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ABSTRACT 

Constrained optimization on non-Archimedean fields is presented. We formalize the notion of a 
tangent plane to the surface defined by the constraints making use of an implicit function Theorem 
similar to its real counterpart. Then we derive necessary and sufficient conditions of second order 
for the existence of a local minimizer of a function subject to a set of equality and inequality con- 
straints, based on a concept of continuity and differentiability that is stronger than the conventional 
one. 

1. INTRODUCTION 

In this paper, optimization over equalities and inequalities on non-Archime- 
dean fields will be considered. We first review some basic terminology and facts 
about non-Archimedean fields. So let K be a totally ordered non-Archimedean 
field extension of R. We introduce the following terminology. 

Definition 1.1 (-, M, <, H, X). For X, y E K, we say x N y if there exist ~1, m E N 
such that ~~1x1 > lyl and mlyl > Ix]; f or nonnegative x,y E K, we say that x is 
infinitely smaller than y and write x < y if nx < y for all n E N, and we say that 
x is infinitely small if x << 1 and x is finite if x N 1; finally, we say that x is ap- 
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proximately equal to y and write x MY if x - y and Ix - y/ < Ix]. We also set 
X(x) = [x], the class of x under the equivalence relation N. 

The set of equivalence classes H (under the relation -) is naturally endowed 
with an addition via [x] + [v] = [x . JJ] an d an order via [x] < [JJ] if Iy] < 1x1 (or 
1x1 > Iv]), both of which are readily checked to be well-defined. It follows that 
(H, +, <) is a totally ordered group, often referred to as the Hahn group or 
skeleton group, whose neutral element is the class [l]. It follows from the above 
that the projection X from K to His a valuation. 

The Theorem of Hahn [5] provides a complete classification of non-Archi- 
medean extensions of [w in terms of their skeleton groups. In fact, invoking the 
axiom of choice it is shown that the elements of any such field K can be written 
as formal power series over its skeleton group H with real coefficients, and the 
set of appearing ‘exponents’ forms a well-ordered subset of H. The coefficient of 
the qth power in the Hahn representation of a given x will be denoted by x[q], 
and the number d will be defined by d[l] = 1 and d[q] = 0 for q # 1. It is easy to 
check that 0 < dq < 1 if and only if q > 0, and dq >> 1 if and only if q -c 0; 
moreover, x x x[X(x)]dx(“) for all x # 0. 

From general properties of formal power series fields [10,12], it follows that if 
H is divisible then K is algebraically closed; that is, every polynomial of odd 
degree over K has at least one root in K. For a general overview of the algebraic 
properties of formal power series fields, we refer to the comprehensive overview 
by Ribenboim 1131, and for an overview of the related valuation theory the book 
by Krull[6]. A thorough and complete treatment of ordered structures can also 
be found in [ll]. 

Throughout this paper, N will denote any totally ordered non-Archimedean 
field extension of Iw that is complete in the order topology and whose skeleton 
group H is Archimedean; i.e. a subgroup of [w. The smallest such field is the 
field of the formal Laurent series whose skeleton group is Z; and the smallest 
such field that is also algebraically closed is the Levi-Civita field R, first in- 
troduced in [7,8]. In this case H = Q, and for any element x E R, the set of ex- 
ponents in the Hahn representation of x is a left-finite subset of Q, i.e. below 
any rational bound r there are only finitely many exponents. 

The Levi-Civita field R is of particular interest because of its practical use- 
fulness. Since the supports of the elements of R are left-finite, it is possible to 
represent these numbers on a computer [l]. Having infinitely small numbers, 
the errors in classical numerical methods can be made infinitely small and 
hence irrelevant in all practical applications. One such application is the com- 
putation of derivatives of real functions representable on a computer [15], 
where both the accuracy of formula manipulators and the speed of classical 
numerical methods are achieved. 

In the light of such practical usefulness of infinitely small numbers, it is nat- 
ural to study optimization questions on non-Archimedean fields with the hope 
to extend the methods mentioned in the previous paragraph to find local ex- 
trema of functions as closely as allowed by machine precision. 

The following example shows that continuity or even differentiability of a 
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function on a closed and bounded subset of N or N” do not necessarily entail 
that the function assumes a maximum or a minimum on the set. 

Example 1.2. Letf : [-1, l] --+ N be given byf(x) = x - x[O]. 
Then f is continuous on [- 1, l] and differentiable on (- 1,l) with f’(x) = 1 

for all x E (-1,l). In fact, for ally # x in [-1, l] satisfying ]y - x/ < 1, we have 
that (v - x)[O] = 0 and hence 

f(Y) -f(x) = Y - YPI - x + XPI = Y - x - (YPI - 401) 
Y-X Y-X Y-X 

=Y-x-(Y-XPI Y-X l ~-~ 
Y-X y-x ’ 

which shows that f is differentiable at x for all x E (-1,1) with f’(x) = 1. 
However, f assumes neither a maximum nor a minimum on [- 1 , 11. The set 
f([-1; 11) is bounded above by any positive real number and below by any 
negative real number; but it has neither a least upper bound nor a greatest 
lower bound. 

Also, contrary to the real case, the following example shows that a function 
that is 2k-times differentiable on an open interval (a, b) containing the point x0, 
withf(j)(xo)=OforalljE{1,...,2k-1)andf (xa)#O,neednothavea w 
local extremum at x0. 

Example 1.3. Let g : (-1,1) 4 N be given by g(x)[q] = x[q/3] and let 
f : (-1,1) -+ N b e given by f(x) = g(x) - x4. Then g is infinitely often differ- 
entiable on (-1,1) with go’)(x) = 0 for allj E N and for all x E (-1,1) [16]. It 
follows that f is four times differentiable on (-1,1) with f’(0) =f”(O) = 
f”‘(0) = 0 and fc4)(0) = -24. Now let x E (-1,l) be such that 0 < (x] < 1. 
Then g(x) M x[X(x)]d3’(“) and x4 M (x[X(~)])~d~~‘“’ << ]x[X(~)]]d~~@). Thus, 
f(x) M x[X(x)]d3W It f o 11 ows that f(x) >f(O) = 0 if 0 < x < 1 and f(x) < 
f(0) if 0 < -x < 1; and hencef has no local extremum at 0. 

The difficulties presented in Example 1.2 and Example 1.3 are due to the total 
disconnectedness of the field in the order topology [14] and makes the study of 
optimization more involved than in the real case. Thus, a stronger smoothness 
criterion is needed to study optimization on N. In [16], we considered un- 
constrained one-dimensional optimization on the field N, using the notion of 
continuity and differentiability based on the derivate concept [2]. In this paper, 
we generalize the concepts of derivate continuity and differentiability to higher 
dimensions. Then we use that to derive necessary and sufficient conditions of 
second order for the existence of a minimum of an N-valued function on N” 
subject to constraints. 

We will consider the problem of minimizing a function f : N” + N, subject 
to the following set of constraints: 
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( h,(7) =0 (a(J) 50 

(“‘) { h,(i):0 and {gJ&) 
where all the functions in Equation (1.1) are from N” to N. A point 20 E Nn 
will be said to be a feasible point if it satisfies the constraints in Equation (1.1). 
Before deriving necessary and sufficient conditions for a feasible point JO to be 
a local minimizer off, we first review the concept of derivate differentiability 
[2,14] and extend the concept to higher dimensions. 

2. DERIVATE CONTINUITY AND DIFFERENTIABILITY 

In this section, we review the definitions of derivate continuity and differentia- 
bility in one dimension, as well as some related results that are useful for our 
purposes here, and we refer the interested reader to [2,14] for a more detailed 
study. Then we generalize these notions of continuity and differentiability to 
higher dimensions. 

Definition 2.1. Let D c N be open and let f : D --t N. Then we say that f is 
derivate continuous on D if there exists M E N, called a Lipschitz constant of 
f on D, such that 

If o;‘I1’“‘l 5 A4 for all x # y in D. 

It follows immediately from Definition 2.1 that if f : D + N is derivate con- 
tinuous on D then f is uniformly continuous (in the conventional sense) on D. 

Remark 2.2. It is clear that the concept of derivate continuity in Definition 2.1 
coincides with that of uniform Lipschitz continuity when restricted to R. We 
chose to call it derivate continuity here so that, after having defined derivate 
differentiability in Definition 2.3 and higher order derivate differentiability in 
Definition 2.5, we can think of derivate continuity as derivate differentiability of 
‘order zero’, just as is the case for continuity in R. 

Definition 2.3. Let D c N be open, let f : D + N be derivate continuous on D, 
and let ID denote the identity function on D. Then we say that f is derivate dif- 
ferentiable on D if for all x E D, the function fe : D \ {x} + N is derivate 
continuous on D \ {x}. In this case, the unique continuation off* to D (see 
[14]) will be called the first derivate function (or simply the derivate function) of 
f at x and will be denoted by Fi,+; moreover, the function value FI,~(x) will be 
called the derivative off at x and will be denoted byf’(x). 

It follows immediately from Definition 2.3 that if f : D -+ N is derivate dif- 
ferentiable then f is differentiable in the conventional sense; moreover, the two 
derivatives at any given point of D agree. The following result provides a useful 
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tool for checking the derivate differentiability of functions; we refer the inter- 
ested reader to [14,16] for its Proof. 

Theorem 2.4. Let D c N be open and letf : D + N be derivate continuous on D. 
Suppose there exists M E N and there exists a function g : D --+ N such that 

f(Y) -f(x) 
Y-X 

-g(x) 5 Mly - X/ for all y f x in D. 

Then f is derivate diflerentiable on D, with derivative f' = g. 

Definition 2.5 (n-times Derivate Differentiability). Let D c N be open, and let 
f :D+N. Letn>2b e given in FU Then we define n-times derivate differ- 
entiability off on D inductively as follows: Having defined (n - l)-times deri- 
vate differentiability, we say that f is n-times derivate differentiable on D if f is 
(n - 1)-times derivate differentiable on D and for all x E D, the (n - 1)st deri- 
vate function F, - I;X is derivate differentiable on D. For all x E D, the derivate 
function F,,, of F, - i,X at x will be called the nth derivate function off at x, and 
the number f (“j(x) = n!FA _ 1,X(x) will be called the nth derivative off at x and 
denoted by f ("j(x). 

One of the most useful consequences of the derivate differentiability concept 
is that it gives rise to a Taylor formula with remainder while the conventional 
(topological) differentiability does not; see [2,14]. We only state the result here 
and refer the reader to [2,14] for its Proof. We also note that, as an immediate 
result of Theorem 2.6, we obtain local expandability in Taylor series around 
x0 E D of a given function that is infinitely often derivate differentiable on D 
w41. 

Theorem 2.6 (Taylor Formula with Remainder]. Let D c N be open and let 
f : D + N be n-times derivate d@erentiable on D. Let x E D be given, let Fn,, be 
the nth order derivatefunction off at x, and let M,,X be a Lipschitz constant of Fn,X 
on D. Then for ally E D, we have that 

f(y)=f(x)+ 5 f%(y-xY+r~+~(xy)(y-x)n+lj 
J! 

7 
j=l 

with X(r,+~(x,y)) L X(IM,,,). 

Now we generalize the concepts of derivate continuity and derivate differ- 
entiability to functions of many variables. In the following, column vectors in 
Nn will be denoted by S;,?, . . .; and row vectors by ZY,jY; . . . . 

Definition 2.7. Let D c Nn be open, let f : D + N, and let u’ be a unit vector. 
For each 7 E D, let 

D?,,-={tEN:I+tZED} 
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and define qSi,; : Dz,,- -+ N by 

&y(t) =f(x’+ tq 

Then we say thatf is derivate differentiable on D in the direction of ii if $2,~ is 
derivate differentiable on D~,G for all 5? in D. Moreover, the derivative &JO) 
will be called the directional derivative off at 2 in the u’ direction and will be 
denoted by &j-(Z). 

Definition 2.8 (Partial Derivatives). Let D c N” be open, let f : D -+ N and 
let {PI,. . . , &n) denote the standard orthonormal basis of N’. Then the partial 
derivatives off are defined as the directional derivatives off in the directions 
6,. . . , Z,,,, if these exist. If the partial derivative in the direction & exists, we will 
denote it by &f. The gradient off, denoted by Of, is defined to be the row 
vector whose components are the (first order) partial derivatives off. 

Definition 2.9. Let D c Nn be open, letf : D + N and let 4 E N be given. Then 
we say that f is Cq on D if all the partial derivatives of order smaller than or 
equal to q exist and are continuous on D (in the derivate sense). 

Theorem 2.10. Let D c NE be open, let f : D + N be C’ on D and let I E D be 
given. Then there exist 6, M > 0 in N such that BJ(.?) = {Z E N” : I?- 21 < 
S} c D, and If(y) -f (2) - Of (-it)@ - ?)I 5 M(y’- St]‘for ally E Bs(l). 

Proof. We use induction on the number of variables n. The result is true for 
n = 1 by definition of derivate differentiability in one dimension. Assume it 
is true for n = k and we show that it is true for n = k + 1. So let f : D c 

N k+l -+ N be C’, and let 2 E D be given. Since D is open, there exists 60 > 0 in 
N such that BE”’ (I)cD.Writex’=(xl)..., Xk,Xk+~),let~=(x~,...) Xk)E 
Nk and let 

D1 = -t ?= @I,..., ,%‘k) cNk: (~1,. . . ,Zk,xk+l) E BE+‘+.?)}. 

Then D1 = BE)([). 3 and hence D1 is open in N”. Define II, : D1 -+ N by 

Ye, . ..,zk) =f(Zl,-..,Zk,Xk+l). 

Then $ is C’ on D1 and the partial derivatives of ti at Z are given by 

aj$(Zl> . . -,zk) = a$(%. . . ,zk,xk+l) for allj E (1,. . . ,k}. 

Thus, by the induction hypothesis, there exist 61,441 > 0 in N such that 
Bt)(t) c D1 (i.e. 61 5 60) and 

Let y E Bt’ “(2) and let $ = (~1,. . . , yk). Then iit E Bf’(f); and hence 
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If@) -fM - VfW(V - 31 
5 If@) - tic4 - a,+1 f(wYk+l - Xk+1)l 

+ @(G) - Nd - jI$ ajf(2>(Yj - xj) 

= lf(~>Yk+l) -f( g,xk+l) - dk+l f@)(j’k+l - xk+l)l 

+ (ticq - ?a) - w-e+) (G - 7, / 

I If(~>Yk+l) -f( $xk+l) - ak+lf(G,Xk+l)(Yk+l -xk+l)l 

+Iak+lf(%Xk+l) -~k+lf(~)l)Yk+l -xk+ll 

+ Iw - $6 - WtP - il l 

<M21Yk+l -Xk+1j2+M31+fjIYk+l -Xk+ll+Mll+f12 

for some constants M2, M3 E N, which do not depend on y’ (nor on $I, since 
&+ t f is derivate continuous on D. Let M = max{3Mt, 3Mz, 3Ms). Then 

If(v’)-f(q-of(q(j-z)I <M21~-jZ12+M31~-St12+M11y’-j;12 

5 M(y’ - 712. 

Thus, the result is true for n = k + 1; and hence it is true for all ~1. 0 

As an immediate consequence of Theorem 2.10, we obtain the following result. 

Corollary 2.11. Let D c N’ be open, let 20 E D be given andletf : D + N be C’ 
on D. Then there exist M, 6 > 0 in N such that BJ(&) c D and, for all I E Bs($), 
we have that 

f (2) =f (20) + Of (~o)(~ - 20) + Rz(Zo, $9 

where IR2($,, S;)l 5 &III - 201~. 

Lemma 2.12. Let D c N” be open, and let f : D -7‘ N be C’ on D. Fix 5& E D, let 
3 E Nn be a$xed vector and let D1 c N be given by D1 = {t E N : jto + tiJ E D>. 
Define 4 : D1 + N by 4(t) = f (20 + ti;). Then 4 ’ d’#” 1s I erentiable at 0 (in the con- 
ventional sense) with derivative qS(0) = Of (20);. Moreover, there exists 6 > 0 in 
N such that B6(0) c D1 and 

4(t) t ‘(O) - #l(O)1 5 M13121tl for all t E Bs(O) \ (0). 

Proof. By Theorem 2.10, there exist SO, A4 > 0 in N such that Bs, (20) c D and 

If (I) -f (Zo) - Of (lo)@ - &)I 5 Ml2 - &I2 for all JE E B60(2~). 

Let 6 = 60/\31. Then, since B&,(20) c D, we obtain that Bs(O) c Dl. Now let 
t E BdO) \ 10) b e g iven. Then 20 + tt: E B60(7~); and hence 
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If(& + tq -f(s;,) - Vf(.jto)iq 5 Mliq2t2. 

Thus, 

which finishes the Proof of the Lemma. 0 

By repeated application of Corollary 2.11 and of Lemma 2.12 to the function 4 
and its derivatives, we obtain a Taylor formula with remainder, similar to the 
corresponding one in real calculus. 

Corollary 2.13 [Taylor Formula for Functions of Several Variables]. Let 
D C N” be open, let JEo E D be given and let f : D + JV be Cq on D. Then there 
exist M, 6 > 0 in N such that BJ(&) c D and, for all 2 E Bd(&), we have that 

f (2) = f (&J) + 2 
i 

f 2 
j=l ‘1,,...,1,=1 

(a,, . . . $f (-?to)?L (x4 - Wk,) 
) 

+&+l(~o,a 

where IR,+1(Jto,Z)( 5 MJJ--~~[~+‘. 

3. TANGENT PLANE 

We start this section by first stating, without Proofs, the inverse function The- 
orem and the implicit function Theorem. The Proofs are very similar to those of 
the respective real ones: rather than taking c E R such that 0 < c < 1 as in [4] 
pp. 140-149, we use c E N such that 0 < c < 1 wherever the convergence of the 
sequence (c”) is needed in the Proofs. Also, we can replace conventional differ- 
entiability with derivate differentiability without having to change the essence 
of the Proofs. The details of the last two statements are left as an exercise for the 
interested reader. 

Notation 3.1. Let m, n E N be given, let D c N” be open and let? : D + Nm be 
C’ on D. Then for 2 E D, the m x n matrix of the partial derivatives of the 
components off will be denoted by Ml(i); that is 

&fl@) 82fl@) . . . %fl (2) 

afz(q &f2@) . . 

Jd(3 = . . . 

&A (2) 

L 1:: 

. . 

&fm@) &f,(2) ... azfm(-jt) 
Moreover, if m = n then the determinant of Ml(Z) will be called the Jacobian 
of 7 at St and denoted by J?(Z). 

Theorem 3.2 (Inverse Function Theorem). Let n, q E N be given, let D E N” be 
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open and let 1: D -+ N” be Cq. Let 70 E D be such that Jl(&) # 0. Then there 
exists an open set R containing lo such that 

l RcD, 
0 jJn is one-to-one, 
a f (L?) is open, 
0 Jj@) # 0 for all I E R 
l The inverse g'of IIn is Cq on?(Q), 
. Mg’(y’) = [MT(Z)]-’ if j =7(Z) and? E Q. 

Theorem 3.3 [Implicit Function Theorem]. Let r, m, q E N be given, let D, c N’ 
and D, c n/” be open and let F : D, x D, --f N” be 0. Let (J;o,&) E D, x D, 
be such that F(&, 20) = 6 and Jz$‘(J;,, 2%~) # 0. Then there exist neighborhoods 
0, and Qm of 20 and 20, respectively and there exists a function 6 : 
is Cq on ,R, such that g(2, J(Z)) = dfor all 51: E Q, and &Z&O, = 20. 

6$ + tin, that 

Now let’s go back to our original problem stated at the end of the introduction. 
Let S be the hypersurface in Nn defined by 

and assume that hl, . . . , h, are Cr. 

Definition 3.4. Let S be the surface defined by Equation (3.1) and let 2s E S be 
given. Then the tangent plane at 20 to S, denoted by I(&), is the collection of 
the derivatives Z’( to), where Z(t) E S for t in some open interval (a, b) in N, Z(t) 
is derivate differentiable on (a, b) and Z(t0) = 20 for some to E (a, b). 

Definition 3.5. Let S be as in Definition 3.4, and let Z. E S be given. Then we 
say that 20 is a regular point of S if Vhl (lo), . . , Vh,(&) are linearly in- 
dependent. That is, if al,. . . , a, E N and if alVhl(sL’o) + . . . + amVhm(&) = 6 
then al = . . = a, = 0. 

Remark 3.6. We define matrix addition and multiplication in N the same way 
we do in R; and hence we have the same criteria for the invertibility of a given 
matrix and the same procedures to compute the inverse. Thus, an n x y1 matrix 
M over N is invertible if and only if its n column vectors are linearly in- 
dependent, if and only if its n row vectors are linearly independent in N, 

A simple expression for the tangent plane to S at a regular point 2s is given by 
the following theorem. 

Theorem 3.7. Let S be the surface dejined by Equation (3.1), and let 20 be a reg- 
ulavpoint of S. Then the tangent plane at 20 to S is given by 
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Proof. Let 3 E I(&) be given. Then there exists a derivate differentiable curve 
2(t), a < t < b, in S such that 2s = j;(to) and y’ = J;‘(to) for some to E (a, b). 
Thus, hj(?(t)) = 0 for all t E (a, b) and for allj = 1, . . . , m. Since hj is C’ in the 
derivate sense, we obtain that hj is C’ in the conventional sense and the partial 
derivatives of hj at any given point (in the derivate sense and in the conventional 
sense) agree; similarly, jt is differentiable (in the conventional sense) on (a, b) 
and the derivatives at any t E (a, b) in the derivate sense and in the conventional 
sense agree. Hence, applying the chain rule, we obtain that hj(.j;(t)) is differ- 
entiable (in the conventional sense) at t for all t E (a, b) with h,!(Z(t)) = 
Vhj(x’(t))2(t) = 0 f or all t E (a, b). In particular, Vhj(St(to))l’(to) = 0; and this 
istrueforallj= l,... , m. Therefore, Vhj(.?o)~ = 0 for allj = 1,. . . , m. 

Conversely, let 9 E N” be such that Vhj(&)~ = 0 for all j = 1, . . . , m. Define 
i?NxN*-N”by 

F(t,Z) =i(L+ tv’+ (Mb(p))T+ 

and consider now the equation @(t, 2) = 0’. Then, @O, 6) = 6 since 20 is feasible. 
Also, 

Fz(O, 6) = Mi(Zo) (Mi(Zo)) T 

which is a nonsingular m x m matrix. This is so since the row vectors in 
M$(jto), namely Vhi (j;,), . . . , Vh,(&), are linearly independent. Thus, by the 
implicit function theorem, there exists a C’ function i?(t) defined on some open 
interval (-a, a) c N such that 

@(t, Z(t)) = 6 for all t E (-a, a) and z’(0) = 6. 

Define the function Jt : (-a, u) t N” by Z(t) = 520 -t- ty + (M@o)) T2(t). Then 

i!(t) E S for all t E (-a, a), x’(0) = 20 and 2’(O) = y’+ (ML(D)) r?‘(O). But 
from @Z(t)) = 0’ for all t E (-a, a), we obtain that 

k(?qt))l,=, = 6; and hence M%(j;,) (i + (Mht(&)) ‘Z’(O)) = 6. 

Since M&&)9 = 6 and since Mx(&) (M$(&)) T is invertible, we obtain that 
b(0) = 6. Thus, 2’(O) = 9 and hence y’ E I(&). q 

4. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS 

In this section, we derive necessary and sufficient, second order, optimality 
conditions for a local minimum of a function subject to a set of constraints. We 
start with the following definition. 

Definition 4.1. Let 3s be a feasible point for the constraints in Equation (1.1) 
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and let I(&) = {Z E (1,. . . ,p} : gr(&) = 0). Then we say that 20 is regular for 
the constraints if {Vhj(x’o) : j = 1,. . . , m; VgZ(&) : Z E I(st0)) forms a linearly 
independent subset of vectors in N”. 

The following theorem provides necessary conditions of second order for a local 
minimizer 20 of a functionf subject to the constraints in Equation (1.1). The 
result is a generalization of the corresponding real result [9,3] and the Proof is 
similar to that of the latter; but one essential difference is the form of the re- 
mainder formula as in Equations (4.4), (4.5) and (4.6). In the real case, the re- 
mainder term is related to the second derivative at some intermediate point, 
while here that is not the case. However, the concept of derivate differentiability 
puts a bound on the remainder term; and this is instrumental to prove the de- 
sired result. 

Theorem 4.2. Suppose that f, {hj}i”_ 1, {gt};, 1 are C2 on some open set D c Nn 
containing thepoint Jso and that j;o is a regularpointfor the constraints in Equation 
(1.1). If 20 is a local minimizer for f under the given constraints, then there exist 
w,...,%n, Pl,... , ,BP E N such that 

(i) ~t~OforaZZZE{l,...,p}, 
(ii) ,&gZ(&) =OforaZlZ~{1,...,p}, 

(iii) Of 20) + ~j"=l , 
i 

a.Vhj (20) + CT= 1 ,&VgZ (20) = 6, and 
(iv) jr’ 

satisfying 
V2f (X0) + cTc 1 ~jV2h~(jto) + cf=i ,&V2g~(&))$ 2 Ofor ally’ EN” 
Vhj(&)? = 0 for all jE{l,...,m}, Vgl(lo)j=O for all 

Z E L = {k E I($,) : @k > 0) and Vgr(&)j 5 Ofor aZZ Z E I(&) \ L. 

Proof. Since 2s is a local minimizer for f over the constraints in Equation (1.1) 
and since, for 1 6 I(&), gl(&) < 0, there exists E > 0 in N such that 70 is a 
minimum point for f in B,(&) over the constraints hi(l) = 0’ and gl(2) = 0 for 
Z E I(&). That is, 20 is a solution for 

(4.1) min f (2) : i(2) = G,gl(i) = 0 for 1 E I(io),? E Be(&). 

Since 20 is regular for the constraints in Equation (l.l), this is equivalent to 
saying that 20 is regular for the constraints in Equation (4.1). Thus, by Theorem 
3.7, we have that the tangent plane to the constraint set S defined by Equation 
(4.1) is 

P(jto) = {; E NN” : Mh’(J;o)j = 0’ and Vg~($)~ = 0 for Z E I(&)}. 

Let 3 E P(jt0). Then there exists a derivate differentiable curve Z(t), a < t < b, 
with X!(t) E S for all t E (a, b), and Y(t0) = j and I(to) = 20 for some to E (a, b). 
Then 

f (Z(t)) 2 f (Jt(to)) = f (20) for all t E (a,b). 

Hence, using a result in [16] about local minima, we have that 
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(4.2) f’(j;(t)))/,=,, = 0 = Vf(&)S;‘(t~) = Vf(&)T and 

(4.3) f”(w)I,=, 2 0. 

Equation (4.2) yields that 

Of(&) E P(&)’ = {Z EN” : 2. iG = 0 for all G E P(.?o)}. 

It follows that Of(&) E N(j;,), where 

Therefore, there exist al,. . . , o,, pi,. . . 
and Vf(20) + Cj”= 1 , 

, pP E N su$h that 0~ = 0 for I 6 I($) 
a.Vhj(&) + c$‘= i ,&Vgl(&) = 0. Clearly, ,&gl(&) = 0 for 

all I E { 1, . . . ,p}. Hence (ii) and (iii) hold. 
To prove (i), we need to show that pl 2 0 for all I E I(&). Suppose that 

& < 0 for some lo E I(&). If P, (Y&o) is the tangent plane to 

S~o(Z~) = (2 E D : hi(l) = 0 f or allj;gl(jt) = 0 for all Z E I(&) and Z f lo} 

then the regularity of 20 for the constraints in Equation (1.1) yields the existence 
of some y’ E PIN such that VglO(lo)$ < 0. By Theorem 3.7 applied to &‘I,,, it 
follows that there exists a derivate differentiable curve j;(t), a < t < b, in Sl,, 
with -St-‘( to) = 5 and z( to) = 20. Thus, 

f’(W>l,=, = Vf(~o).F 

= ujgl QjVhj.? - lcl PlVgl (G)j 

= -p,ovg~o(~o)j < 0. 

Since gl,, is C’ on D and since 2(t) is derivate differentiable on (a, b), we have 
that 

(4.4) g1,cqt)) = g,,(~o) + m,(~o)(qt) - 20) + Sz(~o,qt))(qt) - zoj2, 

and 

(4.5) 
Z(t) = lo + jt’(to)(t - to) +&(to, t)(t - to)2 

= 20 + (t - to)j + 32(to, t)(t - to)2, 

where &(&,2(t)) and $(to, t) are bounded on D and (a, b), respectively. Sub- 
stituting for Z(t) - 20 from Equation (4.5) into Equation (4.4), we readily ob- 
tain that 

(4.6) g&Q)) = g#o;o) + (t - to)Vg@o)y’+ Yz(to, t)(t - toj2, 

where Irz(to, t)I is bounded. Since Vgl, (jto)y” < 0, then for t close enough to to 

and for t - to > 0, we get gl, (Z(t)) 1. 0. Thus, j;(t) is feasible for the constraints 
in Equation (1.1) for t near to and t > to. Hence fromf’(~(t))l,,,,< 0, we obtain 

92 



a contradiction with the optimality of 70 for the constraints in Equation (1.1). 
Therefore, /3l 2 0 for all 1 E I(&); and hence /3[ > 0 for all 1 E (1,. . . ,p}. 

Finally, to prove (iv), let j E Nn be such that Vhj(Z~)j = 0 for all 
j E { 1, . . , m}, Vgi(j2o)j = 0 for all I E L and Vgr(&)y’ I 0 for all 1 E I(&) \ L. 
Let 11 = {I E I(&) : Vgl(Js); = 0). Then v’ is in the tangent plane to the con- 
straint set 

sl, = (2 E D : hj(Jt) = 0 f orallj~{1,...,m}andg~(l)=OforallZ~I~}. 

Again, by Theorem 3.7 applied to S,,, it follows that there exists a derivate dif- 
ferentiable curve Z(t), a < t < b, in SI, with ?‘(to) = v’ and Z(to) = 2s. 

Now let 1 E I(.&) \ It be given. Then for all t E (a, b), we obtain that 

where IRs,~(to, t)/ 5 M3,l(t - toI3 for some constant M~,J 10 in N, and where 
use has been made of the fact that gl is C2 at 20 and Z(t) is derivate differentiable 
at to. Since Vgr(&)~ < 0, we obtain that gr(l( t)) < 0 for all t > to in (a, b) suf- 
ficiently close to to. Thus, for all such t, Z(t) is a feasible point for the constraints 
and hence 

f(&) <f@(t)) =f(Zo) + (t - to)vf(zo)j+;(t - to)2v’~v2f(~o)v”+R3f(to, t), 

where 

IR3&0, t)I 5 M3flf - toI = M3f(t - to)3 

for some constant M3f 2 0 in N. Thus, for all t > to in N, sufficiently close to 
to, we have that 

(4.7) 0 I (t - to)v-(Zoo).@ +; (t - to)2JTv2f(J;o)v’ + R&o, t) 

(4.8) O = olihj(<(t)) = Clj(t - to)Vhj(&)~+ iCl!j(t -  to)2~TV2hj(.?$)~ 

+R3,1.,,~~(to,t) forj= l,..., m 

(4.9) 0 = PcaMt)) = Lh(t - to)vgr(200)9 + $3(t - to)2y’Tv2g@~)~ 

+ R3,g,,pl(t0, 0 for 1 = 1,. . . ,p, 

where 

j=l,,,y$~zl ,,,, p3,f(to,t)l’I~3,h,,w,(tO, t)I, P3,grJ3,(to, a} 5 Mo(f - to)3, 

for some constant MO E N. 
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Adding Equation (4.7) Equation (4.8) for i = 1, . . . , m; and Equation (4.9) 
forZ= l,... ,p, and using (iii), we obtain that 

(4.10) 
0 I ;(r - toj2yT 

( 
V2f(~o) + 5 cvjV2hj(~O) + & p~v2gl(zl) v’ 

j=l ) 

where 

R3(t07 t, = R3,f(tOT ‘> + e R3,hj,LYj(tO> t, + 5 R3,g[,&(tO> ‘) 
j=l I=1 

and hence 

IRs(to, t)I 5 M(t - lo)3 for some constant M 2 0 in N. 

If v’ T (02f(%l) + cm J i ~jV2hj(&) + c$‘= i @lV2gl(jto))y < 0, then Equation 
(4.10) would yield a contradiction for 0 < t - to < 1/(2M). Thus, 

+T V2f(20) + 2 CXjV2hj(-&) + fl: ,f3[V2g~(&) j > 0. q Y 
( j=l I=1 ) 

In the following Theorem, we present second order suficient conditions for a 
feasible point 2s to be a local minimum of a functionf subject to the constraints 
in Equation (1.1). It is a generalization of the real result [3] and reduces to it, 
when restricted to functions from R” to R. In fact, since E in condition (iv) be- 
low is allowed to be infinitely small, the condition IVhj(.&)y”l < E would reduce 
to Vhj(&)~ = 0, when restricted to R. Similarly, one can readily see that the 
other conditions are mere generalizations of the corresponding real ones. 
However, the Proof is different than that of the real result since the supremum 
principle does not hold in N. 

Theorem 4.3. Suppose that f, {hj},y= ,, {g/)7= 1 are C2 on some open set D c N” 
containing the point 20 and that 20 is a feasible point for the constraints in Equa- 
tion (1.1) such that, for some ~1,. . . , a,, ,&, . . . , &, E N andfor some E, y > 0 in 
N, we have that 

(i) /3~>OforaZZZE{l,...,p}, 
(ii) prgl(jt,) =OforaZZZE{1,...,p}, 

(iii) Of (30) + J$.l ajVhj(&) + CT:1 p/Vgl(?o) = 6, and 
(iv) y"(V2f (20) + cE1 ~jV2hj(&) + cf= 1 ,&V2gr(jto))~ > 7 for all y E N” 

satisfying Iyl = 1, lVhj(2o)~l < E for all j E { 1,. . . , m}, IVgl(jlo)yl < e for all 
Z E L = {k : ,& > 0} and Vgr(&)y < E for aZZ Z E I(&) \ L, where I(&) = 
{k: g&$0) = o}. 

Then 20 is a strict local minimum for f under the constraints of Equation (1.1). 

Proof. Since D is open, there exists SO > 0 in N such that Bs,(&) c D and 
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Corollary 2.13 holds for f, hi, gl on IQ,(&) for all j E (1,. . . , m} and for all 
lE{l,... ,p}. For all 7 E I&,(X&), we have by Corollary 2.13 that 

(4.11) f(Z) = f(&) + Of(.it~)(~ - 20) 

+& - iq'02f(J;l))(2 - 20) + &f(&,~) 

(4.12) hj(?) = &(I&) + Vhj(&)(Z - 20) 

+ i (St - JtO)'V2hj(J;O)(Jt - 20) + R3,hj(&, 2) 

(4.13) g&q = gr(Zo) + Vgr(Jo)(I - 20) 

+; (2 - lo)Tv2gl(jto)(~ - 20) + R3&0; 2) 

foralljE{l,... , m} and for all I E { 1, . . ,p}, where 

lJ$?f& {ps,f(Jto,4, Ip3,h,(-jZO>q, IR3,g,(~o,-jt)l} I Mol~--o13 

l<lSP 

for some constant MO E hf. 
Adding Equation (4.11), Equation (4.12) multiplied by aj for all 

jE{l,... ,m}, and Equation (4.13) multiplied by /3[ for all 1 E (1,. . . ,p}, we 
obtain that 

(4.14) +k(l-20)' 02f(.?O)+j~l cyIV2h,(h'O)+i$l PlV2gl(jEO) (z--O) 
( ) 

+ R3(20,2) 

=f(Z)) + ~(~-~O)' 
( 

V2f(JtO) +j$l OJjV2hj(zO) + l$l PlV2gl(zO) 

) 
(2- 20) 

+ R3(zo,q 

where we have made use of (ii) and (iii) and the fact that hj(Yio) = 0 for all 
j E { 1, . , m}, and where 

R3(JtO,l) = R3f(zO,J) + 5 ajR3,hj(zO>X) + 5 P1R3,g,(zO>s). 
j=l I=1 

Thus, IR3(&,Z)i I M/I - Zoj3, where 

(4.15) M = 
( 

l + jlEl lo”il + rl$l IPI1 MO 
) 

Now suppose that %I is not a strict local minimum for f under the constraints of 
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Equation (1.1) and let t E N be such that 8 < 60, where d is the infinitely small 
number defined in the introduction. Then for all k E N, there exists 
.& E Bdt+k(jZO) \ (20) c &, (20) such that j$ is feasible andf(j&) _< f(&). Thus, 
the sequence {yk}kEN converges to X$. For each k E FYI, write & = lo + S,&, 
where j&l = 1 and 0 < Sk < df+k < dk. Then {Sk} is a null sequence in ti. 

For all k E N, we have that 

hj(.?k) = hj(zO) +vhj(?O)(.?k - 20) +R2,h,(?O,yk) for allj E (1,. . . ,k’Z}, 

where 

1’2,hj(‘O>.Fk)) I M2,hjITk - zlJ12= MZ,h,‘,/f> 

for some A&,5 > 0 in Af, by Corollary 2.11. Thus, for all j E { 1, . . . , m}, 

0 = 0 + vhj(?O)sk?k + RZ,h,(zO,.?k), 

Hence, there exists Nr E N such that 

for all k > Nr and for allj E (1,. . . ,m}. 

Also, for all k E N, we have that 

.t%o) ?f(jk) =f(zO) + vf(zO)@k - 20) + R2f(?O$k), 

where 

IR2,f(zO>?k)( i MZ,f(?k - zO12= M2,f’5;, 

for some M2,f > 0 in N, by Corollary 2.11. Thus, 

vf(~Oo>dk~k + R2,f(?O,.?k) 2 0, Or vf(iO)~k 5 - 
R2,f(~O>?k) 

sk kTdo 0. 

Hence, there exists A4 E N such that 

vj-(.?& < 72 4 
i 1 

4 forallk>N2. 

Moreover, for all I E I(&), we have for all k E N that 

o 2 gl(jk) = &O) + vgl(~O)~k~k + R2,g,(zO,jk) = Vg@O)dk?k + R2,&O,?k), 

where 

lR2,,,(~OsE?k)( < M2,g&, 

96 



for some Mz,~, > 0 in N. Thus, 

Hence, there exists Ns E tY such that, for all k 2 N3, 

for all I E L and 

Vgr(&)& < E for all I E I(&) \ L. 

Let N > max(N1, N2, Ns} be such that MdN < y/2, where M is as in Equation 
(4.15). Then 

(4.16) (V/$(i,,)?~( < min{e,r$n{&}} foralljE{l,...,vn}, 

(4.17) of(&)?N < $2 , 

(4.18) Vgr(&)& < ~~ @9 
{ > 

m for all 1 E L, 

(4.19) Vgl(&)ZN < e for all 1 E I(&) \ L. 

Two cases are to be considered. 
Case 1: Assume that Vg$&)& > --E for all I E L. Then it follows from 

Equation (4.18) that 

iVgl(X!O)?~l < E for all I E L. 

Also, from Equation (4.16), we have that 

Ivhj(~o)?~j < E for allj E (1,. . ,m}. 

Thus condition (iv) of the theorem entails that 

(4.20) V2f(ZO)i_ 5 ajv2hj(?O)+ 5 p~02g~(~O) ZN 2 y. 
j=l I=1 

On the other hand, replacing 2 by JN = Za + SNs;V in Equations (4.14) and using 
the fact that jN is feasible, we obtain that 

1 
= f(Zo)+-S 2 j$g 

( 
02f(zO)+ E ajV2hj(4)+l$l PlV2gl(~O) ;N 

j=l 1 

+ R3(~O,.?N), 

from which we obtain that 
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where 

IR3(~oAd 5 MIj+&13 =MS;. 

Thus, 

It follows that 

v2f(%) + 5 ajv*hj(sto) + 2 p[v*gl(&) ?N < 7, 
j=l l=l 

which contradicts Equation (4.20). 
Case 2: Assume that V&,(&)$ < --E for some lo E L and let LQ = 

{I E L : V&(&)zN < O}. Then, using Equation (4.17) and condition (iii) of the 
theorem, we have that 

But, using Equation (4.16), we have that 

Hence 

(4.22) - 5 CYjVhj(JEo)?N > - $. 
j=l 

Also, using Equation (4.18), we have that 

Hence 
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Substituting Equation (4.22) and Equation (4.23) into Equation (4.21) we ob- 
tain that 

a contradiction since & > 0. Thus, 20 is a strict local minimum for f over the 
constraints of Equation (1.1). q 

Example 4.4. Minimize 

f(Xl,Xz,xj) = dx2 +dxj -X1x2 -x1X3 -X2x3, 

subject to the constraints 

Xl +x2 =2+d 

(4.24) XI <l+d 
x2 52 

x3 <3-d+2d2+5d3, 

where d is the infinitely small number defined in the introduction. 
For the function f to have a local minimum at a regular point I0 = 

(XI, x2, xs)r subject to the constraints in Equation (4.24), the necessary condi- 
tions of Theorem 4.2 must hold at 20. The first order conditions of that theorem 
entail that there must exist a, pt, &, ,& E N such that 

(4.25) 

/$>Ofor1=1,2,3, 
pl(xl - 1 -d) =O, 
/32(x2 - 2) = 0, 

p3(x3 - 3 + d - 2d2 - 5d3) = 0, 
-x2 - x3 + Q + p1 = 0, 

d - x1 - x3 + Q: + p2 = 0, 
d - x1 - x2 -t- p3 = 0. 

Using the constraints in Equation (4.24), a close inspection of the conditions in 
Equation (4.25) shows that those conditions are simultaneously satisfied only at 

’ x1 = 1 + d, 
x2 = 1, 
x3=3-d+2d2+5d3, 

(4.26) a=4-d+2d2+5d3, 
Pl = 0; 

P2 =o, 

p3 = 2. 

With 70 = (1 + d, 1,3 - d + 2d2 + 5d3)T, and using the notations of the Proof 
of Theorem 4.3, we have here I(?o) = {l, 3) and L = (3). Since Vh(&), 
Vgt (20) and Vgs (20) are linearly independent, the point &, is regular for the 
constraints. 
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To show that 20 is indeed a strict local minimizer off subject to the con- 
straints in Equation (4.24) it remains to show that condition (iv) of Theorem 
4.3 holds at ?a for the choices of CZ, pi, pz, ps in Equation (4.26). Let E = d and 
y = l/2. Then for all v’ E N3 satisfying 121 = 1, IVh(.&)$j < E, lVg3(jto)y’l < E 
and Vgi (Za)$ < E, we have that 

It follows that 

- - 2YlY2 - 2YlY3 - 2Y2Y3 

= -(Y1+Y2+y3)2+(y~+y;+y;) 

= 1 - (Yl + Y2 + Y3)2 

= 1 - (VI +Y2)2 -Y: - 2Y3(Yl +Y2) 

2 1 - IY1 +Y212 - 1Y312 - 2/Y311Yl +Y2[ 

> l-d2-d2-2d2=1-Ad2 

Thus the conditions of Theorem 4.3 are satisfied at 20, and hence 20 is a strict 
local minimizer off under the constraints in Equation (4.24). 

Remark 4.5. In the example above, any infinitely small EO can replace d and any 
positive real number 7s smaller than 1 can replace l/2 in showing that condi- 
tion (iv) of Theorem 4.3 holds. This is so since 1 - E; > 70 for all such EO and 7s. 
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