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ABSTRACT

Constrained optimization on non-Archimedean fields is presented. We formalize the notion of a
tangent plane to the surface defined by the constraints making use of an implicit function Theorem
similar to its real counterpart. Then we derive necessary and sufficient conditions of second order
for the existence of a local minimizer of a function subject to a set of equality and inequality con-
straints, based on a concept of continuity and differentiability that is stronger than the conventional
one.

1. INTRODUCTION

In this paper, optimization over equalities and inequalities on non-Archime-
dean fields will be considered. We first review some basic terminology and facts
about non-Archimedean fields. So let K be a totally ordered non-Archimedean
field extension of R. We introduce the following terminology.

Definition 1.1 (~, =, <, H, ). Forx,y € K, wesay x ~ yifthereexistn,m € N
such that n|x| > |y| and m|y| > |x|; for nonnegative x,y € K, we say that x is
infinitely smaller than y and write x < y if nx < yfor all n € N, and we say that
x is infinitely small if x <« 1 and x is finite if x ~ 1; finally, we say that x is ap-
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proximately equal to y and write x = y if x ~ y and |x — y| < |x|. We also set
A(x) = [x], the class of x under the equivalence relation ~.

The set of equivalence classes H (under the relation ~) is naturally endowed
with an addition via [x] 4 [y] = [x - ] and an order via [x] < [y] if |y| < |x| (or
|x| > |»|), both of which are readily checked to be well-defined. It follows that
(H,+, <) is a totally ordered group, often referred to as the Hahn group or
skeleton group, whose neutral element is the class [1]. It follows from the above
that the projection A from K to H is a valuation.

The Theorem of Hahn [5] provides a complete classification of non-Archi-
medean extensions of R in terms of their skeleton groups. In fact, invoking the
axiom of choice it is shown that the elements of any such field K can be written
as formal power series over its skeleton group H with real coefficients, and the
set of appearing ‘exponents’ forms a well-ordered subset of H. The coefficient of
the gth power in the Hahn representation of a given x will be denoted by x[gl,
and the number d will be defined by d[1] = 1 and d[g] = 0 for g # 1. It is easy to
check that 0 < d? < 1 if and only if ¢ > 0, and d? > 1 if and only if ¢ < 0;
moreover, x = x[A(x)]d*® for all x # 0.

From general properties of formal power series fields [10,12], it follows that if
H is divisible then K is algebraically closed; that is, every polynomial of odd
degree over K has at least one root in K. For a general overview of the algebraic
properties of formal power series fields, we refer to the comprehensive overview
by Ribenboim [13], and for an overview of the related valuation theory the book
by Krull [6]. A thorough and complete treatment of ordered structures can also
be found in [11]. '

Throughout this paper, N’ will denote any totally ordered non-Archimedean
field extension of R that is complete in the order topology and whose skeleton
group H is Archimedean; i.e. a subgroup of R. The smallest such field is the
field of the formal Laurent series whose skeleton group is Z; and the smallest
such field that is also algebraically closed is the Levi-Civita field R, first in-
troduced in [7,8]. In this case H = @, and for any element x € R, the set of ex-
ponents in the Hahn representation of x is a left-finite subset of (), i.e. below
any rational bound r there are only finitely many exponents.

The Levi-Civita field R is of particular interest because of its practical use-
fulness. Since the supports of the elements of R are left-finite, it is possible to
represent these numbers on a computer [1]. Having infinitely small numbers,
the errors in classical numerical methods can be made infinitely small and
hence irrelevant in all practical applications. One such application is the com-
putation of derivatives of real functions representable on a computer [15],
where both the accuracy of formula manipulators and the speed of classical
numerical methods are achieved.

In the light of such practical usefulness of infinitely small numbers, it is nat-
ural to study optimization questions on non-Archimedean fields with the hope
to extend the methods mentioned in the previous paragraph to find local ex-
trema of functions as closely as allowed by machine precision.

The following example shows that continuity or even differentiability of a
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function on a closed and bounded subset of A" or N do not necessarily entail
that the function assumes 2 maximum or a minimum on the set.

Example 1.2. Letf : [—1,1] — A be given by f(x) = x — x[0].

Then f is continuous on [—1, 1] and differentiable on (—1,1) with f/(x) =1
forall x € (—1,1). In fact, forall y # xin [—1, 1] satisfying |y — x| < 1, we have
that (y — x)[0] = 0 and hence

fO) =) _y—yl0] —x+x[0] _y—x—(5[0] - x[0])
y—x y-—x y—x
_ymx=(=00 _y-x_,

y—Xx y—Xx

which shows that f is differentiable at x for all x € (—1,1) with f/(x) = 1.
However, f assumes neither a maximum nor a minimum on [—1,1]. The set
f([—1,1]) is bounded above by any positive real number and below by any
negative real number; but it has neither a least upper bound nor a greatest
lower bound.

Also, contrary to the real case, the following example shows that a function
that is 2k-times differentiable on an open interval (a, b) containing the point x;,
with fU)(xg) = 0 for all j € {1,...,2k — 1} and f @) (xy) # 0, need not have a
local extremum at x;.

Example 1.3. Let g:(—1,1) > N be given by g(x)[g] = x[g/3] and let
f:(=1,1) = A be given by f(x) = g(x) — x* Then g is infinitely often differ-
entiable on (—1,1) with g¥)(x) = 0 for all j € N and for all x € (—1,1) [16]. It
follows that f is four times differentiable on (—1,1) with f/(0) =f"(0) =
f"(0) =0 and f®(0) = —24. Now let x € (—1,1) be such that 0 < |x| < 1.
Then g(x) = x]Ax)|d*® and x* = (x[AX)])*d*® < |x[A)]|d**®. Thus,
F(x) = x[A(x)]d*™). 1t follows that f(x) > f(0) =0 if 0 < x < 1 and f(x) <
f(0)if 0 < —x < 1; and hence f has no local extremum at 0.

The difficulties presented in Example 1.2 and Example 1.3 are due to the total
disconnectedness of the field in the order topology [14] and makes the study of
optimization more involved than in the real case. Thus, a stronger smoothness
criterion is needed to study optimization on N. In [16], we considered un-
constrained one-dimensional optimization on the field A/, using the notion of
continuity and differentiability based on the derivate concept [2]. In this paper,
we generalize the concepts of derivate continuity and differentiability to higher
dimensions. Then we use that to derive necessary and sufficient conditions of
second order for the existence of a minimum of an N -valued function on N
subject to constraints.

We will consider the problem of minimizing a function / : N — N, subject
to the following set of constraints:
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hi (%) =0 a1(®) <0
(L.1) :  and Loy
hn(X) =0 g (X) <0

where all the functions in Equation (1.1) are from N” to NV. A point x5 € N
will be said to be a feasible point if it satisfies the constraints in Equation (1.1).
Before deriving necessary and sufficient conditions for a feasible point X, to be
a local minimizer of f, we first review the concept of derivate differentiability
[2,14] and extend the concept to higher dimensions.

2. DERIVATE CONTINUITY AND DIFFERENTIABILITY

In this section, we review the definitions of derivate continuity and differentia-
bility in one dimension, as well as some related results that are useful for our
purposes here, and we refer the interested reader to [2,14] for a more detailed
study. Then we generalize these notions of continuity and differentiability to
higher dimensions.

Definition 2.1. Let D C N be open and let f : D — A. Then we say that f is
derivate continuous on D if there exists M € N, called a Lipschitz constant of
f on D, such that

fO) —fx)

< M for all x # yin D.
y—x

It follows immediately from Definition 2.1 that if ' : D — A is derivate con-
tinuous on D then f is uniformly continuous (in the conventional sense) on D.

Remark 2.2. It is clear that the concept of derivate continuity in Definition 2.1
coincides with that of uniform Lipschitz continuity when restricted to R. We
chose to call it derivate continuity here so that, after having defined derivate
differentiability in Definition 2.3 and higher order derivate differentiability in
Definition 2.5, we can think of derivate continuity as derivate differentiability of
‘order zero’, just as is the case for continuity in R.

Definition 2.3. Let D C N be open, letf : D — A be derivate continuous on D,
and let T denote the identity function on D. Then we say that f is derivate dif-
ferentiable on D if for all x € D, the function f f (x : D\ {x} — N is derivate
continuous on D \ {x}. In this case, the unique contlnuatlon of L Df 3 to D (see
[14]) will be called the first derivate function (or simply the derivate function) of
f at x and will be denoted by F ; moreover, the function value Fj ,(x) will be
called the derivative of f at x and will be denoted by f7(x).

It follows immediately from Definition 2.3 that if f : D — N is derivate dif-
ferentiable then f is differentiable in the conventional sense; moreover, the two
derivatives at any given point of D agree. The following result provides a useful

84



tool for checking the derivate differentiability of functions; we refer the inter-
ested reader to [14,16] for its Proof.

Theorem 2.4. Let D C N beopenandletf : D — N be derivate continuous on D.
Suppose there exists M € N and there exists a function g : D — N such that

SO =10 _ o] < My — x| for all y # x in D.

y—x
Then f is derivate differentiable on D, with derivative ' = g.

Definition 2.5 (n-times Derivate Differentiability). Let D C N be open, and let
f:D— N.Let n>2be given in N. Then we define n-times derivate differ-
entiability of f on D inductively as follows: Having defined (n — 1)-times deri-
vate differentiability, we say that f is n-times derivate differentiable on D if f is
(n — 1)-times derivate differentiable on D and for all x € D, the (n — 1)st deri-
vate function F,_ . is derivate differentiable on D. For all x € D, the derivate
function F, . of F,, _1 » at x will be called the nth derivate function of /" at x, and
the number /) (x) = n!F,_, (x) will be called the nth derivative of f at x and
denoted by £ (x).

One of the most useful consequences of the derivate differentiability concept
is that it gives rise to a Taylor formula with remainder while the conventional
(topological) differentiability does not; see [2,14]. We only state the result here
and refer the reader to [2,14] for its Proof. We also note that, as an immediate
result of Theorem 2.6, we obtain local expandability in Taylor series around
xp € D of a given function that is infinitely often derivate differentiable on D
[2,14].

Theorem 2.6 (Taylor Formula with Remainder). Let D C N be open and let
S+ D — N be n-times derivate differentiable on D. Let x € D be given, let F, , be
the nth order derivate function of f at x, and let M, x be a Lipschiiz constant of F, x
on D. Then for all y € D, we have that

&

0 (x
w7 (x)

n+1

fO)=/(x)+ (= XY 41 (x,9)(p - x

With (1 +1(x,)) = M M,,2)-

Now we generalize the concepts of derivate continuity and derivate differ-
entiability to functions of many variables. In the following, column vectors in
N" will be denoted by %, 7, .. .; and row vectors by 37, 37, ...

Definition 2.7. Let D C A" be open, let /' : D — N, and let # be a unit vector.
Foreach X € D, let

DQ,QZ{IEN:f+tﬁ€D}
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and define ¢35 : Dzz — N by
bra(t) =f (% + tid).

Then we say that f is derivate differentiable on D in the direction of # if ¢35 is
derivate differentiable on Dy for all X in D. Moreover, the derivative (j)’;,ﬁ(O)
will be called the directional derivative of f at ¥ in the # direction and will be
denoted by 9; f(X).

Definition 2.8 (Partial Derivatives). Let D C N be open, let f : D — A and
let {&y,...,8&,} denote the standard orthonormal basis of N. Then the partial
derivatives of f are defined as the directional derivatives of f in the directions
éy,...,éen, if these exist. If the partial derivative in the direction & exists, we will
denote it by df. The gradient of f, denoted by VY, is defined to be the row
vector whose components are the (first order) partial derivatives of f.

Definition 2.9. Let D C N be open, letf : D — A and let g € N be given. Then
we say that f is C? on D if all the partial derivatives of order smaller than or
equal to ¢ exist and are continuous on D (in the derivate sense).

Theorem 2.10. Let D C N be open, let f : D — N be C! on D and let % € D be
given. Then there exist 6,M >0 in N such that Bs(X) ={Ze N":|7—3%| <
8} C D, and |f() — £ (%) — Vf(®)(F - %)| < M|§ — % for all § € Bs(%).

Proof. We use induction on the number of variables n. The result is true for
n =1 by definition of derivate differentiability in one dimension. Assume it
is true for n =k and we show that it is true for u=k+1. So let f: D C
N¥1 , N be C1, and let % € D be given. Since D is open, there exists & > 0in
N such that Bg:“)(ic') C D. Write X = (x1,..., Xk, Xk+1), let = (%15, %) €
N* and let

D = {z: (1, yze) €ENF (21, 20 Xea1) eB§f+”(x)}.
Then Dy = Bg)‘)(f); and hence D; is open in A*. Define ¢ : D; — A by
Yz, - zk) = f(21, - 2z, Xe+1)-
Then 1 is C' on D; and the partial derivatives of v at Z are given by
0b(z1,- - 2k) = Of (21, ...,z Xie41) for all j € {1,...,k}.

Thus, by the induction hypothesis, there exist 6, M; > 0 in A such that
BY({) C Dy (ie. 8 < &) and

() —¥(C) - V()i — O)| < Mrfif— {1 for all if € B (C).
Lety e B((s]fH)()'c’) and let w = (y1,...,¥). Then # € Bg‘)(f); and hence
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) —fF) - V(R -3
SfO) = ¥9) = Ber SX)Pes1 — Xaer 1)

=)~ 9@ - 3 ) - )

=% ye 1) =S (9, Xk 1) = Orest S(R)(Wrer1 — Xe1)]
o+ () — $(©) - Ip(O) - O

SFO8 yia1) = SO0 Xeg1) = Okt S B, Xk 1) (Drer1 — Xae 1)
1Ok 1 £ (P, Xk 1) = O 1 S| Vi1 — X1
+ ) - 9(&) = V&) =€)

< Mok 1 — X1 PHMs|P = k1 — xp 1| + Mo — O

for some constants M,, M3 € N, which do not depend on ¥ (nor on ¥%), since
O 11 f is derivate continuous on D. Let M = max{3M;,3M>,3M3}. Then

1f) —f(&) = VI(R)F - B)| < Moly ~ % + Ms[j — 2 + My|y — %[
< My - %
Thus, the result is true for n = k + 1; and hence it is true foralln. [

As an immediate consequence of Theorem 2.10, we obtain the following result.

Corollary 2.11. Let D C N" beopen, let Xy € D be givenandlet f : D — N be C!
on D. Then there exist M, 6 > 0in N such that Bs(Xy) C D and, for all ¥ € Bs(%),
we have that

S (X) =f(Fo) + Vf (o) (X — %o) + Ra(Xo, X),

where | Ry(%o,%)| < M|Z — %)%

Lemma 2.12. Let D C N be open, andletf : D — N be C' on D. Fix %y € D, let
¥ € N be a fixed vector and let D1 C N be given by Dy = {t € N : %o + t¥ € D}.
Define ¢ : D1 — N by ¢(t) = f(Xg + t¥). Then ¢ is differentiable at 0 (in the con-

ventional sense) with derivative ¢'(0) = Vf(X)V. Moreover, there exists 6 > 0 in
N such that B5(0) C Dy and

Y000 _ y(0)| < Mg for ait 1 € Bi(0)\ {0},

Proof. By Theorem 2.10, there exist 8y, M > 0 in A such that Bs,(Xp) C D and
|f (%) — f(Fo) — Vf (Ro) (¥ — %o)| < M|% — Fol” for all ¥ € By, (%o).

Let 6 = 8/|V|. Then, since Bs,(Xo) C D, we obtain that Bs(0) C D;. Now let
t € Bs(0) \ {0} be given. Then Xy + ¢V € By, (Xo); and hence
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|f (Fo + £7) — f (%o) — Vf (Fo)¥t] < M7+,
Thus,
$(t) — 6(0)

=V (Ro)¥| < M),

which finishes the Proof of the Lemma. [

By repeated application of Corollary 2.11 and of Lemma 2.12 to the function ¢
and its derivatives, we obtain a Taylor formula with remainder, similar to the
corresponding one in real calculus.

Corollary 2.13 [Taylor Formula for Functions of Several Variables]. Let
D c N be open, let %y € D be given and let f : D — N be C9 on D. Then there
exist M, 6 > 0in N such that Bs(Xo) C D and, for all ¥ € Bs(X,), we have that

J(X) =1 (%) + zq: (}, Zn: (5’11 c By f (Ro)m_y (%, —Xo,lk)>)
j=1

.lla"w{/:l
+ Ry +1(%0, %),

where |Ry 1 1(%o, %)| < M|% — %o/ ¢,

3. TANGENT PLANE

We start this section by first stating, without Proofs, the inverse function The-
orem and the implicit function Theorem. The Proofs are very similar to those of
the respective real ones: rather than taking ¢ € R such that 0 < ¢ < 1 as in [4]
pp. 140-149, we use ¢ € N such that 0 < ¢ < 1 wherever the convergence of the
sequence (c") is needed in the Proofs. Also, we can replace conventional differ-
entiability with derivate differentiability without having to change the essence
of the Proofs. The details of the last two statements are left as an exercise for the
interested reader.

Notation 3.1. Let m,n € N be given, let D C N"be openandletf : D — N™ be
C' on D. Then for ¥ € D, the m x n matrix of the partial derivatives of the
components of f will be denoted by M f(X); that is

WNE) BAR) - G[()
. nfa(X) 0fa(R) oo %faX)
Mf () = : : . .

(91fm(55) 62fm(f) e 8nfm()—é)
Moreover, if m = n then the determinant of Mf()'c') will be called the Jacobian
of f at X and denoted by Jf (X).

Theorem 3.2 (Inverse Function Theorem). Let n,q € N be given, let D € N be
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open and let f D — N"be C. Let %y € D be such that Jf (Fo) # 0. Then there
exists an open set {2 containing Xy such that

e (2CD,

. f|g is one-to-one,

o f(£2) is open,

o JF(X) #£O0forallX € £,

e The inversegofﬂﬁ is C1 onf({)),

o ME(Y) = MF®| 7 if F=f(%)and % € 12

Theorem 3.3 [Implicit Function Theorem]. Letr,m,q € Nbe given, let D, C N”
and Dy, C N™ be open and let F : D, x D,, — N be CY. Let (%y,%y) € D, x Dy,
be such that F(%,7) =0 and T F(%,2,) # 0. Then there exist neighborhoods
02, and $2,,, of Xy and %, respectively and there exists a function ¢_; 1 02, — (2, that
is C? on (2, such that 17"(55, 5()?)) =0forall % € 2, and 5(550) = Zp.

Now let’s go back to our original problem stated at the end of the introduction.
Let S be the hypersurface in A’ defined by

I (%) = 0
(3.1) .

(%) = 0
and assume that 4, . . ., h,, are C'.

Definition 3.4. Let S be the surface defined by Equation (3.1) and let %, € S be
given. Then the tangent plane at X, to S, denoted by 7 (), is the collection of
the derivatives X' (1), where X(z) € S for ¢ in some open interval (a,b) in N, X(1)
is derivate differentiable on (4, b) and X(#y) = X, for some #, € (a, b).

Definition 3.5. Let S be as in Definition 3.4, and let X € S be given. Then we
say that X, is a regular point of S if VA(Xp),..., Vh,(Zo) are linearly in-
dependent. That is, if a1,...,am € N and if a)Vh (%) + - - - + @ V(%) =0
thena; =--- =4, =0.

Remark 3.6. We define matrix addition and multiplication in A the same way
we do in R; and hence we have the same criteria for the invertibility of a given
matrix and the same procedures to compute the inverse. Thus, an # X » matrix
M over N is invertible if and only if its # column vectors are linearly in-
dependent, if and only if its n row vectors are linearly independent in A/,

A simple expression for the tangent plane to S at a regular point X is given by
the following theorem.

Theorem 3.7. Let S be the surface defined by Equation (3.1), and let Xy be a reg-
ular point of S. Then the tangent plane at Xy to S is given by
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T(Zo) ={JeN":Vh(Z)} =0 forall j=1,...,m}.

Proof. Let 7 € T () be given. Then there exists a derivate differentiable curve
X(¢), a <t <b, in S such that Xy = X(fp) and y = X'(ty) for some fy € (a,b).
Thus, h;(X(r)) = 0 for all ¢ € (a,b) and for all j = 1,...,m. Since 4; is C! in the
derivate sense, we obtain that ; is C' in the conventional sense and the partial
derivatives of 4; at any given point (in the derivate sense and in the conventional
sense) agree; similarly, X is differentiable (in the conventional sense) on (a, b)
and the derivatives at any ¢ € (a, b) in the derivate sense and in the conventional
sense agree. Hence, applying the chain rule, we obtain that #;(X(¢)) is differ-
entiable (in the conventional sense) at ¢ for all ¢ € (a,b) with A}(X(s)) =
Vhy(X(1))x'(¢) = 0 for all ¢ € (a,b). In particular, Vi;(X(2))X'(ty) = 0; and this
istrue for allj = 1,...,m. Therefore, Vh;(Xy)y = Oforallj=1,...,m.

Conversely, let ¥ € N be such that VA;(%)7 = 0 for allj = 1,...,m. Define
F:N xN™ = N™by

= = - T
F(t,2) =h (550 F i+ (Mh(ic’o)) z) :

and consider now the equation F(r,Z) = 0. Then, F (0, 6) = 0 since X, is feasible.
Also,

F;(0,0) = Mh(%) (Mii(o?o)) '

which is a nonsingular m x m matrix. This is so since the row vectors in
Mﬁ(?co), namely Vh(Xp),. .., Vhn(Zo), are linearly independent. Thus, by the
implicit function theorem, there exists a C' function Z(¢) defined on some open
interval (—a,a) C N such that

F(1,2(t)) = 0 for all 1 € (—a,a) and Z(0) = 0.
- T
Define the function X : (—a,a) — N”" by X(¢) = % + 7 + (Mh()"c'o)) Z(t). Then
= T
() € 8 for all 1€ (—a,a), X(0) = % and ¥(0) = j+ (Mh(?co)) #(0). But
from A(%(z)) = 0 for all ¢ € (—a, ), we obtain that

H(Z(t))],—o = 0; and hence Mh(%) (y; + (M/?(zo)) Tz'(())) =0.

- - - - T
Since MA(Xy)§ = 0 and since MA(%p)( Mh(X,)) is invertible, we obtain that
Z(0) = 0. Thus, ¥(0) = y and hence ¥ € 7 (X). " [

4. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS

In this section, we derive necessary and sufficient, second order, optimality
conditions for a local minimum of a function subject to a set of constraints. We
start with the following definition.

Definition 4.1. Let X, be a feasible point for the constraints in Equation (1.1)
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and let I(Xo) = {l € {1,...,p} : gi(%) = 0}. Then we say that X is regular for
the constraints if {VA;(%o) :j=1,...,m; Vg (%) : | € I(Xo)} forms a linearly
independent subset of vectors in N

The following theorem provides necessary conditions of second order for a local
minimizer Xy of a function f subject to the constraints in Equation (1.1). The
result is a generalization of the corresponding real result [9,3] and the Proof is
similar to that of the latter; but one essential difference is the form of the re-
mainder formula as in Equations (4.4), (4.5) and (4.6). In the real case, the re-
mainder term is related to the second derivative at some intermediate point,
while here that is not the case. However, the concept of derivate differentiability
puts a bound on the remainder term; and this is instrumental to prove the de-
sired result.

Theorem 4.2. Suppose that f, {I;}]_,, {g1})_, are C* on some open set D C N
containing the point Xy and that Xy is a regular point for the constraints in Equation
(1.1). If Xy is a local minimizer for f under the given constraints, then there exist
Qyeves Oy B1, .-, By € N such that
@ B >0foralll e {1,...,p},

() Bigi(Xo) =0foralll € {1,...,p},

(i) Vf(Xo) +> 71 V(%) + 227_ BiVgi(%o) =0, and

@) 37 (Vo) + X7 V() + 5, AV 850 ))ﬁ >0 forally N
satisfying~ Vhi(%)y =0 for all je{l,...,m}, Vg(F)y=0 for all
le L={kecl(Xy): Pr>0}and Vg (Xo)y < Oforalll e I(X) \ L.

Proof. Since X is a local minimizer for f over the constraints in Equation (1.1)
and since, for I & I(X), gi(X0) <0, there exists € > 0 in A/ such that ¥ is a
minimum point for f in B.(X,) over the constraints ii(?c) =0 and g;(X) = 0 for
[ € I(%). That is, X, is a solution for

1) minf(®):hEF) =0,g(%) =0 for I € I(%),% € B.(%o).

Since Xq is regular for the constraints in Equation (1.1), this is equivalent to
saying that ¥, is regular for the constraints in Equation (4.1). Thus, by Theorem
3.7, we have that the tangent plane to the constraint set S defined by Equation
4.1 is

P(3o) = {y e N™ : Mh(%)7 = 0 and Vg,(%)j = 0 for I € 1(20)}.
Let j € P(Xy). Then there exists a derivate differentiable curve X(t), a < ¢ < b,

with ¥(¢) € Sforallz € (a,b), and ¥ (1y) = ¥ and X(t9) = X for some 1y € (a, b).
Then

FRD) 2 f(R(t0)) =/ (Fo) for all £ € (a, b).

Hence, using a result in [16] about local minima, we have that
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42) S EONli=, =0= VS (%)X (t0) = V/(%)7 and
43)  STEO)=y 2 0.
Equation (4.2) yields that
Vf (%) € P(Ro)" = {ZeN":Z-% =0 for all # € P(Zp)}.
It follows that Vf(Xp) € N(X), where

1€ I(%)

N(X) = {Z eN": 2= -—Zl athj()_C'o) - > BiVgi(Rp) with o, B € N}
j=

Therefore, there exist o, ..., 0, B1,...,0, EN sucih that 3 = 0 for I & I(%)
and Vf (%) + Y /L oy Vhi(%0) + 37— BV (Xo) = 0. Clearly, Sigi(¥o) = 0 for
all/ € {1,...,p}. Hence (ii) and (iii) hold.

To prove (i), we need to show that 8 > 0 for all [ € I(Xy). Suppose that
B, < 0 for some Iy € I(Xy). If Py, (Xo) is the tangent plane to

S (o) = {X € D : (%) =0 for all j;g;(%) =0 for all / € I(%) and [ # [}

then the regularity of X, for the constraints in Equation (1.1) yields the existence
of some ¥ € Py, (¥p) such that Vg, (X)¥ < 0. By Theorem 3.7 applied to Sy, it
follows that there exists a derivate differentiable curve X(¢), a <t < b, in §j,
with ¥'(#y) = ¥ and X(¢y) = Xy. Thus,

S FO)i=yy = Vf (X0)7
m ?
= ~_ZI o VR — 121 BiVgi(%0)y
j= =
= ‘ﬂIOVglo()?O))—; < 0.

Since gj, is C! on D and since ¥(¢) is derivate differentiable on (a,b), we have
that

(44) g, (3(0)) = &1, (Fo) + V(o) (%(1) — o) + S2(Fo, X(1))(X(r) — o),
and

@5) (1) = %o + X' (10)(t — to) + 5a(t0, 1) ( — 10)°

=Xo+(1— to)j}’ + 52(t, H{t— to)za

where S (%o, X(¢)) and 5, (f, ¢) are bounded on D and (a, b), respectively. Sub-
stituting for X¥(¢) — Xy from Equation (4.5) into Equation (4.4), we readily ob-
tain that

(4.6)  g(%(1) = g4 (%o) + ( = 10)Vei, (Fo)¥ + ralto, 1)t — o),

where |r2(19, 7)| is bounded. Since Vg (X)¥ < 0, then for ¢ close enough to #
and for ¢t — #p > 0, we get g5, (¥(¢)) < 0. Thus, X(¢) is feasible for the constraints
in Equation (1.1) for ¢ near 7 and ¢ > . Hence from f*(X(¢))|, ., < 0, we obtain
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a contradiction with the optimality of Xy for the constraints in Equation (1.1).
Therefore, ; > 0 for all / € I(X;); and hence 5 > Oforall/ € {1,...,p}.

Finally, to prove (iv), let y € N" be such that Vhi(%)y =0 for all
jefl,...,m}, Vg(%)y =0foralll € Land Vg;(X)y < Oforall/ ¢ I(Xp) \ L.
Let I = {l € I(X) : Vg;(X0)¥ = 0}. Then ¥ is in the tangent plane to the con-
straint set '

Sp={X¥eD:h(X)=0forallje{l,...,m} and g(%) =0 forall [ € I }.

Again, by Theorem 3.7 applied to Sy,, it follows that there exists a derivate dif-
ferentiable curve X(1), a < t < b, in Sy, with (%) = ¥ and X(t) = Xo.
Now let / € I(%p) \ I be given. Then for all ¢ € (a, b), we obtain that

gi1(3(1)) = gi1(%o) + Vei(Xo)(X(2) — %) + % (%(t) — %) T V21 (%o) (3(1) — Xo)
+ 13,1(X0, X(1))

Lo 1 . L
= (t—10)Veai(Xo)y + 5 (1 = t0)’ 57 V?g1(%0)¥ + Rs,i(to, 1),

where |Rs (to, 1)] < M3 |t — t0|3 for some constant Ms3; > 0 in NV, and where
use has been made of the fact that g;is C? at % and ¥(¢) is derivate differentiable
at t. Since Vg(%o)y < 0, we obtain that g/(¥(f)) < 0 for all > ¢ in (a,b) suf-
ficiently close to #. Thus, for all such ¢, ¥(¢) is a feasible point for the constraints
and hence

J(Go) <f(R(0) =1 (%) + (£ = 10)Vf (X0)V + ! (t = 10)’F'Vf (30)F + Ra s (t0, 1),

(N

|Rar(to, 1)] < Miyslt — t]° = Mz (1 — 1)
for some constant M3, > 0in A. Thus, for all ¢ > 1, in N, sufficiently close to

ty, we have that

(47)  0<(1—10)Vf(Fo)J + ! (t — 10)* 7T V2f (R0)F + Ra s (to, 1)

Ko

= N 1 . L

(4-8) 0= ajhj(x(t)) = Oéj(l - lo)th(XO)y + Eaj(t _ fo)zy TVZhj(XO)y
+ R3 0, (0, 2) for j=1,...,m

- ol 1 . L

(4.9) 0= 0Gg(X(0) = 6t — 1) Ve (X)¥ + 5 61 - 10)’7 TV 2g1(%o)7
+ Rs g, (t0, 1) for [=1,...,p,

where

max_l ’p{IR3,f(t0a t)iv |R3,hj,aj<t07 l)la |R3,g1,ﬂ1(t(), [)|} < MO(Z - t0)37

j=1,..,ml

for some constant My € N.
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Adding Equation (4.7), Equation (4.8) for j = 1,...,m, and Equation (4.9)
for!/=1,...,p, and using (iii), we obtain that

<S{t=t)7 | V(%) + Zl o Vh;i(%o) +IZ BiVigi(%) |7
j= =1

(4.10)
+ R3(t07 t)a
where
m J4
R3(t9, 1) = R3 (o, 1) + 21 R3p0;(t0,8) + D Rag 5(20,1)
j= =1
and hence

|R3(fo, 1)| < M(t — t,)* for some constant M > 0 in .

If pT(V2f(Ro) + 2=, oV2h(%o) + 31—, BiV2&i(%))¥ < 0, then Equation
{4.10) would yield a contradiction for 0 < ¢ — fp < 1/(2M). Thus,

m P
?T(VZf(J?O) + Zl V2 hi(%) + /Z ﬁlvzgl(fo))f’ >0. O
i =1

j=

In the following Theorem, we present second order sufficient conditions for a
feasible point X; to be a local minimum of a function f subject to the constraints
in Equation (1.1). It is a generalization of the real result [3] and reduces to it,
when restricted to functions from R” to R. In fact, since ¢ in condition (iv) be-
low is allowed to be infinitely small, the condition |V#;(X)| < € would reduce
to Vh;(X)y = 0, when restricted to R. Similarly, one can readily see that the
other conditions are mere generalizations of the corresponding real ones.
However, the Proof is different than that of the real result since the supremum
principle does not hold in V.

Theorem 4.3. Suppose that f, {l;}]-,, {g:}_, are C? on some open set D C N™
containing the point Xy and that Xy is a feasible point for the constraints in Equa-
tion (1.1) such that, for some o, ..., 0, B, . .., By € N and for some e,y > 0 in
N, we have that
@ B >0foralll€{1,...,p},

(i) Bigi(Zo) =0foralll € {1,...,p}, B

(ili) Vf (%) + 37 oy Vhi(30) + 37_ ) BiVE1(%o) =0, and

@) 37 (V2 (o) + 01y 0y V(o) + S0, BIV8u(50))F > for all § € N
satisfying |¥| = 1, |Vhi(Zo)¥| < € for all j € {1,...,m}, |Vgi(%0)¥| < € for all
leL={k: >0} and Vg(X)y <e for all 1 €I(Z)\L where I(X) =
{k : ge(%) = 0}.

Then Xy is a strict local minimum for f under the constraints of Equation (1.1).

Proof. Since D is open, there exists §y > 0 in N such that Bs,(Xy) C D and
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Corollary 2.13 holds for f, h;, g/ on Bs,(¥o) for all j € {1,...,m} and for all
le{l,...,p} Forall X € B, (Xo), we have by Corollary 2.13 that

(411)  f(%) = f(%o) + Vf (%) (X — %)
+ % (% — %o)" V2f (%o) (% — %o) + R3.(%0, X)
(4.12) (X)) =hy (?c ) + V(%) (& — Xo)

+3 (5& — %)V hy(%)(X — %o) + R3 i, (%o, X)
(4.13)  @i(X) = gi1(%o) + Vai(Zo)(X — Xo)

+ % (& — %) V2g1(%o) (% — %o) + Rs g, (%o, X)
forall je {1,...,m}and forall/ € {1,...,p}, where

max {|Rs s(%0,%)|, | Rap (R0, X)|, | R3¢, (R0, D]} < Mol|% — Zo|’

1<j<m
1<i<p

for some constant My € .

Adding Equation (4.11), Equation (4.12) multiplied by o; for all
j€{l,...,m}, and Equation (4.13) multiplied by §; for all / € {1,...,p}, we
obtain that

f(®) + Z ayhy(X) + Z Bigi(%) = f (%) + Z oshi(%o) + Z Bigi(¥Xo)

+ <Vf(5€‘0) + '211 Othhj()?()) + lg} ﬂ[Vgl()—éo)) (56’ - 56‘0)

(4.14)  + % (% —%o)" <V2f(>?0) > V(%) + Zé ﬁlegz(?Co)> (X — %)

i=1
+ Ry, )

= f() +5 (- %) (sz(ic’o) + 3 V() + X AV (%)) (% - %)
+ R; (56‘0, )_C')

where we have made use of (ii) and (iii) and the fact that 4;(X) = 0 for all
je{l,...,m}, and where

R3(Xo,X) = Rap(%0,%) + E Ry (%0, %) + Z BiR3 g, (X0, X)
Thus, |R3(%, X)| < M|X — %[, where
m P
4.15) M=|1+3 || + X |8 | Mo.
j=1 =1
Now suppose that Xy 1s not a strict local minimum for f under the constraints of
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Equation (1.1} and let ¢ € N be such that d' < &, where d is the infinitely small

number defined in the introduction. Then for all k&N, there exists

Pk € Bywi(Xo) \ {Xo} C Bs, (%) such that ¥ is feasible and f (3) < f(Xo). Thus,

the sequence {¥i},cy converges to Xo. For each k € N, write Jx = Xo + 6k,

where |5;| = 1 and 0 < § < d*T* <« d*. Then {&} is a null sequence in V.
For all £ € N, we have that

hi(¥x) = hi(Xo) + Vhi(Xo) (Fr — Xo) + R, (R0, ¥x) for all j € {1,...,m},
where

|Ro, 1y (%o, )| < Moy [P — Fol'= M, .67,
for some M, ;, > 0in N, by Corollary 2.11. Thus, for all j € {1,...,m},

0 = 0+ Vh;(30) xSk + Ro, 1, (X0, Vi),
or

e Ry 1, (X0,
th(xO)Sk = ——j—(ék——).

Thus,

| Ra, 1, (%o, )|

| VA (%o)Si| < &

< Mo, wbe , 72, 0-

Hence, there exists N1 € N such that

Ith(ic*o)Zv‘kl < min{e, IIIEIE{ by }} for all k > Ny and for all j € {1,...,m}.
g

4m| oy
Also, for all & € N, we have that
f(Zo) > f (k) = (%) + Vf (%) Pk — Xo) + Ror (X0, ¥),
where
| Ra, (%o, )| < Mol — Fol*= Mo, 65,
for some M> ; > 0in N, by Corollary 2.11. Thus,

CRos(R0, %)
6]{ koo

Vf (Ro)okSie + R, r (X0, Vk) < 0, or Vf(Xo)si <
Hence, there exists N> € N such that

VI (%p)$k < 1;161? {%} for all £ > N».
Moreover, for all / € I(Xy), we have for all £ € N that
0 > g:1(Ji) = &i(%0) + Vg1(F0)6iSk + Rag(Xo, i) = Vgi1(X0)biSic + Ra,g, (%o, Ji),

where
IRZ,gz (5507)-"k)| < MZ,g15I%a

96



for some M3 4, > 0in N. Thus,

Ry il

Vai(%o)sk < 5 e

Hence, there exists N3 € N such that, for all k > N3,
Vgi(%)S < min {E
q

L 4pf;
Vg(%0)Sk < e for all I € I(X) \ L.

} foralll € L and

Let N > max{Ny, Nz, N3} be such that Md" < /2, where M is as in Equation
(4.15). Then

(4.16) | Vhi(Fo)sn| < min{e,min{ 5 }} forallje{l,...,m},

gelL 4m|aj|
o\ . [eby
(4.17) Vf(Xo)Sy < 141161}‘1{—4 },
. | €B,
4.18 Vg (%)sy < mind —24 b forallle L,
(4.18) g1(Xo)Sn quLl{4pﬁ,} or a

(4.19) Vgl(fo)EN < ¢forall/ e I()?g) \L.

Two cases are to be considered.
Case 1: Assume that Vg;(¥y)sy > —e for all / € L. Then it follows from
Equation (4.18) that

Vg (%g)sn| < eforall I € L.
Also, from Equation (4.16), we have that
|Vhi(%)Sw| < e for all j € {1,...,m}.

Thus condition (iv) of the theorem entails that

m P
(420) s5% <V2f(550) + 3 o VPR(R0) + 2 ﬁlvzgl(fo)) Sy > .
i=1 i=1
On the other hand, replacing X by ¥y = Xp + 65y in Equations (4.14) and using
the fact that Jy is feasible, we obtain that

£(G) = £0w) =f0w) + il oy ()

> f(Pn) + 20 oii(Fn) + lil Gigi(Fn)

j=1

I e - n - z = \=

= f(%) +§512v31{r<vzf(x0) + '21 V2 hy(%o) + 121 51V281(X0)>SN
j= =

+ Rs(%0,¥n),

from which we obtain that
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— — m — p -t — 2R 56 b 7
5 <v2f<xo> + 3 0V + 2 ﬂlvzgl(xo)>szv < ——3‘55’1@,
j= = v

where
|Rs (%o, )| < M|y — %of* = M5,
Thus,
_2Rs(%0, ) < 2Méby < 2MdY < .
s
It follows that

m p
S"ATr(sz(??O) + Y oVih(Ro) + X ﬂlegz(fo)) Sy <7
j=1 i=1
which contradicts Equation (4.20).
Case 2: Assume that Vg, (¥o)Sy < —e for some [ € L and let Lo =
{l € L:Vg,(%)sy < 0}. Then, using Equation (4.17) and condition (iii) of the
theorem, we have that

Do > r Gy
(4.21) = =Y osVi(Go)iw — Y BiVgi(Fo)Sy — 3. BiVei(Xo)sn
=1 1€V, 1€,

> — Z Oéthj()_C'o)S"N — Z 5,Vg1(5c*0)§}v -+ 6,5[0.
j=1 IEL\L()

But, using Equation (4.16), we have that

IN

i_nj aj||\7h (%) SNI < Z la][qEL{ €08y }

4m|oy|
€0, Gﬁlo
dmley| 4

— > o Vhi(30)Sn
j=1

3

2 oyl

j=1

|

Hence

(422) =3 o Vhi(Fo)y > —ﬁ
j=1

Also, using Equation (4.18), we have that

Il

~ > BiVai(Xo)Sy

o\ €f,
T€L\Ly X, Ve < > ﬁlmm{@lqﬁ}

le\Ly leNL, 9€L

3 mm{ﬁq}<ﬂ.
lenu, €L L4p ) T 4

Il

Hence
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- s €
(4.23) - > 61Vg1(xo)sN>——4—@.
IEL\LQ

Substituting Equation (4.22) and Equation (4.23) into Equation (4.21), we ob-
tain that

By Py _ By _ Py
2> g TP

a contradiction since Gy, > 0. Thus, X, is a strict local minimum for f over the
constraints of Equation (1.1). O

Example 4.4. Minimize
S(x1,x2,x3) = dxy + dxz — X1X — X1X3 — X2X3,

subject to the constraints

X1+x =2+d
X1 <1l4+d
X2 §2
X3 <3—d+2d 15,

(4.24)

where d is the infinitely small number defined in the introduction.

For the function f to have a local minimum at a regular point ¥y =
(x1, x2, x3)T subject to the constraints in Equation (4.24), the necessary condi-
tions of Theorem 4.2 must hold at X,. The first order conditions of that theorem
entail that there must exist o, 81, 82, 53 € A such that

B>0forl=1,273,
ﬁ](xl—l—d):(),

Ba(x2 —2) =0,

(4.25) B3(X3—3+d~2d2—5d3) = (),
—Xy—x3+a+ 0 =0,
d—x1—x34+a+ 3, =0,

\d —x1 —x2-+03=0.

Using the constraints in Equation (4.24), a close inspection of the conditions in
Equation (4.25) shows that those conditions are simultaneously satisfied only at

x1=1+d,

X2=1,

x3 =3 —d+2d* 4+ 548°,
(4.26) a=4—d+2d*+ 54,

B =0,

62:07

Gy =2.

With X% = (1+4d,1,3 —d +2d°> + 5d3)T, and using the notations of the Proof
of Theorem 4.3, we have here I(X)) = {1,3} and L = {3}. Since VA(X),
Vg1 (%) and Vgs(Xy) are linearly independent, the point Xy is regular for the
constraints.
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To show that ¥, is indeed a strict local minimizer of f subject to the con-
straints in Equation (4.24), it remains to show that condition (iv) of Theorem
4.3 holds at ¥, for the choices of «, 51, 52, 83 in Equation (4.26). Let € = d and
~ = 1/2. Then for all ¥ € N satisfying |J| = 1, |VA(Z)F| < ¢, |Vas(Zo)F| < €
and Vg; (%)Y < ¢, we have that

Wi+ +yi=10y+pl <d|ys| <d, and y; < d.

It follows that

3
57 ( V() + aVH(R) + 2 ﬂlegz(?co))ﬁ — VY ()5
0 -1 -1 B41

m»yyl -1 0 -1 i)
-1 -1 0 3

= =212 — 2113 — 22)3

= —itn+r)+ i+ +7%)
=1-(1+x» —|—y3)2

L= (31 +32)° = 2 = 2331 + »2)
> 1= [y1 41" = psf* = 20psllys + 3
>1—-d?—d*-24* =144

i

Il

1
2=

Thus the conditions of Theorem 4.3 are satisfied at X, and hence X, is a strict
local minimizer of f under the constraints in Equation (4.24).

Remark 4.5. In the example above, any infinitely small ¢ can replace 4 and any
positive real number -y smaller than 1 can replace 1/2 in showing that condi-
tion (iv) of Theorem 4.3 holds. This is so since 1 — e% >~ for all such ¢ and ~y.
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