Problem 3.9

$$
\begin{equation*}
\nabla^{2} \phi=0 \rightarrow \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \phi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \phi}{\partial \varphi^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \tag{x}
\end{equation*}
$$

we need to solve the following boundary value problem:

$$
\left\{\begin{array}{l}
\nabla^{2} \varphi=0 \\
\phi(\rho, \varphi, 0)=\phi(p, \varphi, L)=0 \text { fr } \quad 0 \leq \rho<b, 0 \leq \varphi \leq 2 \pi \\
\phi(b, \varphi, z)=V(\varphi, z) \quad \ln \quad 0 \leq \varphi \leq 2 \pi, 0<z<L .
\end{array}\right.
$$

Let $\phi(\rho, \varphi, z)=R(\rho) Q(\varphi) Z(z)$. Then, substituting into $(*)$ and then dividing by $R(P) Q(\varphi) Z(z)$, we get:

$$
\begin{align*}
& \frac{1}{\rho R} \frac{d}{d \rho}\left(\rho \frac{d R}{d \rho}\right)+\frac{1}{\rho^{2} Q} \frac{d^{2} Q}{d \varphi^{2}}+\frac{1}{z} \frac{d^{2} z}{d z^{2}}=0, o z \\
& \frac{1}{\rho R} \frac{d}{d \rho}\left(\rho \frac{d R}{d \rho}\right)+\frac{1}{\rho^{2} Q} \frac{d^{2} Q}{d \varphi^{2}}=-\frac{1}{z} \frac{d^{2} z}{d z^{2}} \tag{**}
\end{align*}
$$

The right-hand side is a function of z only, while the Seff-hand side is a function of P and φ only. The equality holds for all allowed values of p, φ, z which vary indepanduitly; the only way this is possible is fr both sides of the equation $(x, y) t_{0}$ be equal to the same constant. The bound day conditions at $z=0$ and $z=L$ suggest that the separation constant be positive, say k^{2}. Thus,

$$
-\frac{1}{z} \frac{d^{2} z}{d z^{2}}=k^{2} \text { or } \frac{d^{2} z}{d z^{2}}+k^{2} z=0 \rightarrow z(z)=\left\{\begin{array}{l}
\cos k z \\
\sin k z
\end{array}\right\}
$$

Since $\phi(\rho, \varphi, 0)=0$ fr all $0 \leqslant \rho<b$ and $0 \leqslant \varphi \leqslant 2 \pi$, it follows that $Z(0)=0$, and hence $Z(z) \sim \sin k z$.
that $Z(0)=0$, and hence $z(z) \sim \operatorname{sinkz}$.
Since $\phi(\rho, \varphi, L)=0$ fo all $0 \leqslant \rho<b$ and $0 \leqslant \varphi \leqslant 2 \pi$, it follows that $Z(L)=0$ and $\sin (K L)=0$. Thus, $K L=m \pi$, where m is an integer. Hence $K=\frac{m \pi}{L}$ and $Z_{m}(z) \sim \sin \left(\frac{m \pi}{L} z\right)$.
Since $m=0$ and $m<0$ don't yield new linearly independent solutions, it is enough to take $m=1,2,3, \ldots$
Going back to $\left(*^{*}\right)$,

$$
\begin{aligned}
& \frac{1}{\rho R} \frac{d}{d \rho}\left[\rho \frac{d R}{d \rho}\right]+\frac{1}{\rho^{2} Q} \frac{d^{2} Q}{d \varphi^{2}}=\left(\frac{m \pi}{L}\right)^{2} \xrightarrow{\times \rho^{2}} \\
& \underbrace{\frac{1}{R} \frac{d}{d \rho}\left[\rho \frac{d R}{d \rho}\right]-\left(\frac{m \pi}{L}\right)^{2} \rho^{2}}_{\text {function of } \rho \text { only }}=-\underbrace{\frac{1}{Q} \frac{d^{2} Q}{d \varphi^{2}}}_{\text {function of } \varphi \text { only }}=\text { constant } \nu^{2}(x \times x) \\
& -\frac{1}{Q} \frac{d^{2} Q}{d \varphi^{2}}=\nu^{2} \rightarrow Q(\varphi)=\left\{\begin{array}{l}
\cos \nu \varphi \\
\sin \nu \varphi
\end{array}\right\}
\end{aligned}
$$

since the full range of $\varphi \quad(0 \leqslant \varphi \leqslant 2 \pi)$ is included, $Q(\varphi)$ must be periodic, of period $2 \pi \rightarrow \nu=$ integer Thus $\nu=n=0,1,2,3, \ldots$ [Negative integers don't give linearly independent solutions]. Thus,

$$
Q_{n}(\varphi)=\left\{\begin{array}{c}
\cos n \varphi \\
\sin n \varphi
\end{array}\right\} \quad \text { (linear combination of the two) }
$$

$$
\begin{aligned}
& \text { with } \nu^{2}=n^{2},(* * *) \rightarrow \\
& \frac{\rho}{R} \frac{d}{d \rho}\left(\rho \frac{d R}{d \rho}\right)-\left(\frac{m i}{L}\right)^{2} \rho^{2}-n^{2}=0 \rightarrow \\
& \rho \frac{d}{d \rho}\left(\rho \frac{d R}{d \rho}\right)-\left[\left(\frac{m i n}{L}\right)^{2} \rho^{2}+n^{2}\right] R=0
\end{aligned}
$$

$$
\begin{aligned}
& \mu \frac{a}{d \rho}\left(\rho \frac{d N}{d \rho}\right)-\left[\left(\frac{m}{L}\right) r+n\right]^{k}=0 \\
& \rightarrow R(\rho)=\left\{\begin{array}{l}
I_{n}\left(\frac{m \pi}{L} \rho\right) \\
K_{n}\left(\frac{n \pi}{L} \rho\right)
\end{array}\right\}, \text { modified Bessel functions }
\end{aligned}
$$

Since $p=0$ (axis of the cylinder) is included in the region of interest, we throw out $K_{n}\left(\frac{m \pi}{L} \rho\right)$ which blows $u p$ as $\rho \rightarrow 0$. Thus, $R_{n m}(\rho) \sim I_{n}\left(\frac{m \pi}{L} \rho\right)$.
For each $n=0,1,2, \ldots$ and for each $m=1,2,3, \ldots$, we obtain the eigensolution
$\phi_{n m}(\rho, \varphi, z)=I_{n}\left(\frac{m \pi}{L} \rho\right)\left[\begin{array}{c}\cos n \varphi \\ \text { or } \\ \sin n \varphi\end{array}\right] \sin \left(\frac{m \pi}{L} z\right)$ which is a solution of $\nabla^{2} \phi=0$ inside the cylinder and satisfies the boundary conditions at the top $(z=L)$ and bottom $(z=0)$ of the cylinder. The same is true for any linear combinations of the eigensolutions. Thus, to match the boundary condition on the curved surface of the cylinder $(\rho=b)$, we take all possible linear combinations of the eigensolutions:

$$
\phi(\rho, \varphi, z)=\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} I_{n}\left(\frac{m \pi}{L} \rho\right)\left[A_{n m} \cos n \varphi+B_{n m} \sin n \varphi\right] \sin \left(\frac{m \pi}{L} z\right)
$$

Since $\phi(b, \varphi, z)=V(\varphi, z)$, we get

$$
V(\varphi, z)=\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} I_{n}\left(\frac{m \pi}{L} b\right)\left[A_{n m} \cos n \varphi+B_{n m} \sin n \varphi\right] \sin \left(\frac{m \pi}{L} z\right)
$$

which is a double fourier series. Thus, for $n \geq 1, m \geq 1$, we have

$$
\begin{aligned}
& \int_{z=0}^{L} \int_{\varphi=0}^{2 \pi} V(\varphi, z) \sin n \varphi \sin \left(\frac{m \pi}{L} z\right) d \varphi d z \\
& =\int^{L}\left(\sum_{n}^{2 \pi} \sum_{i=1}^{\infty} I_{l}\left(\frac{j \pi}{L} b\right)\left[A_{l j} \cos l \varphi+B_{l j} \sin l \varphi\right] \sin \left(\frac{\partial \pi}{L} z\right) \sin n \varphi \sin \left(\frac{n \pi}{L} z\right) d \varphi d z\right.
\end{aligned}
$$

$$
=\int_{z=0}^{L} \int_{\varphi=0}^{2 \pi} \sum_{V(\varphi, z)}^{\sum_{l=0}^{\infty} \sum_{j=1}^{\infty} I_{l}\left(\frac{j \pi}{L} b\right)\left[A_{l j} \cos l \varphi+B_{l j} \sin l \varphi\right] \sin \left(\frac{\partial \pi}{L} z\right) \sin n \varphi \sin \left(\frac{n \pi}{L} z\right) d \varphi d z}
$$

$$
=\sum_{l=0}^{\infty} \sum_{j=1}^{\infty} I_{l}\left(\frac{j \pi}{L} b\right)\left[\int_{\varphi=0}^{2 \pi}\left[A_{l j} \cos l \varphi+B_{l j} \sin l \varphi\right] \sin n \varphi d \varphi\right] .
$$

$$
[\underbrace{\left.\int_{z=0}^{L}\left(\sin \frac{j \pi}{L} z\right) \sin \left(\frac{m \pi}{L} z\right) d z\right]}_{\frac{L}{2} \delta_{j m}}
$$

$=\frac{\pi L}{2} \sum_{l=0}^{\infty} \sum_{j=1}^{\infty} I_{l}\left(\frac{j \pi}{L} b\right) B_{l j} \delta_{l n} \delta_{j m}$
$=\frac{\pi L}{2_{2}} I_{n}\left(\frac{m \pi}{L} b\right) B_{n m}$, and hence

$$
B_{n m}=\frac{2}{\pi L I_{n}\left(\frac{m \pi}{2} b\right)} \int_{z=0}^{L} \int_{\varphi=0}^{2 \pi} V(\varphi, z) \sin n \varphi \sin \left(\frac{m \pi}{2} z\right) d \varphi d z
$$

for all $n \geq 1$ and for all $m \geqslant 1$.
Similarly, we show that

$$
A_{n m}=\frac{2}{\pi L \operatorname{In}\left(\frac{m \pi}{L} b\right)} \int_{z=0}^{L} \int_{\varphi=0}^{2 \pi} V(\varphi, z) \cos n \varphi \sin \left(\frac{m \pi}{L} z\right) d \varphi d z
$$

f_{r} all $n \geqslant 1$ and fr all $m \geqslant 1$
and

$$
A_{0 m}=\frac{1}{\pi L I_{0}\left(\frac{m \pi}{L} b\right)} \int_{z=0}^{L} \int_{\varphi=0}^{2 \pi} V(\varphi, z) \sin \left(\frac{m \pi}{L} z\right) d \varphi d z
$$

for all $m \geq 1$
problem 310; a) from the result of problem 3.9, we have that

$$
\begin{aligned}
\phi(\rho, \varphi, z) & =\sqrt{\sum_{m=1}^{\infty} A_{o m} I_{0}\left(\frac{m \pi}{L} p\right) \sin \left(\frac{m \pi}{L} z\right)+} \\
& \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} I_{n}\left(\frac{m \pi}{L} p\right)\left[A_{n m} \cos n \varphi+B_{n m} \sin n \varphi\right] \sin \left(\frac{m \pi}{L} z\right)
\end{aligned}
$$

where $B_{n m}$, $A_{n m}(n \geqslant 1, m \geqslant 1)$ and $A_{0 m}(m \geqslant 1)$ are as given at the end of the solution of problem 3.9 .
using $V(\phi, z)=\left\{\begin{array}{cl}V & \text { if }-\frac{\pi}{2}<\phi<\frac{\pi}{2} \\ -V & \text { if } \frac{\pi}{2}<\phi<\frac{3 \pi}{2}\end{array}\right.$, we get:

$$
\begin{aligned}
B_{n m}= & \frac{2}{\pi L I_{n}\left(\frac{m \pi}{L} b\right)}\left[\int_{0}^{L} \sin \left(\frac{m \pi}{L} z\right) d z\right] . \\
& {\left[\int_{-\pi / 2}^{\pi / 2}+V \sin n \varphi d \varphi+\int_{-\pi / 2}^{3 \pi / 2}(-V) \sin n \varphi d \varphi\right] } \\
= & \frac{2 V}{\pi L I_{n}\left(\frac{m \pi}{L} b\right)}\left[-\left.\frac{L}{m \pi} \cos \left(\frac{m \pi}{L} z\right)\right|_{z=0} ^{L}\right] . \\
& {\left[-\left.\frac{\cos n \varphi}{n}\right|_{\varphi=-\pi / 2} ^{+\pi / 2}+\left.\frac{\cos n \varphi}{n}\right|_{\varphi=\pi / 2} ^{3 \pi / 2}\right] }
\end{aligned}
$$

Thins $R_{n m a}=0 \quad \ln$ all $n \geqslant 1$ and \ln all $m \geqslant 1$. Also, f all $m \geqslant 1$.

Thus, $B_{n m}=0$ fr all $n \geqslant 1$ and fr all $m \geqslant 1$. Also, f all $m \geqslant 1$,

$$
\begin{aligned}
A_{0 m}= & \frac{1}{\pi L I_{0}\left(\frac{m \pi}{L} b\right)}\left[\int_{0}^{L} \sin \left(\frac{m \pi}{L} z\right) d z\right] . \\
& {[\underbrace{\left.\int_{-\pi / 2}^{\pi / 2}+v d \varphi+\int_{\pi / 2}^{3 \pi / 2}(-v) d \varphi\right]}_{\pi V-\pi V=0}=0 .}
\end{aligned}
$$

finally, fr $n \geqslant 1$ and $m \geqslant 1$, we obtain that

$$
\begin{aligned}
& A_{n m}=\frac{2}{\pi L I_{n}\left(\frac{m \pi}{L} b\right)}\left[\int_{0}^{L} \sin \left(\frac{m \pi}{L} z\right) d z\right] \cdot \\
& \quad\left[\int_{-\pi / 2}^{-\pi / 2}(+v) \cos n \varphi d \varphi+\int_{\pi / 2}^{3 \pi / 2}(-v) \cos n \varphi d \varphi\right] \\
& =\frac{2 V}{\pi L I_{n}\left(\frac{m \pi}{L} b\right)}\left[-\left.\frac{L}{m \pi} \cos \left(\frac{m \pi}{L} z\right)\right|_{z=0} ^{L}\right] \cdot\left[\left.\frac{\sin n \varphi}{n}\right|_{u=-\pi / 2} ^{\pi / 2}-\left.\frac{\sin n \varphi}{n}\right|_{\varphi=\pi / 2} ^{3 \pi / 2}\right] \\
& =\frac{2 V}{\pi L I_{n}\left(\frac{m \pi}{L} b\right)} \frac{L}{m \pi}(1-\cos m \pi) \frac{1}{n}\left[3 \sin \left(\frac{n \pi}{2}\right)-\sin \left(\frac{3 n \pi}{2}\right)\right]
\end{aligned}
$$

Note that $1-\cos m \pi=\left\{\begin{array}{lll}0 & \text { if } m=2 l \text { (leven) } \\ 2 & \text { if } m=2 l+1 \text { (odd) }\end{array}\right.$ and $3 \sin \left(\frac{n \pi}{2}\right)-\sin \left(\frac{3 n \pi}{2}\right)= \begin{cases}0 & \text { if } n=2 k \text { (even) } \\ (-1)^{k} 4 \text { if } n=2 k+1 \text { (odd) }\end{cases}$
Thus, $A_{n m} \neq 0$ if and only if both n and m are odd; and $A_{2 k+1}, 2 l+1=\frac{(-1)^{k} 16 \mathrm{~V}}{(2 k+1)(2 l+1) \pi^{2} I_{2 k+1}\left[(2 l+1) \frac{\pi}{L} b\right]}$. Thus, $\left.\left.\operatorname{Lin} \ldots n<\infty<\infty \quad T[(2 l+1) \Gamma \rho] \cos (2 n+1) \varphi 1 \sin [2 l+1) \frac{\Pi}{1} 3\right]\right]$

$$
\begin{aligned}
& \phi(\rho, \varphi, z)=\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} A_{2 k+1,2 l+1} I_{2 k+1}\left[(2 l+1) \frac{\pi}{L} \rho\right] \cos [(2 k+1) \varphi] \sin \left[(2 l+1) \frac{\pi}{L} z\right] \\
& =\frac{16 V}{\pi^{2}} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)(2 l+1)} \frac{I_{2 k+1}\left[(2 l+1) \frac{\pi}{L} \rho\right]}{I_{2 k+1}\left[(2 l+1) \frac{\pi}{L} b\right]} \cos [(2 k+1) \varphi] \sin \left[(2 l+1) \frac{\pi}{L} z\right]
\end{aligned}
$$

b) For $L \gg b$, we have that $\frac{\pi b}{L} \ll 1$ and $\frac{\pi P}{L} \ll 1 \mathrm{fr}$ all $p<b$ (inside of the cylinder). Hence, by Equation (3.102) in the book,

$$
\begin{aligned}
& \frac{I_{2 k+1}\left[(2 l+1) \frac{\pi}{L} \rho\right]}{I_{2 k+1}\left[(2 l+1) \frac{\pi}{L} b\right]} \sim\left(\frac{\rho}{b}\right)^{2 k+1} \cdot \text { Thus, } \\
& \phi\left(\rho, \varphi, \frac{L}{2}\right) \approx \frac{16 V}{\pi^{2}} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)(2 l+1)}\left(\frac{\rho}{b}\right)^{2 k+1} \cos [(2 k+1) \varphi) \widetilde{\sin \left[(2 l+1) \frac{\pi}{2}\right]}(-1)^{l} \\
& =\frac{16 V}{\pi^{2}}\left\{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 l+1)}\left(\frac{\rho}{b}\right)^{2 k+1} \cos [(2 k+1) \varphi]\right\} \cdot\left[\sum_{l=0}^{\infty} \frac{(-1)^{l}}{2 l+1}\right]
\end{aligned}
$$

Recall that $\tan ^{-1} z=\sum_{j=0}^{\infty} \frac{(-1)^{j}}{2 j+1} z^{2 j+1}$. Thus,

$$
\begin{aligned}
\sum_{l=0}^{\infty} \frac{(-1)^{l}}{2 l+1} & =\tan ^{-1} 1=\frac{\pi}{4} \quad \text { and } \quad \text { hence, fr } L \\
\phi\left(\rho, \varphi, \frac{L}{2}\right) & \approx \frac{4 v}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)}\left(\frac{\rho}{b}\right)^{2 k+1} \cos [(2 k+1) \varphi] \\
& =\frac{4 v}{\pi} \operatorname{Re}\left\{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)}\left(\frac{\rho}{b}\right)^{2 k+1} e^{i(2 k+1) \varphi}\right\} \\
& =\frac{4 V}{\pi} \operatorname{Re}\left[\tan ^{-1}\left(\frac{\rho}{b} e^{i \varphi}\right)\right] .
\end{aligned}
$$

Recall that $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$ and hence

$$
A+B=\tan ^{-1}\left[\frac{\tan A+\tan B}{1-\tan A \tan B}\right] \text {. Letting } C=\tan A \text { ad } D=\tan B \text {, weser: }
$$

$$
\tan ^{-1} C+\tan ^{-1} D=\tan ^{-1}\left[\frac{C+D}{1-C D}\right]
$$

$$
\tan c \tan D=\tan \left\lfloor\frac{-\cdot-}{1-C D}\right\rfloor
$$

Moreover, fir $z=x+i y$, we have that

$$
\tan (z)=\tan (x+i y)=\frac{\tan x+\tan (i y)}{1-\tan x \tan (i x)}=\frac{\tan x+i \tan 2 y}{1-i \tan x \tan 2 y}
$$

and hence $\tan (\bar{z})=\overline{\tan z}$, from which we readily obtain that $\overline{\tan ^{-1}(\eta)}=\tan ^{-1} \bar{\eta}$, where $\bar{\eta}$ denotes the complex conjugate of η.

$$
\begin{aligned}
\operatorname{Re}\left[\tan ^{-1}(\eta)\right] & =\frac{1}{2}\left[\tan ^{-1}(\eta)+\tan ^{-1}(\eta)\right. \\
& =\frac{1}{2}\left[\tan ^{-1}(\eta)+\tan ^{-1}(\bar{\eta})\right] \\
& =\frac{1}{2} \tan ^{-1}\left[\frac{\eta+\bar{\eta}}{1-\eta \cdot \bar{\eta}}\right] \\
& =\frac{1}{2} \tan ^{-1}\left[\frac{2 \operatorname{Re}(\eta)}{1-|\eta|^{2}}\right]
\end{aligned}
$$

It follows that, in $L \gg b$,

$$
\begin{aligned}
\phi\left(\rho, \varphi, \frac{L}{2}\right) & \approx \frac{4 V}{\pi} \operatorname{Re}\left[\tan ^{-1}\left(\frac{\rho}{b} e^{i \varphi}\right)\right] \\
& =\frac{2 V}{\pi} \tan ^{-1}\left[\frac{2 R e\left(\frac{\rho}{b} e^{i \varphi}\right)}{1-\left|\frac{\rho}{b} e^{i \varphi}\right|^{2}}\right] \\
& =\frac{2 V}{\pi} \tan ^{-1}\left[\frac{2(\rho / b) \cos \varphi}{1-\rho^{2} / b^{2}}\right] \\
& =\frac{2 V}{\pi} \tan ^{-1}\left[\frac{2 b \rho \cos \varphi}{b^{2}-\rho^{2}}\right]
\end{aligned}
$$

This agrees int the result of problem $2 \cdot 13$, ρ we set $V_{1}=V$ and $V_{2}=-V$ in that problem.
problem 3.22: The Green function $G\left(\rho, \varphi ; \rho^{\prime}, \varphi^{\prime}\right)$ is a solution to The poisson equation: $\nabla^{2} G=-\frac{4 \pi}{\rho} \delta\left(\rho-\rho^{\prime}\right) \delta\left(\varphi-\varphi^{\prime}\right)$ where $G\left(\rho, \varphi ; \rho^{\prime}, \varphi^{\prime}\right)=0$ for (ρ, φ) or $\left(\rho^{\prime}, \varphi^{\prime}\right)$ on the boundary. Using the results of problem 2.24, the φ-dependence is of the

Using the results of problem 2.24, the φ-dependence is of the form $Q_{m}(\varphi) \sim \sin \left(\frac{m \pi}{\beta} \varphi\right)$. The completeness relation fo the orthonormal functions $\left\{\sqrt{\frac{2}{\beta}} \sin \left(\frac{m \pi}{\beta} \varphi\right)\right\}$, in $0 \leq \varphi \leq \beta$, is given by

$$
\frac{2}{\beta} \sum_{m=1}^{\infty} \sin \left(\frac{m \pi}{\beta} \varphi\right) \sin \left(\frac{m \pi}{\beta} \varphi^{\prime}\right)=\delta\left(\varphi-\varphi^{\prime}\right):
$$

See Equation (2.35), with $U_{n}(\varphi)=\sqrt{\frac{2}{\beta}} \sin \left(\frac{m \pi}{\beta} \varphi\right)$. It follows that

$$
\begin{equation*}
\nabla^{2} G\left(\rho, \varphi ; \rho^{\prime}, \varphi^{\prime}\right)=-\frac{8 \pi}{\beta \rho} \delta\left(\rho-\rho^{\prime}\right) \sum_{m=1}^{\infty} \sin \left(\frac{m \pi}{\beta} \varphi\right) \sin \left(\frac{m \pi}{\beta} \varphi^{\prime}\right) \tag{i}
\end{equation*}
$$

Letting $G\left(\rho, \varphi ; \rho^{\prime}, \varphi^{\prime}\right)=\sum_{m=1}^{\infty} g_{m}\left(\rho, \rho^{\prime}\right) \sin \left(\frac{m \pi}{\beta} \varphi\right) \sin \left(\frac{m \pi}{\beta} \varphi^{\prime}\right)$ and substituting into the Equation (i), we obtain:

$$
\begin{aligned}
& \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial G}{\partial \rho^{\prime}}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} G}{\partial \varphi^{2}}=-\frac{8 \pi}{\beta \rho} \delta\left(\rho-\rho^{\prime}\right) \sum_{m=1}^{\infty} \sin \left(\frac{m \pi}{\beta} \varphi\right) \sin \left(\frac{m \pi}{\beta} \varphi^{\prime}\right) . \\
\rightarrow & \sum_{m=1}^{\infty} \frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial g_{m}\left(\rho, \rho^{\prime}\right)}{\partial \rho}\right] \sin \left(\frac{m \pi}{\beta} \varphi\right) \sin \left(\frac{m \pi}{\beta} \varphi^{\prime}\right) \\
- & \frac{1}{\rho^{2}} \sum_{m=1}^{\infty}\left(\frac{m \pi}{\beta}\right)^{2} \quad g_{m}\left(\rho, \rho^{\prime}\right) \sin \left(\frac{m \pi}{\beta} \varphi\right) \sin \left(\frac{m \pi}{\beta} \varphi^{\prime}\right)=
\end{aligned}
$$

$-\frac{8 \pi}{\beta \rho} \delta\left(\rho-\rho^{\prime}\right) \sum_{m=1}^{\infty} \sin \left(\frac{m \pi}{\beta} \varphi\right) \sin \left(\frac{m \pi}{\beta} \varphi^{\prime}\right)$. Hms, fr each $m \geqslant 1$, we get: $\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial g_{m}\left(\rho, \rho^{\prime}\right)}{\partial \rho}\right]-\frac{1}{\rho^{2}}\left(\frac{m \pi}{\beta}\right)^{2} g_{m}\left(\rho, \rho^{\prime}\right)=-\frac{8 \pi}{\beta \rho} \delta\left(\rho-\rho^{\prime}\right)$ (ii)
for $\rho \neq \rho^{\prime}$, we have that $\delta\left(\rho-\rho^{\prime}\right)=0$ ad hence

$$
\begin{aligned}
& \rho \frac{\partial}{\partial \rho}\left[\rho \frac{\partial g_{m}}{\partial \rho}\right]-\left(\frac{m \pi}{\beta}\right)^{2} g_{m}=0, o r \\
& \rho^{2} \frac{\partial^{2} g_{m}\left(\rho, \rho^{\prime}\right)}{\partial \rho^{2}}+\rho \frac{\partial g_{m}}{\partial \rho}\left(\rho_{1} \rho^{\prime}\right)-\left(\frac{m \pi}{\beta}\right)^{2} g_{m}\left(\rho_{1} \rho^{\prime}\right)=0 \\
\rightarrow & g_{m}\left(\rho, \rho^{\prime}\right)=A_{m}\left(\rho^{\prime}\right) \rho^{m \pi / \beta}+B_{m}\left(\rho^{\prime}\right) \rho^{-m \pi / \beta}
\end{aligned}
$$

For $\rho<\rho^{\prime}$, the boundary condition $\left[g_{m}\left(\rho, \rho^{\prime}\right) \rightarrow 0\right.$ as $\left.\rho \rightarrow 0\right]$ entails that $B_{m}\left(\rho^{\prime}\right)=0$. Thus, fr $\rho<\rho^{\prime}, g_{m}\left(\rho, \rho^{\prime}\right)=A_{m}\left(\rho^{\prime}\right) \rho^{\frac{m \pi}{\beta}}$.
mar $D_{m}(\mu)=0$. Ins, fr r $\mu<\mu, g_{m}(\rho, P)=H_{m}(\mu) \mu^{-}$.
For $\rho>\rho^{\prime}$, the boundary condition $\left[g_{m}\left(a, \rho^{\prime}\right)=0\right]$ entails that $A_{m}\left(\rho^{\prime}\right) a^{m \pi / \beta}+B_{m}\left(\rho^{\prime}\right) a^{-m \pi / \beta}=0$ and hence
$A_{m}\left(\rho^{\prime}\right)=-\frac{B_{m}\left(\rho^{\prime}\right)}{a^{2 m \pi / / \beta}}$. Thus, fr $\rho>\rho^{\prime}$, we have that

$$
g_{m}\left(\rho, \rho^{\prime}\right)=B_{m}\left(\rho^{\prime}\right)\left[\frac{1}{\rho^{m \pi / \beta}}-\frac{\rho^{m \pi / \beta}}{a^{2 m \pi / \beta}}\right]
$$

Since $g_{m}\left(\rho, \rho^{\prime}\right)=g_{m}\left(\rho^{\prime}, \rho\right)$, by symmetry of the Dirichlet Green function, $g_{m}\left(P, P^{\prime}\right)$ must be of the form:

$$
\begin{aligned}
& g_{m}\left(\rho_{1} \rho^{\prime}\right)=C_{m} \rho_{<}^{m / / \beta}\left[\frac{1}{\rho_{>}^{m \pi / \beta}}-\frac{\rho_{3}^{m i / \beta}}{a^{2 m \pi / \beta}}\right] \text { where } \\
& P_{<}=\min \left\{\rho_{1} \rho^{\prime}\right\} \text { and } P_{>}=\max \left\{\rho_{1} \rho^{\prime}\right\}
\end{aligned}
$$

To get C_{m}, we multiply Equation (ii) by ρ, integrate form $\rho=\rho^{\prime}-\varepsilon$ to $\rho=\rho^{\prime}+\varepsilon$ and thin Let $\varepsilon \rightarrow 0$ to get:

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0}\left[\int_{\rho=\rho^{\prime} \varepsilon}^{\rho^{\prime}+\varepsilon} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial g_{m}}{\partial \rho}\right] d \rho-\left(\frac{m \pi}{\beta}\right)^{2} \int_{\rho=\rho^{\prime}-\varepsilon}^{\rho_{+}^{\prime}} \frac{1}{\rho} g_{m} d \rho\right] \\
& =-\lim _{\varepsilon \rightarrow 0} \int_{\rho=\rho^{\prime}-\varepsilon}^{\rho+\varepsilon} \frac{8 \pi}{\beta} \delta\left(\rho-\rho^{\prime}\right) d \rho \\
& \rightarrow \lim _{\varepsilon \rightarrow 0}\left[\rho \frac{\partial g_{m}}{\partial \rho}\right]_{\rho=\rho^{\prime}+\varepsilon}-\lim _{\varepsilon \rightarrow 0}\left[\rho \frac{\partial g_{m}}{\partial \rho}\right]_{\rho=\rho_{-\varepsilon}^{\prime}-\varepsilon}= \\
& =-\frac{8 \pi}{\beta} \\
& \rightarrow \lim _{\varepsilon \rightarrow 0}\left[\frac{\partial g_{m}}{\partial \rho}\right]_{\rho=\rho^{\prime}+\varepsilon}-\lim _{\varepsilon \rightarrow 0}\left[\frac{\partial g_{m}}{\partial \rho_{2}}\right]_{\rho=\rho_{-\varepsilon}^{\prime}}=-\frac{8 \pi}{\rho^{\prime} \beta} \\
& \lim _{\varepsilon \rightarrow 0}\left[\frac{\partial g_{m}}{\partial \rho}\right]_{\rho=\rho^{\prime}+\varepsilon}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { ' } \varepsilon \rightarrow 0<\partial \rho J \rho=\rho^{\prime}+\varepsilon \\
& =\lim _{\varepsilon \rightarrow 0} C_{m} \frac{\partial}{\partial \rho}\left\{\rho^{\prime m \pi / \beta}\left[\frac{1}{\rho^{m \pi / \beta}}-\frac{\rho^{m \pi / \beta}}{a^{2 m \pi / \beta}}\right]\right\}_{\rho=\rho^{\prime}+\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} C_{m} \rho^{\prime m \pi / \beta}\left[\frac{-m \pi / \beta}{\left(\rho^{\prime}+\varepsilon\right)^{m \pi / \beta+1}}-\frac{m \pi / \beta\left(\rho^{\prime}+\varepsilon\right)^{m \pi / \beta}-1}{a^{2 m \pi / \beta}}\right] \\
& =-\frac{m \pi}{\beta} \frac{C_{m}}{\rho^{\prime}}\left[1+\left(\frac{\rho^{\prime}}{a}\right)^{2 m \pi / \beta}\right] \\
& \lim _{\varepsilon \rightarrow 0}\left[\frac{\partial g_{m}}{\partial \rho}\right]_{\rho=\rho_{-\varepsilon}^{\prime}}= \\
& =\lim _{\varepsilon \rightarrow 0} C_{m} \frac{\partial}{\partial \rho}\left\{\rho^{m \pi / \beta}\left[\frac{1}{\rho^{\prime m \pi / \beta}}-\frac{\rho^{\prime m \pi / \beta}}{a^{2 m \pi / \beta}}\right]\right\}_{\rho=\rho_{-\varepsilon}^{\prime} \varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} C_{m} \frac{m \pi}{\beta}\left(\rho^{\prime}+\varepsilon\right)^{m \pi / \beta-1}\left[\frac{1}{\rho^{\prime m / / \beta}}-\frac{\rho^{\prime m \pi / \beta}}{a^{2 m \pi / \beta}}\right] \\
& =\frac{m \pi}{\beta} \frac{C_{m}}{\rho^{\prime}}\left[1-\left(\frac{\rho^{\prime}}{a}\right)^{2 m \pi / \beta}\right] \text {. Thus, } \\
& -\frac{m \pi}{\beta} \frac{C_{m}}{\rho^{\prime}}\left[1+\left(\frac{\rho^{\prime}}{a}\right)^{2 m \pi / \beta}\right]-\frac{m \pi}{\beta} \frac{C_{m}}{\rho^{\prime}}\left[1-\left(\frac{\rho^{\prime}}{a}\right)^{2 m \pi / \beta}\right]=\frac{-8 \pi}{\beta \rho^{\prime}}
\end{aligned}
$$

and hence

$$
m C_{m}\left[1+\left(\frac{\rho^{\prime}}{a}\right)^{2 m \pi / \beta}\right]+m C_{m}\left[1-\left(\frac{\rho^{\prime}}{a}\right)^{2 m \pi / \beta}\right]=8
$$

Therefore, $2 m C_{m}=8$ and hence $C_{m}=\frac{4}{m}$.
It follows that $g_{m}\left(\rho, \rho^{\prime}\right)=\frac{4}{m} \rho_{<}^{m \pi / \beta}\left[\frac{1}{\rho_{>}^{m \pi / \beta}}-\frac{\rho_{>}^{m \pi / \beta}}{a^{2 m \pi / \beta}}\right]$ for each $m \geqslant 1$; and hence

$$
\begin{aligned}
& \text { for each } m \geqslant 1 \text {; and Hence } \\
& G\left(\rho, \varphi ; \rho^{\prime}, \varphi^{\prime}\right)=\sum_{m=1}^{\infty} \frac{4}{m} \rho^{m i / \beta}\left[\frac{1}{\rho_{>}^{m \pi / \beta}}-\frac{\rho^{m i / \beta}}{a^{2 m \pi / \beta}}\right] \sin \left(\frac{m \pi}{\beta} \varphi\right) \sin \left(\frac{m \pi}{\beta} \varphi^{\prime}\right)
\end{aligned}
$$

