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Abstract

The Fortran-based environment COSY INFINTIY, as well as the related codes
DAFOR and DAPRE, is presented. The codes contain modules for the computation
of derivatives to very high orders in many variables, with a particular emphasis on
sparsity. The main use of the code lies in the field of nonlinear dynamics, where it is
used for the computation of perturbation expansions of Poincare maps to high orders
as well as their analysis based on normal forms and other methods. Using Remainder
Differential Algebraic Methods, quantitative and mathematically rigorous statements
about long-term stability can be made for general systems. The code is currently used
by more than 150 registered users, mostly in the field of beam physics for the study
and design of particle accelerators.
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1 DAFOR and DAPRE

The programs DAFOR and DAPRE [Berz1987a], [Berz1990f], [Berz1990a] represent a
package consisting of a precompiler to automatically transform Fortran 77 code lines
to new code in which elementary operations are executed step by step via calls to
elementary routines. The package DAPRE contains runtime library routines to execute
these elementary operations for various data types, including vectors, intervals, and,
foremost, truncated Taylor series [Berz1987b]. In this case, the main emphasis lies on the
ability to handle high orders in many variables as efficiently as possible. This is achieved
with a sophisticated indexing scheme based on a family of address arrays that are calculated
upon first call [Berz1989a]. With this approach, the logistic overhead for bookkeeping of
addresses is kept to a minimum. Depending on the machine type, the overhead is often
as little as 30% of the raw execution time needed for floating-point operations. Typical
applications of the package in the field of beam physics require the computation of Taylor
series in six variables of order ten, resulting in about 104 coefficients.
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2 COSY INFINITY

Besides being called from Fortran obtained through precompilation, the run-time libraries of
DAPRE can also be invoked from the dedicated language environment of COSY INFINITY.
This environment has object-oriented features and a syntax similar to that of PASCAL
[Berz1990b], [Berz1995a] and also allows one to link easily with Fortran source code. In
this sense, it represents an efficient environment for using new data types. At the same time,
it allows the direct use of existing Fortran-based code, a requirement that is of importance
for many applications in physics, where large, dedicated simulation libraries exist.

Besides these features, many of which can also be found in Fortran 90, the code allows
incremental and interactive compilation. This unique feature makes it suitable as a control
language in which to set up the problem to be studied. It also allows interactive changes
of the control structure.

The code COSY INFINITY originated in the field of beam physics, where it is used as
a major design and analysis tool by more than 150 registered users. In this field, high-order
nonlinearities correspond directly to relevant quantities called image aberrations, which
traditionally have been very hard to compute and describe.

Many codes compute aberrations to second and third order [Wollnik1988a],
[Brown1979a], [Dragt1985a]. A comprehensive description of the theory behind the per-
turbative approach to compute aberrations can be found in [Brown1982a]. With advanced
and dedicated formula manipulators, it was possible to extend the work to fifth order
[Berz1987c], [Berz1988a], but it seems hard to imagine that the traditional methods can
be extended substantially. In contrast, the forward differentiation techniques and the dif-
ferential algebraic extensions used in the code COSY routinely allow the computation of
aberrations of orders around ten.

COSY also allows the computation of aberrations of systems that are otherwise
particularly hard to treat, especially those occurring due to the fringe fields of particle
optical elements [Hoffstätter1993a], [Hoffstätter1994b].

3 Applications in Nonlinear Dynamics

Several of the features in COSY are connected to the study of the nonlinear dynamics
around a fixed point. The differential algebraic picture connected to the description of
nonlinear effects lends itself particularly well to an introduction of perturbative normal
form methods [Berz1991d], [Forest1989a], [Berz1992c] and to their application for general
problems of nonlinear dynamics. The general idea behind repetitive normal forms is to
perform a nonlinear change of variables such that the motion in the new variables becomes
highly regular. Indeed, in the simplest nonresonant case, it just follows an approximately
circular motion. Since a mere change of coordinates does not affect the general topological
properties, this approach usually allows for a much more detailed analysis of the motion.
The method is based on an iterative removal of terms, where in the mth step, only the mth
order of the map is affected. Specifically, a change of coordinates of the form

~Am = ~E + ~Tm

is performed, where ~E is the unity map and ~Tm possesses only monomials of order m. It
turns out that ~Am is invertible, and to mth order, we have ~A−1

m =m
~E − ~Tm.

Of course, the full inversion of ~Am contains higher-order terms, which is one of the
reasons iteration is needed. We note that, in principle, the parts of ~Tm higher than order m
can be chosen freely, but if symplectic symmetry is to be preserved, there is an essentially
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unique transformation that is canonical. To study the effect of the transformation, we now
infer up to order m:

~Am ◦ ~Mm ◦ ~A−1
m =m

(
~E + ~Tm

)
◦

(
~R + ~Sm

)
◦

(
~E − ~Tm

)

=m

(
~E + ~Tm

)
◦

(
~R + ~Sm − ~R ◦ ~Tm

)

=m
~R + ~Sm +

(
~Tm ◦ ~R− ~R ◦ ~Tm

)
.

For the first step, we have used ~Sm ◦ ( ~E − ~Tm) =m
~Sm, which holds because ~Sm is

nonlinear and ~Tm is of order m. In the second step, we used ~Tm◦(~R+~Sm− ~R◦~Tm) =m
~Tm◦ ~R,

which holds because ~Tm is of exact order m and everything in the second term is
nonlinear except ~R. This result can be used to simplify ~Sm by choosing the commutator
~Cm = {~Tm, ~R} =

(
~Tm ◦ ~R− ~R ◦ ~Tm

)
appropriately. A careful analysis reveals that the

commutator is able to remove all terms of up to order m except those that describe a
nonlinear rotation.

By virtue of providing approximate invariants of the motion, the normal form methods
can be used to perform a rigorous analysis of problems of nonlinear stability, leaning on
ideas similar to those occurring in the stability theories of Lyapunov and Nekhoroshev
[Turchettia1990a]. By Remainder Differential Algebraic methods [Makino1996a], these
approaches can even be made fully mathematically rigorous [Berz1994c]. To this end, let us
assume that the whole region of normal form coordinates up to the maximum radius rmax

corresponds to Cartesian coordinates within the area to which motion should be restricted.
Let us assume further that nowhere in the r−φ diagram is the invariant defect larger than
∆r. If we launch particles within the normal form region below rmin, then all these particles
require at least

N =
rmax − rmin

∆r

turns before they reach rmax. Considering the small size of ∆r in practical cases, this can
often assure stability for a rather large number of turns.

The appeal of the method outlined here hinges critically on the ability to determine
rigorous bounds for ∆r, and its practical usefulness is directly connected to how sharp these
bounds are. However, in practice these functions have a tremendously large number of local
maxima, and a computation of their bounds requires great care. For every one of the l− 1
regions in phase space, we are faced with the task of finding n bounds for the maxima ∆r(j)

of deviation functions

∆r(j) ≥ max[r(j)( ~M(~x))− r(j)(~x)],

where r(j)(~x) is the normal form radius in the jth normal form subspace of a particle at
position ~x. The regions in which the bounds for the maxima have to be found are the regions
where r(j)(~x) ∈ [r(j)

i , r
(j)
i+1]. Unfortunately, despite the many local maxima, it is necessary

to find rigorous bounds with an accuracy of about 10−6, and for some applications to 10−12.
Many rigorous interval optimization methods were used to try to find bounds for the

motion, but because of the complexity, all of them surrendered to blow up. On the other
hand, using the Remainder Differential Algebra methods outlined in [Makino1996a], we
were able with only moderate effort to obtain bounds with sufficient sharpness [Berz1994c]



366 Berz et al.

and to guarantee stability of orbits for in the range of 106 to 109 turns in a mathematically
rigorous sense.
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