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MEASURE THEORY AND INTEGRATION ON THE
LEVI-CIVITA FIELD

KHODR SHAMSEDDINE AND MARTIN BERZ

ABSTRACT. It is well known that the disconnectedness of a non-Archimedean
totally ordered field in the order topology makes integration more difficult
than in the real case. In this paper, we present a remedy to that difficulty and
study measure theory and integration on the Levi-Civita field. After reviewing
basic elements of calculus on the field, we introduce a measure that proves to
be a natural generalization of the Lebesgue measure on the field of the real
numbers and have similar properties. Then we introduce a family of simple
functions from which we obtain a larger family of measurable functions and
derive a simple characterization of such functions. We study the properties of
measurable functions, we show how to integrate them over measurable sets of
'R., and we show that the resulting integral satisfies similar properties to those
of the Lebesgue integral of real calculus.

1. INTRODUCTION

Measure theory and integration on the Levi-Civita field n [5, 6] are presented.
We start with a review of some basic and useful terminology and refer the reader
to [1, 10, 2, 11] for a more detailed study of the Levi-Civita field. For a general
overview of the algebraic properties of formal power series fields in general, we
refer to the comprehensive overview by Ribenboim [9], and for an overview of the
related valuation theory the book by Krull [3]. A thorough and complete treatment
of ordered structures can also be found in [8].

Definition 1.1 (The set n). We define n = {f : Q -+ R : {XE Q : f(x) # O} is
left-finite}. So the elements of n are those real valued functions on Q that are
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non-zero only on a left-finite set, i.e. below every rational number q there are only
finitely many points where the given functions do not vanish.

We denote elements of n by x, y, etc. and identify their values at q E Q with
brackets like x[q]. This avoids confusion when we consider functions on n. For the
further discussion, it is convenient to introduce the following terminology.

Definition 1.2 (supp, >., "'"', ~, =r)' For x E n, we denote {q E Q : x[q] ~ O} by
supp(x) and call it the support of Xj and we define >.(x) = min(supp(x)) for x ~ 0
(which exists because of left-finiteness), and >'(0) = +00.

Comparing two elements x and y in n, we say x "'"' y if >.(x) = >.(y), x ~ y if
>.(x) = >.(y) and x[>.(x)] = y[>.(y)], and x =r Y if x[q] = y[q] for all q ~ T.

At this point, these definitions may feel somewhat arbitrarYj but after having
introduced the concept of ordering on n, we will see that>. describes "orders
of infinite largeness or smallness", the relation "~" corresponds to agreement up
to infinitely small relative error, while ""'"',, corresponds to agreement of order of

magnitude.

Definition 1.3 (Addition and Multiplication on n). We define addition on n
componentwise: (x + y)[q] = x[q] +y[q]. Multiplication is defined as follows: For
q E Q, we set (x. y)[q] = Eqz+q,,=qx[qx]" y[qy].

Since elements ofn have left-finite supports, only finitely many terms contribute
to the sum in the definition of multiplication. Thus, .is a well defined operation
on n. It turns out that the operations + and .make (n,+,.) into a field, in which
we can isomorphically embed JR as a subfield via the map n : JR -t n defined by

{ X ifq=O(1.1) n(x)[q] = 0 th ..0 erwIse

Definition 1.4 (Ordering in n). Let x, y be distinct elements of n. We say x > y
if (x -y)[>.(x -y)] > O. Furthermore, we say x < y if y > x. i

With thi~ defini~ion of t~e order r~lation~ n is a totally ord~r~ field. Moreover,

the embedding n ill (1.1) IS compatIble wIth the order. BesIdt the usual order

relations, some other notations are also convenient. I
,
i

Definition 1.5. «<,» ) Let a, b be non-negative. We say a isl infinitely smaller
than b (and write a « b) if n .a < b for all natural nj we say a }S infinitely larger
than b (and write a » b) if b «a. If a « 1, we say a is infinitel(y smallj if 1 « a,
we say a is infinitely large. Non-negative numbers that are neither infinitely small
nor infinitely large are also called finite.

Definition 1.6 (The Number d). Let d be the element of n given by d[l] = 1 and
d[q] = 0 for q ~ 1.

It is easy to check that 0 < d «1. It follows that, altogether, t~e Levi-Civita n is
a totally ordered non-Archimedean field extension of the real numbers. It is shown
[1] that this field is totally disconnected in the natural topolo~ induced by the
order. Because of this disconnectedness, which translates into the existence of an
enormous number of "holes" between the different orders, supre~ and infima even
of bounded sets do not always exist. Moreover, there are nonconstant differentiable
functions with vanishing derivatives everywhere on n; consequently, for a given
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function there could ex.ist multiple anti-derivatives. Thus, trying to extend the
Riemann integral or the Lebesgue integral from JR to R is not all straightforward.

In this paper, we successfully circumvent the difficulties mentioned above and
define a measure on the Levi-Civita field R that we prove is a natural generalization
of the Lebesgue measure on JR and has similar properties. Namely, we show that
any subset of a measurable set of measure 0 is itself measurable and has measure
o. We also show that any countable unions of measurable sets whose measures
form a null sequence is measurable and the measure of the union is less than or
equal to the sum of the measures of the original sets; moreover, the measure of
the union is equal to the sum of the measures of the original sets if the latter are
mutually disjoint. Then we show that any finite intersection of measurable sets is
also measurable and that the sum of the measures of two measurable sets is equal
to the sum of the measures of ttleir union and intersection.

We introduce the concept ~f measurable functions on measurable sets of R
through a smaller family of simple functions, we derive a simple characterization of
such functions and we show that they form an algebra. Then we show that a mea-
surable function is differentiable almost everywhere and that a function measurable
on two measurable subsets of R is also measurable on their union and intersection.

We define the integral of a measurable function lover a measurable set A and
show that the integral satisfies similar properties to those of the Lebesgue and
Riemann integrals on JR. In particular, we prove the linearity property of the
integral and that if IllS M on A then If A II S Mm(A), where m(A) is the
measure of A. We also show that the sum of the integrals of a measurable function
over two measllIable sets is equal to the sum of its integrals over the union and the
intersection of the two sets. Finally, we show that if (J n) is a sequence of measurable
functions on a measurable set A that converges uniformly on A, then the integrals
of In over A form a converging sequence in R. Moreover, if the uniform limit I
of the functions In is itself measurable on A, then its integral fA I is equal to the
limit of fA In.

2. MEASURABLE SETS

Before we define a measure on R, we introduce the following notations which
will be adopted throughout this paper: I (a, b) will be used to denote anyone of the
intervals [a, b), (a, b), [a, b) or (a, b), unless we explicitly specify a particular choice
of one of the four intervals. Also, to denote the length of a given interval I, we will
use the notation l(I).

Definition 2.1. Let A c R be given. Then we say that A is measurable if for
every f > 0 in R, there ex.ist a sequence of mutually disjoint intervals (In) and
a sequence of mutually disjoint intervals (In) such that Ur:'=1In C A c U~1Jn,
E'::=1l(In) and E'::=1l(Jn) converge in R, and E'::=1l(Jn) -~'::=1l(In) Sf.

Given a measurable set A, then for every kEN, we can select a sequence of
mutually disjoint intervals (I~) !and a sequence of mutually disjoint intervals (J~)
such that E'::=1l (I~) and E'::~1l (J~) converge in R for all k,

00 00

Ur:'=1I~ C U~=1I~+1 C ACU~+1J~+1 c U~=1J~ and ~ l (J~)' -~ l (I~) S dk
n=1 n=1
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for all kEN. Since 'R is Cauchy-complete in the order topology, it follows that
limk--+(X) E'::=l l (I~) and limk--+oo E'::=ll (J~) both exist and they are equal.. We
call the common value of the limits the measure of A and we denote it by m(A).
Thus,

(X) (X)

(2.1) m(A) = Jim L l (I~) = Jim L l (J~).
k--+(X) k--+(X)n=l n=l

Moreover, since the sequence (E':=ll (I~)) kEN is nondecreasing and since the se-
quence (E'::=ll (J~))kEN is nonincreasing,we have that

(X) (X)

(2.2) L l (I~) :$ m(A) :$L l (J~) for all kEN.
n=l n=l

Contrary to the real case, sup {E~ll(In) : In's are mutually disjoint intervals
and U':>=lIn C A} and inf{E~ll(Jn): A c U~lJn} need not exist for a given
set A c 'R. However, as we will show in Proposition 2.2, if A is measurable then
both the supremum and infimum exist and they are equal to m(A). This shows
that the definition of measurable sets in Definition 2.1 is a natural generalization
of the Lebesgue measure of real analysis that corrects for the lack of suprema and
infima in non-Archimedean totally ordered fields.

Proposition 2.2. Let A c 'R be measurable. Then

m(A)

= inf {fl(Jn): In is an intervalVn,ACUC;>=lJn and fl(Jn) converyes
}n=l n=l

= sup{f l(In) : In's are mutually disjoint, UC;>=l In cA, f l(In) converyes}.
n=l n=l

Proof. First we show that the infimum exists and is equal to m(A). Using Equation
(2.1) and' Equation (2.2), it remains to show that if (In) is a sequence of intervals
such that E'::=ll(Jn) converges and A c U':>=lJn then m(A):$ E'::=ll(Jn). As-
sume not, then there exists a sequence of intervals (J~) such that E~ll (~)
converges, A c U':>=lJ~, but m(A) > E'::=ll (J~). Let kEN be such that

dk < m(A) -E'::=ll (J~)
2

and let (I~) and (J~) be as in the discussion leading to Equation (2.1) and Equation
(2.2). Then U':>~1.I~ C A c U':>=l J~ and E'::=ll (J~) -E'::=ll (I~) :$ dk. Since
U':>=l I~ c Ac U':>=l ~ and since the intervals I~ are mutually disjoint, we obtain
that

(X) (X)

(2.3) L l (J~) ?: L l (I~) .
n=l n=l

On the other hand, it follows from Equation (2.2) that
(X) (X) (X)

m(A) -L l (I~):$ L l (J~) -L l (I~) :$ dk.
n=l n=l n=l

--
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Thus,

~l(J~) -~l(I~) = (~l(~) -m(A)) + (m(A)-~l(I~))

:$ (~l(~) -m(A)) ~dk

< ( f l(J~) -m(A) ) +m(~)-:~:=l ((~)
n=l

= E:=ll (~) -?fiCA)
2

< 0,
which contradicts Equation (2.3).

Similarly, we show that sup {E:=ll(In) : In is an interval for each n, In's are
mutually disjoint, Uc:'=l In c A and E:=ll(In) converges} exists and is equal to
m(A). D

It follows directly from Definition 2.1 and Proposition 2.2 that m(A) ?: 0 for any
measurable set A c 'R. and that any interval I(a, b) is measurable with measure
m(I(a, b)) = b- a. It also follows that if A is a countable union of mutually disjoint
intervals (In(an,bn))su~hthat E:=l(bn-an) converges then A is measurable with
m(A) = E~l(bn -an). Moreover, if Bc A c 'R. and if A and B are measurable,
then m(B) :$ m(A).

Proposition 2.3. Let A c 'R. be measurable with m(A) = 0 and let B C A. Then
B is measurable and m(B) = O.

Proof. First we show that B is measurable. Let f > 0 in 'R. be given. By Proposi-
tion 2.2, there exists a sequence of mutually disjoint intervals (In) such that A C
Uc:'=lJn, E~ll(Jn) converges in 'R., and E~ll(Jn) :$ f. For each n E N, let In =
0. Then Uc:'=lIn C B c Uc:'=iJn and E~ll(Jn) -E:=ll.(In) = E:=ll(Jn) :$ f.
Hence B is measurable. Since B C A, we obtain that 0 :$ m(B) :$ m(A) ~ O.
Thus, m(B) = O. ,".'0

Proposition 2.4. Let A C 'R. be countable. Then A is measurable and m(A)~ o.
,

Proof. Since A is countable, we may write A = {an : n EN}. Now let f > 0 be
given in 'R.; for each n E N, let ~ = (an -~f, an + ~f) and In = J~ \ U:;;;! J?
Then Uc:'=l In is a countable union of mutually disjoint intervals which we can
write as K1, K2,. .., where Kl = Jl = Jp, K2 and K3 are the two mutually disjoint
intervals in J2 = Jg \ Jp, and so on. Since U~l Ki = Uc:'=l In = Uc:'=l J~, we obtain
that A c U~lKi. Also, since ~mn--+co l (J~) = limn--+co 2~f = 0, it follows that
limi--+co l(Ki) =0. Hence E:ll(Ki) converges in'R. {II] and

co co co 2d
}:l(!fi):$}:l (~) = }:2~f = r=df < £.
i=l n=l ~=l

Now for all i E N, let Ii = 0. Then U~lIi C A C U~lKi and E:ll(Ki) -
E:ll(Ii) = E:ll(Ki) < f. Thus, A is measurable. Moreover, by Proposition
2.2, we have that m(A) :$ E:ll(Ki) <f. This is true for all f > 0 in 'R.; and
hence m(A) = o. D
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The converse of Proposition 2.4 is not necessarily true, that is if A is measurable
and if m(A) = 0 then A need not be countable, as the following example shows.

Example 2.5 (Cantor-like Set). A Cantor-like set On is constructed in the same
way as the standard real Cantor set OJ but instead of deleting the middle third,
we delete the middle (1 -2d)th of each of the closed subintervals of [0,1] at each
step of the construction. So first, we delete the interval (d, 1 -d) from the interval
Fo = [0,1.] and let FI denote the remaining closed set consisting of the two closed
intervals [0, d] and [1 -d, 1] of length d each. Then we delete the open intervals
(~, d -~) and (1- d + ~, 1 -~), and let F2 denote the remaining closed set
which consists of four closed intervals [O,~], [d -~, d], [1 -d, 1 -d + d2] and
[1 -~ , 1] of length ~ each. Then we delete the middle (1 -2d)th from each of
these four intervals, getting a new closed set F3, consisting of eight closed intervals
of length d3 each, and so on. Continuing this process indefinitely (as we do in the
construction of the real Cantor set 0), we get a sequence of closed sets F n such
that Fn C Fn-l for all n E N. The intersection On = n':;'=oFn will be called the
Cantor-like set.

Clearly, On is closed and uncountable since there is a one-to-one correspondence
between 0 and On. We leave it as an exercise for the reader to show that while 0 is
not measurable in the context of the measure defined here on R, On is measurable
and m (On) = o.

Proposition 2.6. For each kEN, let Ak C R be measurable such that (m(Ak))
forms a null sequence. Then U~=l Ak is measurable and

00

m (U~=l Ak) ~ L m (Ak) .
k=l

Moreover, if the sets (Ak)~=l are mutually disjoint, then
00

m(U~=IAk) = Lm(Ak).
k=l

Proof. First we note that, since limk-+oo m(Ak) = 0, the sum L~l m(Ak) con-
verges [11]. Now let t: > 0 in R be given. Then for each kEN there e.~s~ a
sequence of mutually disjoint intervals (I~) and a sequence of mutually dlSJomt
intervals (J~) such that E"::=ll (I~) and E"::=ll (J~) converge in R, U':;'=II~ C
Ak C U':;'=IJ~, and E"::=ll(J~) -E"::=ll(I~) ~ dkt:. Since limk-+oom(Ak) = 0
and since E"::=ll (I~) ~ E"::=ll (J~) ~ m(Ak) + dkt:, we obtain that

00 00

lim ~ l (I~) = lim L l (J~) = o.
k-+oo L.., k-+oo

In=l n=

Thus, we can write U~=l U':;'=l J~ and U~=l U':;'=l I~ as unions of mutually ~isjoint
intervals, say U~IJi and U~IIi, such that U~IIi C U~=IAk C U~IJi, Ei=ll(Ji)
and E:Il(Ii) converge and

~l(Ji) -~l(Ii) ~ ~ (~l (J~) -~l (I~))

00 d
~ }:dkt:= ~t: <t:o

k=l
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This shows that U~=1 Ak is measurable.
S.00 A 00 J 00 00 Jk bt " h tmce Uk=1 k C Ui=1 i = Uk=1 Un=1 n' we 0 am t a

00 00

m (U~=1 Ak) $ m (U~=l U';'=1 J~) $ ~ ~ 1 (J~)
k=1n=1

00 00

$ L (m(Ak) +dkf.) < Lm(Ak) + f..
k=1 k=1

This is true for all f. > 0 in Rj and hence
00

(2.4) m(U~1Ak) $ Lm(Ak).
k=1

Now assume that the measurable sets Ak are mutually disjoint, and let f. > 0
in R be given. Then there exists KEN such that Ek>K mlAk) < £/2. Also
by Proposition 2.2, since U~=1 Ak is measurable, there exists a sequence of mutu-
ally disjoint intervals (In) such that U~=1 Ak C U~1 J~, E":=1l(J~) converges,
and E":=1l( In) < m (U~=1Ak) + f./2. Since Ak C U~1 Ai C U';'=1 In for all
k E {I, 2,..., K}, and since A1, A2'...' AK are mutually disjoint, it follows that
for each k E {I, 2,. .., K}, there exists a sequence of mutually disjoint inter~
vals (J~) such that E":=1l (J~) converges in R, Ak C U~lJ~ C U<:'=1Jn, and

oo J1 00 J 2 00 JK t 11 d... t ThUn=1 n' Un=1 n"'.' Un=1 n are mu ua y ISJom. us,
KKK 00

Lm(Ak) $ Lm(U':=1J~) =LLl(J~)
k=1 k=1 k=1n=1

00

$ Ll (In) < m(U~=1Ak) +~,
n=1

Hence
00 K

L m(Ak) = L m(Ak) + L m(Ak)
k=1 k=.1 k>K

< m(U~1Ak) + ~ +~ = m(U~1Ak) +~.

This is true for all £ > 0 in Rj and hence
00

(2.5) ~ m(Ak) $ m (U~1 Ak) .
k=1

Combining the results of Equation (2.4) and Equation (2.5), we finally obtain
that m (U~=1 Ak) = E~1 m(Ak), as claimed. 0

Proposition 2.7. Let KEN be given and for each k E {I,..., K}, let Ak be
measurable. Then nIf=1Ak is measurable and m (nIf=1Ak) $ min1~k~K m(Ak).

Proof. Using induction on K, it suffices to show that if A and B are measurable
sets in R then so is An B, and m(A n B) $ min{m(A), m(B)}. So let A, B C
R be measurable and let f. > 0 in R be given. Then there exist sequences of
mutually disjoint intervals (I~) , (I;) , (J~) , (J;) such that U';'=1I~ C A C U<:'=1 J~,
U<:'=1I; C B C U<:'=1J;, E":=1l(I~),E":=1l(I;),E":=1l(J~),E":=ll(J;) all
converge in R, E":=1l (J~) -E~ll (I~) $ f and E":=1l (J;) -E":=1l (I;) $ f.



376 KHODR SHAMSEDDINE AND MARTIN BERZ

It follows that (U':'=lI~) n (U':'=lI~) forms a sequence of mutually disjoint in'-
tervals, say U~lIn, such that E:=ll (In) converges in R and U~lIn C An B.
Similarly, (U':'=l J~) n (U':'=l J~) forms a sequence of mutually disjoint intervals,
say U~lJn, such that E~ll(J~) converges in R and AnB c U':'=lJn. Since
U':'=lIn C U~lI~ and U~lJn C U':'=lJ~, and since each of the four sequences of
intervals consists of mutually disjoint intervals,we obtain that

00 00 00 00

Ll(Jn) ~ Ll(In) 5: Ll (J~) -Ll(I~) 5: f.
n=l n=l n=l n=l

Thus, U':'=lIn cAnE C U':'=lJn and E:=ll (In) -E:=ll (In) 5: f. Hence AnB
is measurable.

Since AnB c A, we have that m(AnB) 5: m(A). Similarly, m(AnB) 5: m(B).
Thus, m(AnB)'5: min{m(A),m(B)}. 0

Proposition 2.8. Let A, B c R be measurable. Then m(AUB) = m(A) +m(B)-
m(AnB). c

Proof. First we note that, by Proposition 2.6 and Proposition 2.7, Au B and An B
are measurable. We show that m(A) + m(B) = m(A U B) + m(A n B). Let f > 0
in R be given. Then, using Proposition 2.2, there exists a sequence of mutually
disjoint intervals (In) such that A uB c U~l In, E:=ll(Jn) converges in Rand
E:=ll(Jn) 5: m(A U B)+ f/2.

Since A \ (AnB), B\ (An1J), and AnB are mutually disjoint subsets of AUB,
it follows that U':'=l In can be rewritten as the disjoint union of three unions of
mutually disjoint intervals, say U':'=l J~, U':'=l J~, and U':'=l J~, such that

A\ (A nB) c ur:=lJ~,B \(A n B)c Ur:=lJ~,A n B C Ur:=lJ~,

and E:'=ll (J~), E:'=ll (J~)j! and E:'=ll (J~) converge inR. From

A = A\ (A n Br U (AnB) c (Ur:=lJ~) U(Ur:=lJ~) ,

we obtain that
00 00

m(A) 5: m (Ur:=l{~U U':=1.J~) = L l(J~) + L l (J~).
I n=l n=l

Also, from B = B \ (A n B) U (A n B) c (~':'=lJ~) U (U':'=l J~), we have that

00 00

m(B) 5: m(U':=lJ~UU':=lJ~) = Ll (j~) +Ll (J~).
,

n=l n=l

Hence
00 00 00

m(A) + m(B) 5: L l (J~) + L l (J~) + 2 L l (J~)
n=l n=l n=l

00 00

=' Ll(Jn) + Ll{J~)
n=l n=l

f f
5: m(AUB)+2 +m(AnB) + 2

= m(AUB) +m(AnB)+f,
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where we have used the fact that
00 00

Ll(J~) -m(AnB).$ Ll(Jn) -m(AUB).$~.
n=l n=l

Thus, m(A) + m(B) .$ m(A U B) + m(A n B) + f for all f > 0 in n; and hence

(2.6) m(A) + m(B) .$ m(A U B) + m(A n B).

Now we prove the other inequality. Let t> 0 in n be given. Then, again by
Proposition 2.2, there exist a sequence of mutually disjoint intervals (J~) and a
sequence of mutually disjoint intervals (J;) such that A c U~~lJ~, B CU~=lJ;,
En""=ll (J~) and En""=ll (J;) converge, and

00 00

Ll(J~) .$m(A)+~ and Ll(J~) .$m(B)+~.
n=l n=l

Since B\(AnB) and AnB are mutually disjoint subsets of B, it follows that we can
rewrite U~=l J; as the disjoint union of two unions of mutually disjoint intervals,
say U~=lJ;,l and U~=lJ;,2, such that

B \ r AB) 00 ) 21 00 T2 2"n C Un=l n' ,AnB CUn=lJii' ,

and En""=ll (J;,l) and En""=ll (J;i2) converge in n. From

Au B = Au (B \ (An B)) C (U~=lJ~) U (U~==lJ~,l),

we obtain that
00 00

m(A U B) $ m (U~==l.J~ u Uh""=l J~,l) = L l (J~) + L l (J~,l)
n=l n=l

, 00

$ m(A) + ~ + L l (J~,l).
n=l

Also, since AnB C U~=lJ;,2, we obtain that m(AnB) .$ En""=ll (J;,2). Hence
00 00

m(AUB) +m(AnB) .$ m(A) + ~+ Ll(J~,l) + Et(J~,2)
n=l n=l

00

= m{A) ~ ~+ L l (J~)
n=l

f f
< m(A )c+ -+ m(B )+ ~-2 " 2

= m(A) +m(B) + f.

This is true for all f > 0 in n; and hence

(2.7) m(AUB) +m(AnB).$ m(A) +m(B).
Combining the results of Equation (2.6) and Equation (2.7), we obtain that

m(AUB)+m(AnB) = m(A)+m(B) or m(AUB) = m(A)+m(B)-m(AnB). 0

Finally, we note that the complement of a measurable set in a measurable set
need not be measurable. For example, [0,1] and [0,1] nQ are both measurable with
measures 1 and 0, respectively. However, the complement of [0,1] n Q in [0,1] is
not measurable. On the other hand, if B C A C n and if A, B and A \ B are all
measurable, then it follows from Proposition 2.6 that m(A) = m(B) + m(A \ B).
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The example of [0,1] \ [0,1] n Q above shows that the axiom of choice is not
needed here to construct a nonmeasurable set, as there are many simple examples
of nonmeasurable sets. Indeed, any uncountable real subset of R, like [0, 1] n JR for
example, is not measurable.

3. MEASURABLE FUNCTIONS

Like in JR, we first introduce a family of simple functions on R from which we
will obtain a larger family of measurable functions.

3.1. Simple Functions. In the Lebesgue measure theory on JR, the simple func-
tions consist only of step functions (piece-wise constant functions); and all measur-
able functions including all monomials, polynomials and power series are obtained
as uniform limits of simple functions. It can be easily shown that in R the order
topology is too strong and none of the monomials can be obtained as a uniform
limit of polynomials of lower degrees. So using the step functions as our simple
functions would yield a too small class of functions that we can integrate. So we
introduce a larger family of simple functions. Here we define such a family of simple
functions in an abstract way, which we will use throughout the discussions in this
paper; and we will give two examples in Remark 4.15 at the end of the paper..
Definition 3.1. Let a < b in R be given and S(a, b) a family of functions from
I(a,b) to R. Then we say that S(a,b) is a family of simple functions onI(a,b) if
the following are true:

(1) S(a, b) is an algebra that contains the identity function;
(2) for all IE S(a, b), I is Lipschitz on I(a, b) and there exists an anti-derivative

F of I in S(a,b);
(3) for all differentiable I E S(a, b), if I' = 0 on I(a, b) then I is constant on

I(a, b); moreover, if I' ~ 0 on I(a, b) then I is nonincreasing on I(a, b).
If IE S(a, b), we say that I is simple ~n I(a, b).

It follows from the first condition in Definition 3.1 that any constant function on
I(a, b) is in S(a, b); moreover, if], 9 E S(a, b) and if a E R, then 1+ ag E S(a, b).
Also, it follows from the third condition that the anti-derivative in the second
condition is unique up to a constant. A close look at Definition 3.1 reveals that the
polynomials algebra on I(a, b) is the smallest family of simple functions on I(a, b).
Two examples of larger families of simple functions are discussed at the end of the
paper, in Remark 4.15.

While the third condition in Definition 3.1 is automatically satisfied in real anal-
ysis, this is not the case in R, as the following example shows.

Example 3.2. Let 9 : (0,1) -+ R be given by g(x)[q] =x[q/3] for all q E Q. Then
9 is differentiable on (0,1) with g'(X) = 0 for all x E (0,1). We first observe that
g(x + 'II) = g(x) +g('I/) for all x,y E (0,1). Now let x E (0,1) and f > 0 in R be
given. Let 8 = ~{E,d}, and let y E (0,1) be such that 0 < Iy -xl <8. Then

I g(y) -g(x) 1 I g(y-X) / 2 ., = ""(1/- x) sInce g(y -x) "" (y- x)3.
y-x y-x

Since Iy -xl < min{f, d}, we obtain that (y -x)2 «f. Hence

Ig(y! -g(x} I< t; for all y E (0,1) satisfying 0 < jy -cxl <8;y-x '
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which shows that 9 is differentiable at x and g!(x) = O.
Now let I : (0,1) -* R be given by I(x) = g(x) -X4. Then I is differentiable on

(0,1) with I'(x) = _4x3 < 0 for all x E (0,1). However, we have that d > ~ and
I(d) = d3 -d4 > I(~) = fi6 -~. Thus, even though I' < 0 everywhere on (0,1),
I is not nonincreasing on (0,1).

As we will see in Section 3.2, starting with the family of simple functions, we
will be able to obtain a larger family of measurable functions. Then, in Section 4,
by just requiring the integral to satisfy one fundamental property, we show that
there is only one way to define the integral of a simple function over an interval.
Then, based on that, we show how to integrate any measurable function over a
measurable set.

3.2. Measurable Functions.

Definition 3.3. Let A c R be a measurable subset of R and let I : A -* R be
bounded on A. Then we say that I is measurable on A if for all f > 0 in R, there
exists a sequence of mutually disjoint intervals (In) such that In C A for all n,
L~=ll (In) converges in R, m(A) -L~=ll(In) ~ f and I is simple on In for all n.

Proposition 3.4 (Characterization of Measurable Functions). Let A C R be mea-
surable and let I : A -* R be measurable. Then I is locally a simple function almost
everywhere on A.

Proof Let A1 = {x E A : I is not locally simple around x}. We show that Al
is measurable and m(Al) = O. Let f > 0 in R be given. Then, since A is
measurable and since I is measurable on A, there exist a sequence of mutually
disjoint open intervals (an, bn) and a sequence of mutually disjoint intervals (In)
such that U~=l(an,bn) C A c U~=lJn,.f is simple on {an,bn) for each n EN,
L~=l (bn -an) and L~=ll(Jn) converge, m(A) -L~=l (bn -an) ~ f/2 and
L~=ll(Jn) -m(A) ~ f/2. It follows that

A1 C A \ U'::=l(an,bn) C u..oo=lJn \ U~=l(an,bn),

where U~=l In \ U~=l (an, bn) can be written as a union of mutually disjoint intervals,
say U~=l J!, such that E~=11 (J!) converges in R and }::::~11 (J!) = }::::~=ll( In)-
}::::~=1 (bn -an)' For each n E N, let I~ = 0. Then U':=l.I~ C A1 <;: U':=lJ~ and

00 00 00 00 00

L l (J;) -L (I~) = L l (J~) = L l(Jn) -L{bn -a~)
n=l n=l n=l n=l ..=1

= (f l(Jn) -m{A) ) + (m(A) -f(bn -an)
)n=l ni=l

f f< -+ -= f.
-2 2

Thus, A1 is measurable. Moreover, since A1 c U':=lJ!, we obtain that m(A1) ~
}::::~=ll (J~) ~ f. This is true for all f> 0 in Rj and hence m(A1) = O. 0

The following example shows that the converse of Proposition 3.4 need not be
true.
Example 3.5. Let I : [0, II -* R be given by

I(x) = { 0 ifxE[?,ijnQ.
x otherwlSe
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Then f is locally simple almost everywhere on [0, I}; but f is not measurable on
[0,1].

As an immediate result of Proposition 3.4 and the properties of simple functions,
we obtain the following result which will prove very useful in defining the integral
of a measurable function, as we will see in details in Section 4.

Corollary 3.6. Let a < b in R and let f : 1(a, b) -+ R be measurable. Then f is
continuous almost everywhere on 1(a,b). Moreover, iff is differentiable on 1(a,b)
and if f' vanishes everywhere, then f is constant on I (a, b).

Proof. The first part follows directly from Proposition 3.4 and the fact that a simple
function is continuous everywhere on its domain.

Now assume that f is differentiable on 1(a, b) and that f(x) = 0 for all x E
1(a, b). The~ it follows from Proposition 3.4 that f is locally constant almost
everywhere on 1(a, b); this is so since a simple function has a vanishing derivative
on a whole interval if and only if it is constant on that interval [11]. Thus, f is
locally constant on 1(a, b) except on a discrete set of points in 1(a, b); and this,
together with the fact that f is differentiable on 1(a, b), entails that f is constant
on the whole interval 1(a, b). 0

Corollary 3.7. Let a < b in R and let f, 9 : [a, b} -+ R be measurable. Assume that
f and 9 are both differentiable with f = g' on [a, b]. Then there exists a constant
c such that f(x) = g(x) + c for all x E [a,.b]; and hence f(b) -f(a) = g(b) -g(a).

Proposition 3.8. Let A, B c R be measurable, let f be a measurable function on
A and B. Then f is measumble on Au B and An B.

Proof. Let f > 0 in R be given. Then, since f is measwable fon A, there exists
a sequence of mutually disjoint intervals (1~) such that U':=l1~ C A, E'::=ll (1~)
converges, m(A) -E'::=ll (1~) ~ f/2, and f is simple on 1~ fbr all n ?: 1. Also,
since f is measurable on B, there exists a sequence of mutually disjoint intervals
(I;) such that U':=l1; c B, ~~ll (I;) converges, m(B) -E'::=ll (I;) ~ f/2,

and f is simple on I; for all n ?: 1.
It follows that (U':=lI~) U (U':=lI;) can be written as a union of mutually

disjoint intervals, say U':~l1n, such that U':=lIn = (U~lI~) U (U':=lI;) c Au B,
~'::=ll (In) converges, and f is simple on In for all n ?: 1. Moreover,

00 00 00

f f
m(AUB) -Ll (In) ~ m(A) -Ll (I~) +m(B) -Ll (I~) ~ "2 +"2 = f.

n=l n=l n=l

This shows that f is measurable on A U B.
Also, (U':=l1~) n (U':=l1;) can be written as a union of mutually disjoint inter-

vals, say U':=lI~, such that U':=lI~ = (U':=lI~) n (U':=lI;) cAn B, ~'::=ll (I~)
converges, and f is simple on ~ for all n ?: 1. Moreover, using Proposition 2.8, we
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have that
(X)

m(A riB) -Ll (~) ~ m(A) + m(B) -m(A UB)
n=1

(X) (X) (X)

+Ll(In) -L l (1~) -Ll (1~)
n=1 n=l n=l

(X) (X)

f m(A) + m(B) -L l (1~) -L l (1~)
..=1 n=1

(X) (X)

:i::: m(A) -L l (I~) + m(B) -L l (1~)
n=1 n=1

f f.

Thus, I is measurable on An B. 0

Proposition 3.9. Let A c R be measurable, let I, 9 : A -+ R be measurable and
let a E R be given. Then I + ag and I .9 are measumble on A.

Proal. Let f > 0 in R be given. Then there exist a sequence of ~utually disjoint
intervals (I;) and a sequence of mutually disjoint intervals (I;) suph that U'":'=1 I; c
A, U'":'=11; c A, ~'::=1l (I;) and ~~1l (I;) converge, m(A) -E'::=1l (I;) $ f/2,
m(A) -~'::=1l (I;) $ f/2, I is simple on I; for all n E N and 9 i* simple on I; for
all n E N. !

It follows that (U'":'=11;)n(U'":'=1I;) can be written as a union ofimutually disjoint
intervals, say U'":'=1~' such that U'":'=11~ = (U'":'=11;) n (U'":'=11;) c A'~'::=1l (1~)
converges, and 1+ ag and I. 9 are simple on ~ for all n ? 1 (where we use the fact
that the sum and product of simple functions are again simple). Moreover, again
using Proposition 2.8, we have that

(X) (X) (X)

m(A) -Ll (1~) = m(A)+m (U~=l1;UU~=lI;) -Ll (I~) -Ll (I;)
n=1 n=1 n=1

(X) (X)

$ m(A) + m(A) -L l (I;) -L l (1~)
n=1 n=1

(X) (X)".
""'= m(A) -L l (1~) + m(A) -L l (1~)

n=1 n=1
f f< -+ -= f.

-2 2

Thus, I + ag and I .9 are measurable on A. 0

The following example shows that the uniform limit of measurable functions need
not be measurable.

Example 3.10. For each kEN, let Ik : [0,1] -+ R be given by Ik(X) = dj if
x belongs to one of the open intervals deleted from [0, 1] at the jth step of the
construction of the real Cantor set C for 1 $ j $ k, and Ik(X) = dk+1 if x belongs
to the closed set left from [0,1] at the kth step of the construction of C. Then the
sequence (Ik) converges uniformly on [0,1]; but the limit function is not measurable
on [0,1]. The proofs of the last two statements are left as an exercise for the reader.
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4. INTEGRATION

After having introduced measurable functions and studied their properties in
Section 3, we show in this section how to find the measure or integral of a given
measurable function f over a measurable set A, which we will denote by J A f.
However we define the integral, we would like it to satisfy as many of the basic
properties of real integrals as possible. One such fundamental property of real
integrals is that the integral of the derivative of a differentiable function over an
interval is equal to the difference between the function values at the endpoints. By
requiring just that, namely that

(4.1) r f = f(b) -f(a)
J[a,b]

for a differentiable measurable function f on [a, b] (which is a well-defined require-
ment by Corollary 3.7), then we will show that there is only one way to define the
integral of any measurable function f over any measurable set A c n.

First assume that f :I(a, b) -+ n is simple and let F be a simple anti-derivative
of f on I(a, b). Then F is measurable and differentiable on I(a, b). If I(a, b) is
closed, we use Equation (4.1) and define the integral of f over I(a,b) = [a,b] as
F(b) -F(a). If I(a, b) is not closed, then we can extend F to a new simple function
F: [a,b] -+ n, such that

{ F(x) if x E (a, b)
.F(x) = limx--+a F(x) if x = a .

limx-+b F(x) if x = b

Then F is an anti-derivative of 1, the extension of f on [a, bj. So it is natural in
this case to require that J I(a,b) f = J[a,b] 1; which leads to

r f = F(b) -F(a) = lim F(x) -lim F(x!).
J I(a,b) x-+b x--+a

That the limits in defining the extensions exist follow from the fact that the
simple functions are Lipschitz. We combine the two cases above (closed interval or
otherwise) into one expression and define the integral of a simple function over an
interval.

Definition 4.1. Let a < bin n, let / : I(a, b) -+ n be simple on I(a, b), and let
F be a simple anti-derivative of f on I(a, b). Then the integral of / over I(a, b) is
the n number

r / = lim F(x) -lim F(x).
J I(a,b) x--+b x--+a

The following result is an immediate consequence of Definition 4.1.

Proposition 4.2. Let a < b in n and let a E n be a given constant. Then
JI(a,b) a = a(b -a).

Proof. First we note that ax is a simple anti-derivative of the constant function a
on I(a, b). Thus, JI(a,b) a = limx--+b(ax) -limx--+a(ax) = a(b -a). 0

Proposition 4.3. Let a < b in n, let /,g : I(a,b) -+ n be simple, and let a En
be given. Then JI(a,b) (J + ag) = JI(a.,b) / + a J1(a,b) g.~
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Proof Let F and G be simple anti-derivatives of f and 9 on I(a, b), respectively.
Then F +aG is an anti-derivative of f + ag on I(a, b). Thus,

[ (f + ag) = 1im(F + aG)(x) -lim(F + aG)(x)
J I(a,b) x-+b x-+a

= lim(F(x).+ aG(x)) -lim(F(x) + aG(x))
x-+b x-+a

= (lim F(x) -lim F(X) ) + a (lim G(x) -lim G(X) )x-+b x-+a x-+b x-+a

= [ f + a [ g.
J I(a,b) J I(a,b)

0

Proposition 4.4. Let a < b in R, let f : I(a, b) --t R be simple and nonpositive
on I(a, b). Then JI(a,b) f ::; O.

Proof Let F be a simple anti-derivative of f on I(a, b). Then JI(a,b) f = limx-+b F(x)-
limx-+a F(x). Since F' = f ::; 0 on I(a., b), F is nonincreasing on I(a, b). It follows
that limx-+b F(x) ::; limx-+a F(x); and hence JI(a,b) f ::; o. 0

Using Proposition 4.3 and applying Proposition 4.4 to f -g, we readily obtain:

Corollary 4.5. Let a < b in R, let f, 9 : I(a, b) --t R be simple and satisfy f ::; 9
on I(a, b). Then JI(a,.b) f ::; JI(a,b) g.

Corollary 4.6. Let a < b in R, let f : I(a, b) --t R be simple on I(a, b) and let M
be a bound of If I on I(a, b). Then

I [ f
l ::; M{b -a).

JI(a,l»

Proof Using Corollary 4.5 and the fact that f ::; Iii::; M on I(a, b), we obtain
that

(4.2) [ f::; [ M = M(b -a).

JI(a,b) JI(a,b)

Also noting that -f::; If I ::; M on I(a,b), we obtain that

(4.3) -[ f = [ (- f) ::; M(b -a).
J I(a,b) J I(a,b)

Combining the results of Equation (4.2) and Equation (4.3), we finally obtain the
desired result. 0

Now let A c R be measurable, let f : A ~ R be measurable and let M be a
bound for If I on A. Then for every kEN, there exists a sequence of mutually
disjoint intervals (I~)nEN such that ur;:>=lI~ c A, E'::=11 (I~) converges, m(A) -

E'::=11 (I~) ::; dk, and f is simple on I~ for all n E N. Without loss of generality, we
may assUllle that I~ c I~+l for all n E N and for all kEN. Since limn-+co l (I~) = 0,

and since IJI~ fl ::; Ml (I~) by Corollary 4.6, it follows that

lim [ f = 0 for all kEN.
n-+co J Ik

n

-
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Thus, E'::=l Ilk f converges in R for all kEN [11].
n

Next we show that the sequence (E'::=l II~ f) kEN converges in R. So let E > 0

be given in R; and let KEN be such that M dK ::; E. Let k > j :;:::: K be given in

N. Then U':=l I~ \ U':=l I~ can be written as a union of mutually disjoint intervals,

say (I~,k)nEN' such that E'::=ll (I~,k) converges, and

00 00 00 00

L I (I~,k) = L I (I~) -L I (I~) ::; m(A) -L I (I~) ::; dj ::; dK.

n=l n=l n=l n=l

Thus,

I~i~f-~i;!.fl= I~i;!.'kfl ::;~Ii;!.'kfl
00 00

::; L MI (I~.k) = M LI (I~,k)

n=l n=l

::; M dK ::; E,

where we have used the fact that an infinite series converges if and only if it con-

verges absolutely [11]. Thus, the sequence ( Eoo=l Ilk f ) is Cauchy; and hencen n kEN

it converges in R. We define the unique limit as the integral of f over A.

Definition 4.7. Let A c R be measurable and let f : A -+ R be measurable.

Then the integral of f over A, denoted by I A f, is given by1 00 f = lim f.

A }::;';:'=\.!(In) -+ m(A) ~ in
Un=lIn C A n-l

(In) are mutually disjoint
f is simple on In 'V n

Proposition 4.8. Let A c R be measurable and let a E R be given. Then I A a =

am(A).

Proof. Using Definition 4.7, we have that1 00 1. 00 a = lim a = lim al(In)

A }::;';:'=\.!(In) -+ m(A) ~ In }::;';:'=\.!(In) -+ m(A) ~
Un=l In C A Un=l In C A

(In) are mutually disjoint (In) are mutually disjoint
00

= a lim L I(In) = am(A).
}::;~1 I(In) -+ m(A)

""" A n-lUn=l In C -
(In{ are mutually disjoint

In particular, we have that m(A) = IA 1. m

Proposition 4.9. Let A c R be measurable and let f : A -+ R be measurable and

nonpositive on A. Then IA f ::; O.

Proof. Let E > 0 in R be given. Then there exists a sequence of mutually disjoint
00 00

intervals (In) such that U':=lIn C A, En=ll (In) converges, m(A) -En=ll (In) ::;

E, and f is simple on In for all n E N. It follows, using Proposition 4.4, that
E'::=l IIn f ::; 0; and hence IA f = lime-o E'::=l IIn f ::; O. 0
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Using the proof of Proposition 3.9 and a limiting argument similar to that in the
proof of Proposition 4.9, we obtain:

Proposition 4.10. Let A c R. be measurable, let f,g:A~ R. be measurable, and
let a E R. be given. Then fA U + ag) = fA f + afAg.

As a consequence of Propositions 4.9 and 4.10, we obtain the following result.

Corollary 4.11. Let A c R. be measurable and let f,g : A ~R. be measurable and
satisfy f ~ 9 on A. Then fA f ~ fA g.

Corollary 4.12. Let A c R. be measurable, let f : A ~ R. be measurable and let
M be a bound for If I onA. Then If A fl ~ Mm(A).

Using the proof of Proposition 3.8, and using the limiting argument in the proof
of Proposition 4.9, we obtain the following result.

Proposition 4.13. Let A, B c R. be measurable and let f be a measurable function
on A and B. Then

[ f = [f + [ f -f f.
JAUB JA JB JAnB

Theorem 4.14. Let A c R. be measurable, let f : A ~ R., for each kEN let
fk : A ~ R. be measurable on A, and let the sequence Uk) converge uniformly
to f on A. Then limk-.oo fA fk exists. Moreover, if f is measurable on A, then
limk-.oo fA fk = fA f.

Proof. Let f > 0 in R. be given and let

f = { fjm(A) if m(A) #0 .
I f ifm(A) = 0

Then fl > 0 and there exists KEN such that Ifk(X) -fj(j;)I!~ ~l for all k,j ~ K
Iand for all :t E A. It follows that

Ii fk -i fjl = li Uk -fj)l~ flm(A) ~ f for all k,j ~ K.

Thus, the sequence (fA fk) is Cauchy. Since R. is Cauchy complete in the order
topology, the sequence (fA fk) converges in R.j that is, limk-.oo fA fk exists in R..

Now assume that f is measurable on A; to show that limk-.OQ fA fk = fA f, we
follow the same steps as in the first part of the proof, replacing f j by f. 0

Remark 4.15. Power series [11, 12] are one example of a family of simple functions on
any interval in their domain of convergence. Prior to [11, 12], work on power series
on the Levi-Civita field has been restricted to power series with real coefficients.
In [5, 6, 7, 4], they were studied for infinitely small arguments, while in [1], using
the weak topology, also finite arguments were possible. In [11], the general case of
R. coefficients and arguments is considered. A radius of convergence 7] is derived
such that the power series converges weakly for all points whose distance from the
center is finitely smaller than 7] and it converges strongly (in the order topology)
for all points whose distance from the center is infinitely smaller than 7].

In [12] it is shown that within their radius of convergence, power series are infin-
itely often differentiable and the derivatives to any order are obtained by differenti-
ating the power series term by term. Also, power series can be re~expanded around
any point in their domain of convergence and the radius of convergence of the new
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series is equal to the difference between the radius of convergence of the original
series and the distance between the original and new centers of the series. Fur-
thermore, it is shown in [11, 12] that power series satisfy all the common theorems
of real calculus on a closed interval of R, like the intermediate value theorem, the
maximum theorem and the mean value theorem and that they satisfy the criteria
for a family of simple functions on any interval in their domain of convergence.

Research currently in progress aims at generalizing the results in [11, 12] to
power series with rational exponents. We show that unless the, coefficients in the
series form a null sequence in the order topology, the sequence of exponents must be
left-finite for the series to have a positive radius of convergence. In the latter case,
we derive a radius of convergence which depends on the density of the exponents
and on the coefficients in the series.

We then show that within their domain of convergence, generalized power series
with rational exponents have similar properties to those of regular power series. In
particular, they satisfy the intermediate value theorem and the mean value theorem
and they can be re-expanded around any point in their domain of convergence.
We also show that the generalized power series with rational exponents satisfy
the criteria for a family of simple functions on any interval in their domain of
convergence.
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