
(1)

(2)

(3)

(4)

            SPECIAL RELATIVITY

1. Coordinate Rotations in 3-D

Consider two rectangular coordinate systems with a common origin O, each system being
defined by a set of unit vectors ( , , ) and ( , , ) which differ only by a rotation of the
coordinate axes.  When the axes are orthogonal:

Each unit vector  can be expressed in terms of its components along ( , , )

in which the coefficients  are the cosines of the angles  between  and 

The inverse relationship:

Thus,

Using (1), we get:

CONDITION (5)
OF ORTHOGONALITY

This gives the conditions which the cosines of the angles between the coordinate axes must
satisfy in order that the axes be rectangular.

The position vector  of any point P is then:
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with

   (from (2))

                  (using 1)

                                             

so that the coordinates of a point transform under an orthogonal coordinate rotation as:

LINEAR
ORTHOGONAL (7)
TRANSFORMATION

The characteristic property of an orthogonal transformation is that it leaves the sum of the
squares of the coordinate invariant

Therefore

(8)

Further, for any fixed vector  in space

with
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(9)

so that the rectangular components of a fixed vector transform like the coordinates of a point
under a rotation.  The scalar product of two vectors,  is also invariant under an orthogonal
transformation:

Therefore

(10)

2. Newtonian Relativity

Newtonian physics assumes that space-time is four dimensional so that any “event” can be
located uniquely by 4 coordinates (3 spatial and 1 temporal); this requires that a reference frame
be specified.  For inertial reference frames, in which NEWTON’S FIRST LAW holds, the
Galilean principle of relativity states: “the laws of classical physics (mechanics) have the same
form (are COVARIANT) in all inertial reference frames which are in uniform translational
motion relative to each other.”

Consider two parallel inertial cartesian reference frames K and  with a common z-axis, with
system  moving with constant velocity  with respect to K.  It is convenient to imagine
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that each reference frame has an infinite array of stationary observers (one for each point in space
if you like) with synchronized clocks.  An “event” is characterised by the four coordinates
( ) in K and ( ) in .  It is also convenient to assume that K and  (i.e. 0 and

) coincide at .

The coordinates of the event as measured in the two reference frames are related by the Galilean
transformation equations

GALILEAN
TRANSFORMATION (11)

The geometry of Newtonian space-time thus consists of two disjoint Euclidean geometries for
space and for time; i.e.: – 

The length interval , given by

at a given time t (dt = 0), is INVARIANT (same in both frames) as is the time interval 
( ).

Newton’s Laws of classical mechanics are COVARIANT under the Galilean transformation. 
However Maxwell’s equations are not covariant, in the sense that the speed of light in free space
is not preserved.  This can be seen from the Galilean velocity transformation, from (11):

(12)

3. Einstein’s Relativity

Einstein became convinced that Maxwell’s Equations represented the proper description of
electromagnetic phenomena in all inertial reference frames, and thus stated the two basic
postulates of special relativity
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(i) The laws of physics are identical in any two reference frames which move at constant
relative velocity.

(ii) All observers in uniform relative motion will measure the same value for the speed of
light (c) in free space.

4. The Lorentz Transformation

Consider the same two cartesian coordinate systems K and  described previously.  Imagine
that a single photon is emitted at the instant  from either 0 or , which are coincident
at that instant.  Suppose subsequently that this photon is absorbed at point A in space by some
detector; an observer in K will assign space and time coordinates ( ) to this event, while
one in  will designate its coordinates as ( ).  If the speed of light c is to have the
same measured value in both frames, then

                                   ( )

     ( )

Hence:

(13)
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– thus the transformation which relates the spatial and temporal coordinates in the frames K and
, if the Einstein second postulate is true, is one for which

is INVARIANT.

To determine the appropriate transformation, define a four dimensional cartesian coordinate
system ( ) with , ,  and  with a corresponding four
dimensional position vector :

Now the invariance condition – equation (13) – can be written:

(14)

and the associated transformation is a four dimensional coordinate rotation

(15)

i.e.

(16)

in which the matrix A has 16 elements.  However the invariance condition (14) requires

since this must equal , we require that these 16 elements or coefficients satisfy

(17)
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:

:  

:

:

:

:

:

:

:

:

which actually leads to 10 independent equations for these 16 coefficients

4 equations with k = 
6 equations with k   (since the interchange k   is symmetric i.e. ).

Recall however that the two coordinate systems are rectangular and spatially parallel, thus each
primed spatial axis will only have a projection onto the corresponding unprimed spatial axis, so
in the matrix A we can set

for j  k, when j,k = 1, 2 or 3

i.e.

– leaving 10 coefficients to be determined.

Now return to these 10 equations resulting from the requirement of equation (17); and use the
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above conditions

k = 2,  = 1 yields

k = 2,  = 3 yields

k = 1,  = 3 yields

and this requires two of  be zero; actually

but a43  0, as will become clear later.

Again, 

k = 1,  = 4 yields

k = 2,  = 4 yields

k = 3,  = 4 yields

Notice that if the transformation equations (15) are to agree with the Galilean transformation (11)
for low velocities then we require that
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 and 

Thus to satisfy the latter and equation (17) the 6 “off diagonal” equations yield:

(18)

while the 4 “diagonal” equations yield

(19)

Next, substitute 

into the 3rd equation of (19)

and multiply the 4th equation in (19) by :

   i.e.   

Hence the diagonal elements of matrix A satisfy:

If we adopt the sign convention that all the diagonal elements , then:

(20)
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and then (18) indicates that the only surviving off-diagonal elements are related by 
and hence

and  from (19).

Now use equation (15)

with j = 3 and the above conditions

i.e.

i.e.

When  we have

however, an observer in K will describe the motion of the origin  in system ( )
by

hence

(21)
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and using this in  yields

or

(22)

Thus the transformation equations (15) become:

LORENTZ
TRANSFORMATION (23)

from which we can also solve for the inverse transformation

(24)
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i.e.

5. Consequences of the Lorentz Transformation

(a) The relative velocity v of the two inertial frames must be c, otherwise

  becomes imaginary; and that would contradict the fact that z, t,  and  in

equations (23) or (24) are all real.

(b) Simultaneity

Consider two events with coordinates ( ) and ( ) in K.  The corresponding
coordinates of the two events in  are given by:

and

so that the time interval between the two events in  is

(25)
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Clearly two events that are simultaneous in  are NOT simultaneous in  unless they
occur at the same z-coordinate in : simultaneity is therefore not absolute.

(c) Causality

Suppose some process results in event 1 in K causing a subsequent event 2 also in K, so . 
From (25) it follows however that if

then  in which case event 2 precedes event 1 in .  This violates causality, and so we
require

so that  

.

Thus, the “interaction” responsible for this cause and effect relationship must propagate from z1 to
z2 with speed  c.  So “c” represents the upper limit for the speed of all particles and physical
“signals”.

(d) Length Contraction

Consider two fixed points on the -axis in  at  and , with  their separation in
.  What do observers in K measure for L, their separation?  Since points 1 and 2 are moving

relative to K, the measurements of z1 and z2 MUST be performed simultaneously in K.  Thus:

As a result:

   so   

so that K’s measurements will NOT be performed simultaneously according to observers in .

Furthermore,
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Therefore

(26)

– a uniformly moving body has its greatest length (L0) in its rest frame, L0 called rest-length or
proper-length of body.  L is called Lorentz-Fitzgerald contracted length.

(e) Time Dilation

Consider two successive events in  which both occur at the same point ( ) but at different
times  and  so that  is the time interval between them as measured in .

In system K these two events occur at different points  and in principle require two
observers (each with a synchronized clock) to measure  in K

Therefore

(27)

i.e. a clock moving uniformly through an inertial frame K (e.g. in ) runs slow by a factor of 
relative to clocks stationary in K.  Thus a clock runs at its fastest rate in its rest frame and this is
called the proper rate and T0 the proper time.
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(f) Events in one space and one time dimension are visually well described on an (x-t) graph. 
This continues to be true in 3 dimensions for relativistic mechanics, but here it is more convenient
to use the relativistic time scale ct, leading to a 4 dimensional 

“Minkowski” space-time diagram.

The 4-dimensional space time “interval”

between two events A and B in “Minkowski” space has components

and (squared) magnitude

(28)

which is invariant .

Clearly if  then  and the two events cannot be connected by an
object or signal traveling with speed v  c, then SAB is said to be space-like.  However, if
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then

so that it is possible to bridge the distance between the two events with an object or signal moving
with speed v < c, and now SAB is said to be time-like.  Finally if

and the two events can only be connected by a light signal (v = c), then SAB is said to be light-like. 
Suppressing the y-dimension on a “Minkowski” diagram:

The motion of a particle (v  c) may be viewed as a sequence of events and thus can be
represented by some line on a Minkowski diagram; such a line or curve is called the world-line of
the particle (and its slope must be greater than or equal to 1).

6. 4-Vectors

With the notation ; ; ; , the Lorentz Transformation becomes
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so

(29)

where 

,

and the transformation matrix A is:

The inverse Lorentz transformation
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can be obtained by inverting equations (29):

and the corresponding transformation matrix (the transpose of A)

so that , and hence the pair of transformation equations can be written

as expected for an orthogonal (linear) transformation.  Equations (29) describe the transformation
properties of the 4-D position vector .

Any set of 4 quantities

which transform in the same way as the 4-coordinates i.e.
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(30)

with the same set of coefficients  above, is known as a 4-vector.

In the case where two frames K and  move at constant velocity  (=  in our case) relative to
each other, the differential

is a 4-vector (as can be seen directly from equations (29):  = constant  are constant too). 
The corresponding invariance condition (14) becomes

so:

thus

so that the quantity

(31)

is INVARIANT between frames; dα is actually the PROPER TIME (dα is the TIME interval

measure when all the  = 0).

Since dα is invariant (i.e. a constant between frames) then the ratio  is also a 4-vector since

 is a 4-vector.

The ratio  defines the 4-vector velocity , with

Thus, if a particle undergoes a displacement  in a time dt measured in the unprimed frame K,
then the ordinary 3-D velocity  of this particle is given by
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(32)

Using this, (31) becomes

(in agreement with (27); dt measured by observers in K is not the proper time, observer on particle
measures it).  Thus the 4-vector velocity can be rewritten as

(33)

Therefore

This yields:

            i.e.           

    and    
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Therefore

    i.e.   

as expected from the Lorentz Transformation. Similarly, we get:

Furthermore, we expect:

where

and

          

Therefore
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as expected from the Lorentz Transformation.

Notice  can also yield the velocity transformation between frames:

        yields       

while

yields

Therefore

Substituting into the equation relating  and  above, we get:

Therefore

– fully worked out later.
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As a natural corollary, the 4-vector acceleration  can be obtained from

Notice that

where 

is the ordinary 3-D acceleration
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Therefore

Finally:

Therefore

(34)
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and the four “components” of  transform according to the Lorentz transformation.

Notice that the 4-vector formalism means

etc. Thus:

However, we have already shown

     and      

We could similarly show

i.e.       or      as expected for a Lorentz Transformation.

 will, under suitable manipulation, again yield the acceleration transformation between frames,
although this will (probably) be quite complicated.

The mass of a particle measured in the frame of reference in which it is at rest is called the rest
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mass m0; it is an invariant scalar quantity and can be used to define the 4-vector momentum 

(35)

The momentum 4-vector  can be rewritten in the form

(36)

where

(37)

is called the 3-D relativistic momentum, while

(38)

is called the relativistic (inertial) mass (yielding  as the invariant scalar rest mass).

Since the 4-D momentum  is a four-vector, it follows that  is also a four-vector, and this
leads to the definition of the 4-D force  as

so
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and this is also a 4-vector.  If we then define the 3-D relativistic force  by

(39)

which also specifies a 3-D relativistic equation of motion then we have

(40)

From (39) it follows that the 3-D relativistic momentum  is conserved for a “free particle” i.e.
when the 3-D relativistic force ; this also holds for an isolated system of mutually
interacting objects when no external forces are present:

Therefore

constant (independent of time)

However, if we examine the transformation properties of the (total) 4-vector momentum

for several particles:
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            = 

 = 

       

  

so that the conservation of the 3-D relativistic momentum:

(independent of time for interacting particles, in S)

(which may be  CS, independent of time for
interacting particles, as seen in )

requires the conservation of relativistic mass, i.e.

(i.e.  = constant and  = constant   MUST = constant).

Correspondingly, the 4-vector momentum must be conserved for an isolated system.

 = Constant (independent of time)    (ISOLATED SYSTEM) (41)

(the “constant” will however be different in S and ).

Thus:

ISOLATED
SYSTEM 

(In the more general case, either both  and  are conserved or both are not conserved.)

 = constant: CONSERVATION OF 3D RELATIVISTIC MOMENTUM

 = constant:  CONSERVATION OF RELATIVISTIC MASS
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In analogy with Newtonian mechanics, the relativistic kinetic energy T of an object moving with
velocity  calculates the work done by the 3-D relativistic force  in accelerating it from rest to
its final velocity.

If the work done by  appears as kinetic energy alone

 = power delivered by 

where  is the instantaneous velocity.

Therefore

(done previously)

On the other hand,
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where

Therefore

.

Thus,

.

Integrating both sides, taking m0 to be a constant and T = 0 when u = 0, we get:

Therefore
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Therefore

 .

Notice however that this is:

or

(42)

Thus according to (42) the kinetic energy T contributes to the total relativistic mass of a particle,
and a change ΔT in the kinetic energy is accompanied by a proportional change in the relativistic
mass attributed to the particle, i.e.

For u << c

(in agreement with Newtonian definition).

We also define the total relativistic energy E by:

(43)

KINETIC REST-MASS
(MOTIONAL) (INERTIAL)
ENERGY ENERGY

For a free body ( ) or an isolated system of mutually (internally) interacting objects

Therefore T is conserved (independent of time) and since m0 is fixed, E is also conserved. [Since
 is conserved we know the relativistic mass m is conserved.  Therefore E must be conserved by

this argument also!]
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We have shown  (equation 42) that the inertial mass m of a moving particle exceeds its rest mass
m0 by T/c2, so the kinetic energy T contributes to mass (i.e. total energy).  Since all energy in
principle is exchangeable with kinetic energy, Einstein postulated that all energy has mass and all
mass is equivalent to energy, according to (43)

PRINCIPLE OF
MASS-ENERGY (44)
EQUIVALENCE

Implicit in (44) is the assertion that all the mass of a particle can be transmuted into available
energy (a bold step in Einstein’s time), and amply confirmed by experience:

decay of neutral mesons
into photon pairs (neutral meson) (two γ-ray photons)

pair annihilation of an
elementary particle & anti-particle (positron)

+
(electron)

and in collisions in which different elementary particles with different rest masses emerge than
went in.

In view of this equivalence, expressed in (43) and (44), the 4-vector momentum (36) becomes

(45)

while the 4-vector force  from (40) becomes

in general (46)

If the rest mass(es) are constant then

and hence constant m0 (47)
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From (35)

Therefore

Therefore

Therefore

Therefore

(48)

Comment 1: It is usual to distinguish between the kinetic energy T which a particle possesses in
virtue of its motion

and its internal energy (inertial rest energy) .  All changes in the internal energy of a body
appear as changes in the rest mass m0.

For “ordinary matter” this internal energy is equal to 9×1020 ergs per gram of mass; it is “stored”
as

(i) mass of the ultimate particles (99%)
(ii) thermal motion (heat energy) of the atoms/molecules
(iii) intermolecular/interatomic cohesive forces
(iv) nuclear bonds (quite large)
(v) excited atoms (which can radiate)
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Comment 2: Suppose a particle of constant rest mass m0 is acted upon by a conservative force
, then

Therefore

Therefore

Total energy constant

Thus, the potential energy of position does NOT contribute to mass.

[In classical mechanics a particle moving in an em (or gravitational) field is said to possess
potential energy, and the sum of its kinetic energy and potential energy is constant.  Energy
conservation then attributes any increase in kinetic energy of the particle to a decrease in the
potential energy of the particle, whereas the “correct” description would be to debit the field.]

Notice that if Comment 2 is the “correct” description, the total energy (particle + field) is
conserved, however the kinetic energy (and hence the relativistic mass m) is increased if a particle
“falls” in such a field.  By contrast, if the potential energy of position did contribute to the
relativistic mass (i.e. ), then since  is conserved, the
relativistic mass  would be the same everywhere.

Recall the experiment with photons (m0  0)

If  contributed to m, since

is conserved (in a conservative field), ν would not change; actually ν is observed to increase when
photons “fall” in a gravitational field.

Comment 3: Special relativity admits the possibility of entities traveling with the speed of light
but having necessarily zero rest mass (but non-zero relativistic mass) since

    and    finite
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Clearly for such an entity:

(This provides a clear example of a massless field – actually the em field – which nevertheless
possesses momentum and energy (density)).

Comment 4: Suppose particles 1 and 2 “interact” (collide) and produce two new particles “a” and
“b”.  The conservation of the 4-vector momentum (an isolated system) requires

μ = 1, 2, 3, 4

For simplicity assume all motion is confined to the z (μ = 3) direction:

and

While the initial kinetic energy is

,

the final kinetic energy is
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Hence

Therefore

where ; and in inelastic collisions or reactions (kinetic energy is not
conserved) motional energy is converted into rest mass or vice versa.

7. Transformation of 3-D Relativistic Quantities

(i) Transformation for the 3-D velocity 

Recall the velocity  4-vector:

 Equations (29), applied to this 4-vector, then yield:

Thus:
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ie.

from which the expression

 can be substituted back into the other three equations to get:
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INVERSE TRANSFORMATION

The 3-D momentum  and energy E can similarly be obtained from the 4-momentum
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with .

And for 3-D force  and power 
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Lorentz transformation:

Notice that

;

and recall the velocity transformation equations

Therefore

;   

and the same for . 
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Also

,

with a similar result for .

8. 4-Vectors in Electrodynamics

Begin by defining a 4-dimensional gradient operator  with components:

(49)

here  is the usual 3-dimensional gradient.  The transformation properties for the components of
 can be obtained by applying the familiar chain rule for differentiation:

However we know from the inverse Lorentz Transformation (equations (15), (29)):

     thus:   

hence:

which indicates directly that the four components of  transform in exactly the same way as the
components of ; this is the basic definition of a 4-vector, hence the operator  is a 4-vector.

The dot product  forms the 4-D Laplacian operator 2 ( – called the D’Alembertian):

(50)

Here 2 is the usual 3-D Laplacian; the operator 2 is a Lorentz invariant.
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Write

and recall that

 a 4-vector!

so

Therefore

The equation of continuity – which describes charge conservation – relates the current density 
to the charge density ρ according to:

Rewrite the above equation as:

(51)

and hence define a 4-D current density  by

(52)
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[This is dimensionally consistent:  = charge/unit area-sec;  = (charge/unit volume) ×
length/sec = charge/unit area-sec].

Here  is the usual 3-D current density, and (51) becomes

so that the 4-D form for the equation of continuity becomes

(53)

To help visualize this connection, consider a cloud of charge with volume V and velocity  as
measured by an observer in the system K:

Since objects are contracted along the direction of relative motion with respect to observers in
system K, the volume V measured in K is related to the proper volume V0 in the rest frame of the
cloud by

The charge density measured in the two frames is then

(in the rest frame of the cloud)

(in K)

– and since the total charge is invariant (the total charge q0 is an integer multiple N0 of elementary
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charges, so if the basic unit of charge is invariant, then q = q0, since counting (N0) is an invariant
process).

Therefore

Therefore

(54)

The 3-D current density in K is , and hence

Thus:

(55)

where  is the 4-vector velocity of equation (33).  Since ρ0 is a scalar invariant, then it is clear
from (55) that  is also a 4-vector.

Applying the usual 4-vector transformation equations – (29) – to the 4-vector 

we get:
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INVERSE

Therefore

and hence

Recall that in free space; , the magnetic vector potential  and the scalar
potential  obeyed two uncoupled though inhomogeneous wave equations in the Lorentz Gauge 

(56)

(57)

(having replaced  by ), with the Lorentz Gauge being one in which

which can be rewritten:

(58)
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This latter equation suggests that we can define a 4-D potential      with components

(free space) (59)

for the Lorentz condition (58) to get:

i.e.
(free space) (60)

Now the wave-equations (56) and (57) can also be expressed in terms of 2 as follows:

 = 

            since 

which can be combined into:

(61)

Since  is a 4-vector and 2 is a Lorentz invariant operator, it follows that the 4-D potential 
must also be a 4-vector.

Using the usual 4-vector transformation equations – (29) – then we get:

INVERSE
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Therefore

and the inverse transformation follows directly.

9. The Electromagnetic Field Tensor  

Recall the Lorentz Transformation equations (29) of section 6:

with 

The coefficients  are elements of the transformation matrix A, where 
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Furthermore, we showed

We have already defined a 4-vector  [a vector in the four dimensional space ] as
one that transforms as

with the  given previously.

Whereas the 4-D current density

  

and the 4-D (free space) potential

  

are 4-vectors (i.e. they obey Lorentz transformation equations),  and  cannot be cast in 4-
vector form (i.e. they transform differently).  One can get some idea for why this happens by
looking at the non-relativistic relationships:

If we try to write the first of these in a 4-vector form we might “guess”:

– not only is this not a vector, but it also vanishes in free space (in the Lorentz Gauge) and the
“derivatives” are the wrong way around.

This “reversal” of the derivatives is reminiscent of a cross-product i.e.
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and this hints at how we proceed.

Furthermore, even if the above scheme worked, what would the “4th component” of  and 
become?

– give the  and  fields in, say, frame K with respect to derivatives  of the

“coordinates” (space and time) measured in that frame.  Similarly we would define

   and    

i.e.

(using the Chain Rule.)

Lorentz transformation:

x =  = 

y =  = 

Therefore
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Therefore

Therefore

Similarly,

Therefore

Also,

Recall that

Therefore
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                                       as 

Therefore                                       

Next examine
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Therefore

Similarly,

Therefore

Finally,

In reality  and  do NOT transform as separate 4-vector fields, but combine together to
transform not as a 4-vector but as elements of a 4-D second rank tensor:

4-vectors transform as

whereas 4-D second rank tensors transform according to:

So there will (in general) be 16 elements in the 4-D second rank tensor  (cf. 4 in the 4-D vector
or first rank tensor ).

Following the above remarks, suppose we try to take the equivalent of 4-D “curl” of the 4-vector
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potential  (which gives us the electromagnetic field tensor ); i.e. take

(62)

by which we mean that the elements or components of  are given by (in analogy with the 3-D
case)

(63)

(this certainly “mixes” the derivatives as the 3-D forms require); in general it has 16 “elements”
or components.  Notice however that

so that the matrix of the elements of this tensor is antisymmetric (the field tensor is
antisymmetric). Thus the matrix F which consists of the elements of  has the form:

so that there are only 6 independent elements.  They are
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(64)

So the matrix of the tensor  becomes

Now recall the non-relativistic form of Maxwell’s equations in free space:

(65)

(66)

and

(67)

(68)
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We can re-express (65) and (66) in component form as:

or

(69)

while:

becomes

(70)

becomes

,

or, multiplying both sides of the equation by -1:

(71)

Finally

can be written as

(72)

Thus the two homogeneous Maxwell’s Equations (65) and (66) can be written in a compact form
in terms of derivatives of components of the field tensor :
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(73)

with  yielding (65) and  yielding (66).

In a similar way the component forms of (67) and (68) yield

and with

,

then

(74)

On the other hand

So:

(75)

Also:

therefore

(76)

Finally:
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therefore

(77)

So that the two inhomogeneous Maxwell’s Equations (67) and (68) contract to:

(78)

[Recall that the diagonal elements of  are zero, and

in free space.]

10. Transformation Properties of the  and  Fields

It was asserted previously that these fields combine together to transform as elements  of a
4-D second rank tensor – the electromagnetic field tensor .  In order to verify this it will be
necessary to use the transformation equations for the 4-vector gradient

and the 4-vector potential

Both are 4-vectors and hence transform as:

(Lorentz Transformation)

and
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So:

by definition becomes

Using the chain rule:
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But by definition:

;

therefore

(79)

which was the form asserted previously.

Equations (79) can be re-expressed in matrix form

where T means transpose. Therefore

If we perform this matrix multiplication, we should obtain again:

(80)

which can be generalized (recall  here) to the case where  moves in an arbitrary
direction at constant velocity  with respect to system K, to yield

(81)
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(here  and  mean parallel and perpendicular to ).

Notice that we can always choose a  direction to be along , so

Therefore

   and   

while

But

Therefore

                                                    

Similarly
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11. Fields Produced by a Point Charge in Uniform Motion

Consider the case of a point charge q moving at constant velocity  (i.e. along the z-axis
of system K).  Imagine trying to measure simultaneously the location of the charge q in K and the
fields  and  produced by q in K; does the electric field  in K produced by a moving q still
obey Coulomb’s law based on distances measured in K, etc.?

In , q is stationary and so we can write down simply its  and  fields (“event” 2 in )
along with its location (“event” 1 in ).
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In 

EVENT 1:  

which can be expressed in terms of the unprimed coordinates by the usual Lorentz
Transformation

EVENT 2:  located at 

with fields

In component form:
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In K

The fields in K can be found using the inverse of equations (80) (v  –v) in terms of those
written down in 

 

Noting  and  then

so

However in K,

PHYS 7590 – Special Relativity 63



Therefore

However

while

so

Thus in K:

and

Therefore
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and

Plots of  and  on the surface of a sphere of (fixed) radius  as a function of angle θ are
shown below.

Magnitude of E at a fixed distance  as a function of angle θ for various values of
.

Therefore

so “multiply” each curve for  previous by  to get:
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

 

 90  

2c

Ev


 

 

12. Infinite Linear System of Charges in Uniform Motion

Consider an infinite line of charge (linear density λ) moving with uniform velocity  along
the z-axis of system K.

Basically one wants to measure the location of all elements of charge in this line (the elements
are usually used in calculations of the field) along with the  and  fields produced at some
field point P, simultaneously.

Since the line is infinite, we can locate the field point P on the x-axis in K without loss of
generality.

In , the events which determined the locations of all the charge elements in this infinite line
and the fields at P are, of course, not simultaneous.  However according to observers in  the
line of charge is at rest, and thus the fields in  are static and given by:

The field points radially outwards i.e. along  for points on the  axis,  is the linear charge
density measured in .  (See page 69 for the electric field produced by an infinite, stationary
line of charge.)

 everywhere at all times (no current).
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dz 

(0, 0, z, t) 

z 

P(x, 0, 0, t) – no loss 
of generality! 

x 

In K:

Using the transformation equations

However we must relate  to λ; notice that the element dz carries charge dq given by

 ;

the corresponding element  in  carries charge

.

Since charge is invariant:

Therefore

However the PROPER length of the element is  (measured by observers at rest with respect
to it).  Therefore
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Therefore

Using this, we can find the fields’ components at point P:

 as and  at P
 

Similarly,

Combining these and generalizing the position of field point P, we get:

where  cylindrical radial coordinates;  in K and ; notice  is time-
independent because I(v) is uniform (constant).
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z z 

1 2 

dz 

1Ed


 2Ed


 

̂  

 

 

Infinite, stationary line of charge

By symmetry – field is radially outwards from line

Therefore

  for  z >> ρ

                when z  

Therefore
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