for all x, y ∈ B(x0, δ). Thus, f ′ is VWLUD at x0.

5. CALCULUS THEOREMS FOR VWLUD FUNCTIONS

As it was used in the theory of WLUD functions in [1], the following lemma, proved in [14], will be
vital in the proof of the inverse function theorem.

Lemma 5.1. Let δ0 > 0 in N be given. Choosing c ∈ N with 0 < c� 1, let φ : B(0, δ0) → N be such
that |φ(t)| ≤ c|t| for all t ∈ B(0, δ0). For all m ∈ #N , let φ[m] = φ ◦ · · · ◦ φ (m times) and set φ[0]

to be the identity map. Let δ ∈ N be such that 0 < δ ≤ (1− c)δ0 and define ψ : B(0, δ) → N by
ψ(t) =

∑∞
m=0 φ

[m](t). Then,

(i) |ψ(t)| ≤ |t|
1−c ; and

(ii) ψ(t)− φ(ψ(t)) = t.

Proof. See the proof of Lemma 4.1 in [14].

Theorem 5.2 (Inverse Function Theorem). Let A ⊆ N be open and let f : A → N be VWLUD at
some x0 ∈ A with f ′(x0) �= 0. Let y0 := f(x0). Then there exist δ, η > 0 in N and a function
F : B(y0, η) → N such that

(i) B(x0, δ) ⊆ A;

(ii) f |B(x0,δ) is injective;

(iii) B(y0, η) ⊆ f(B(x0, δ)) and F (B(y0, η)) ⊆ B(x0, δ);

(iv) f(F (x)) = x for all x ∈ B(y0, η); and

(v) F is VWLUD at y0 and F ′(y0) = 1/(f ′ ◦ F )(y0) = 1/f ′(x0).

Proof. Without loss of generality, we may assume that x0 = 0 and y0 = 0, otherwise we can instead
consider the function f̃(x) = f(x+ x0)− y0. If f ′(x0) < 0 we can instead apply this proof to (−f), so
we may additionally assume that f ′(x0) > 0.

Since f is VWLUD at x0 = 0, there is a neighbourhood Ω of 0 in A such that f is continuous
on Ω. Let L = f ′(0) and let φ(x) = x− 1

Lf(x). Then φ is continuous on Ω and VWLUD at 0 with
φ′(0) = 1− 1

Lf
′(0) = 0. Let c ∈ N be such that 0 < c� 1. Then there exists δ1 > 0 in N such that

B(0, δ1) ⊆ Ω and, for all s, t ∈ B(0, δ1), we have that

|φ(s)− φ(t)− φ′(0)(s − t)| ≤ c|s − t|,
and hence

|φ(s)− φ(t)| ≤ c|s − t|.
Setting t = 0, we obtain that |φ(s)| ≤ c|s| for all s ∈ B(0, δ1). Moreover, if f(s) = f(t), then

|s− t| =
∣
∣
∣
∣

(

s− 1

L
f(s)

)

−
(

t− 1

L
f(t)

)∣
∣
∣
∣ = |φ(s)− φ(t)| ≤ c|s− t|,

so we must have that s = t since c� 1. That is, f is injective on B(0, δ1).
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Since f is VWLUD at 0, there exists δ2 > 0 in N such that B(0, δ2) ⊆ Ω and, for all s, t ∈ B(0, δ2)
we have that

|f(s)− f(t)− L(s− t)| ≤ L

2
|s− t|.

Let δ = min{(1 − c)δ1, δ2}. Then f |B(0,δ) is injective as B(0, δ) ⊂ B(0, δ1) ⊂ A. So, conditions (i)
and (ii) are satisfied.

As δ ≤ (1− c)δ1, there is a function ψ defined on B(0, δ) with the properties described in Lemma 1.
Let η = L(1− c)δ and define F (x) = ψ

(
x
L

)
for every x ∈ B(0, η). Then, for every x ∈ B(0, η), since

∣
∣
∣
x

L

∣
∣
∣ <

L(1− c)δ

L
= (1− c)δ < δ,

we have x
L ∈ B(0, δ). So, property (i) of Lemma 1 allows us to establish that

|F (x)| =
∣
∣
∣ψ

(x

L

)∣
∣
∣ ≤

|x|
L(1− c)

<
η

L(1− c)
= δ.

Thus, F (B(0, η)) ⊆ B(0, δ). We note that for every x ∈ B(0, δ) we have that

x− φ(x) = x−
(

x− 1

L
f(x)

)

=
f(x)

L
,

hence

φ(x) = x− f(x)

L
. (5.1)

Moreover, as x
L ∈ B(0, δ) for any x ∈ B(0, η), property (ii) of Lemma 1 gives us that

ψ
(x

L

)
− φ

(
ψ
(x

L

))
=

x

L
.

Substituting Equation (5.1) into the above equation with ψ
(
x
L

)
in place of x, we observe that

ψ
( x

L

)
−

[

ψ
(x

L

)
− 1

L
f
(
ψ
(x

L

))]

=
x

L
,

thus

f(F (x)) = f
(
ψ
(x

L

))
= x

for all x ∈ B(0, η). This shows (iv).
Given y ∈ B(0, η), let x = F (y). Then x ∈ B(0, δ) and f(x) = f(F (y)) = y, so y ∈ f(B(0, δ)).

Thus, B(0, η) ⊆ f(B(0, δ)), which completes the proof of (iii).
Now, for any s, t ∈ B(0, δ), we have

|f(s)− f(t)− L(s− t)| ≤ L

2
|s− t|,

and it follows that

|f(s)− f(t)| ≥ L|s− t| − L

2
|s− t| = L

2
|s− t|. (5.2)

Let x, y ∈ B(0, η) be given, and let tx = F (x) and ty = F (y). Since tx, ty ∈ B(0, δ), we can apply
Equation (5.2) to obtain

|F (y)− F (x)| = |ty − tx| ≤
2

L
|f(ty)− f(tx)| =

2

L
|y − x|.

Thus, F is (Lipschtiz) continuous on the open neighbourhood B(0, η) of y0 = 0.
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Now let ε > 0 in N be given. Since f is VWLUD at x0 = 0 with f ′(0) = L, there exists δ3 ∈ N such
that 0 < δ3 < δ and, for all t1, t2 ∈ B(0, δ3), we have that

|f(t2)− f(t1)− L(t2 − t1)| ≤
L2

2
ε|t2 − t1|.

Let V = F−1(B(0, δ3)). Then V is an open neighbourhood of y0 = 0 in B(0, η), by continuity of
F on B(0, η). Thus, there exists ηε > 0 in N such B(0, ηε) ⊂ V ⊂ B(0, η). It follows that, for all
x, y ∈ B(0, ηε), we have tx := F (x) ∈ B(0, δ3) and ty := F (y) ∈ B(0, δ3). Thus, for all x, y ∈ B(0, ηε),
we have that

∣
∣
∣
∣
∣
F (y)− F (x)− 1

f ′(0)
(y − x)

∣
∣
∣
∣
∣
=

1

f ′(0)
|y − x− f ′(0)(F (y) − F (x))|

=
1

L
|f(ty)− f(tx)− L(ty − tx)|

≤ 1

L

L2

2
ε|ty − tx| ≤

1

L

L2

2
ε
2

L
|y − x|

= ε|y − x|.

This shows that F is VWLUD at y0 = 0 with

F ′(y0) =
1

f ′(0)
=

1

f ′(x0)
=

1

(f ′ ◦ F )(y0)
,

and finishes the proof of (v).

Theorem 5.3 (Local Intermediate Value Theorem). Let A ⊆ N be open and let f : A → N be VWLUD
at x0 ∈ A with f ′(x0) �= 0. Then there exists a neighbourhood U of x0 such that f has the
intermediate value property on U . That is, given a, b ∈ U with a < b, if c is between f(a) and
f(b), then there exists x ∈ (a, b) such that f(x) = c.

Proof. Without loss of generality, we may assume that f ′(x0) > 0, else we can instead consider −f in
place of f . Let δ > 0 and η > 0 be as in the proof of the inverse function theorem. Then f is continuous
and injective on B(x0, δ) ⊂ A and, for all x, y ∈ B(x0, δ), we have that

|f(y)− f(x)− f ′(x0)(y − x)| ≤ f ′(x0)

2
|y − x|.

It follows that

f(y)− f(x)

y − x
≥ f ′(x0)−

f ′(x0)

2
=

f ′(x0)

2
> 0,

for all distinct x, y ∈ B(x0, δ) and hence f is strictly increasing on B(x0, δ).

Using the proof of the inverse function theorem, we have that B(f(x0), η) ⊆ f(B(x0, δ)). Let
U = f−1(B(f(x0), η)). Then U ⊆ B(x0, δ) and U is open since f is continuous on B(x0, δ).

Let a, b ∈ U with a < b and let c ∈ (f(a), f(b)) be given. Then c ∈ B(f(x0), η) and, by definition of
U , there exists x ∈ U such that f(x) = c. Moreover, x ∈ (a, b) as f is strictly increasing on U .

Theorem 5.4 (Local Mean Value Theorem). Let A ⊆ N be open and let f : A → N be VWLUD2 at
some x0 ∈ A with f ′′(x0) �= 0. Then there exists a neighbourhood U of x0 in A such that f has the
mean value property on U . That is, given a, b ∈ U with a < b, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.
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Proof. As f is VWLUD2 at x0, there exists δ1 > 0 in N such that B(x0, δ1) ⊆ A and
∣
∣
∣
∣f(y)− f(x)− f ′(x)(y − x)− 1

2
f ′′(x0)(y − x)2

∣
∣
∣
∣ ≤

1

4
f ′′(x0)(y − x)2

for all x, y ∈ B(x0, δ1). As in the proof of the local intermediate value theorem, we may assume, without
loss of generality, that f ′′(x0) > 0. Thus, for all x �= y in B(x0, δ1), we have that

f(y)− f(x)− f ′(x)(y − x) ≥
(
1

2
f ′′(x0)−

1

4
f ′′(x0)

)

(y − x)2 =
1

4
f ′′(x0)(y − x)2 > 0. (5.3)

Moreover, f ′ is VWLUD at x0 since f is VWLUD2 at x0, so by the local intermediate value theorem,
there exists δ2 > 0 inN such that B(x0, δ2) ⊆ A and f ′ has the intermediate value property onB(x0, δ2).
Let δ = min{δ1, δ2}, let U = B(x0, δ), and let a, b ∈ U with a < b. It follows from Equation (5.3), with
y = b and x = a, that f(b) > f(a) + f ′(a)(b− a); and hence

f ′(a) <
f(b)− f(a)

b− a
.

Using the same equation, with y = a and x = b, we obtain that f(a) > f(b) + f ′(b)(a− b); and hence

f ′(b) >
f(b)− f(a)

b− a
.

Thus, by the intermediate value theorem applied to f ′, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.
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