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Energy velocity of multiply scattered waves in strongly scattering media
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The important influence of the relative refractive index of scattering inclusions on energy transport of classical
waves through disordered media is clearly demonstrated through ultrasonic experiments on monodisperse
emulsions. Our ultrasonic techniques measure both the transmitted average wave field and the multiply scattered
diffusive intensity, enabling a full characterization of wave transport through the media and the measurement
of both the group and energy velocities over a wide range of frequencies. The emulsions were fabricated using
microfluidic techniques that permit accurate control of droplet size and concentration, for droplet inclusions
with very different acoustic properties relative to the yield stress fluids in which the droplets were immersed.
Thus we have been able to investigate emulsions containing either “slow” fluorinated oil droplets (sound speed
v1 less than v0 of the surrounding fluid) or “fast” liquid metallic droplets (v1 > v0). We find that the energy
velocity that describes the transport of energy by the dominant diffusive waves is mainly governed by the sound
speed within the scatterers, and can be either much slower or faster than any of the other wave velocities. The
possibility that the energy velocity could be faster than any other wave velocity when nrel = v0/v1 < 1 was not
anticipated in previous work. These observations are successfully explained by theories that are valid for scalar
waves in media containing a low concentration of scatterers, and are directly applicable to our dilute “all-fluid”
emulsions. The role of droplet resonances on the behavior of the energy velocity is also demonstrated, and the
mechanism leading to the large differences in the energy velocity in the two emulsion systems is elucidated
through calculations of the energy density inside the droplets relative to the incident energy density.
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I. INTRODUCTION

A propagating wave in a strongly scattering medium can be
decomposed into two contributions, the average wave (which,
as a result of configurational averaging, includes contributions
from only the forward scattered wave and the incident wave)
and the multiply scattered diffusive waves (which follow a
multitude of apparently random paths through the medium)
[1]. Because the average wave travels coherently straight
through the medium in the forward direction, it will be re-
ferred to here as the ballistic wave (in common with usage
that is quite often encountered in the literature, since it shares
this characteristic of ballistic (“line-of-sight”) transport with
a wave that experiences no scattering in a uniform medium
[2,3]). When the propagation distance is small (comparable
with the scattering mean free path �s, the average distance
between scattering events), this ballistic contribution is signif-
icant and can reveal important information about the scatter-
ing medium, including the phase velocity vph and scattering
mean free path, as well as, in the case of pulsed transport,
the group velocity, vgr. Hence the propagation of the average
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wave field can be described by an effective wave number k.
For longer propagation distances, the ballistic wave becomes
exponentially small, and the wave field is dominated by
waves that have undergone many scattering events, with local
directions of propagation that have become randomized. After
a linear distance corresponding to several transport mean free
paths �∗, the transport of the waves’ energy density can be
described by a diffusive process with characteristic diffusivity
D [4–8]. The wave diffusion coefficient, D = ve�

∗/3, depends
not only on the transport mean free path (the average distance
over which the direction of propagation is randomized) but
also on the energy velocity ve, which corresponds to the local
velocity of energy transport by the diffusive waves.

While there have been a number of key experimental and
theoretical investigations of both the ballistic and diffusive
contributions to wave transport over the past two or more
decades, interesting questions remain about the extent to
which the transport velocities are influenced by the phase
velocity (or refractive index) of the scattering inclusions rel-
ative to the embedding medium. Experimental investigations
of the group velocity in strongly scattering media have been
mostly performed with acoustic (ultrasonic) waves, since the
use of phase sensitive detectors in acoustics allows the average
wave field to be measured accurately [2,6,9–14]. For low
scatterer concentrations, theories based on the independent
scattering approximation [15,16] described the experimental
results very well [10,11,13,14], while at high concentrations,
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an effective medium theory [1,17] gave remarkably good
agreement with the data [2,9]. These experiments and theories
showed the significant frequency-dependent dispersion that
can result from scattering by both hard and soft scatterers over
a wide range of concentrations, with the dispersion being most
clearly shown through the frequency dependence of the group
velocity [2,9,14].

Since the theoretical work of van Albada et al. [18,19],
several studies of classical wave diffusion have focused on
the behavior of the energy velocity in both optics [20–22] and
acoustics [6,7,14], paying particular attention to the resonant
scattering regime. While all of these experiments, and the
original theoretical predictions, showed significant decreases
in the energy velocity due to scattering resonances, differences
were found in the link between the group velocity and the
energy velocity. In typical acoustic systems, the scattering
particles are hard, with a small relative refractive index, nrel <

1 [23], and the group and energy velocities were found to be
quite similar in magnitude [2]. However, in typical optical sys-
tems, the refractive index of the particles is high (n > 1), and
very different behavior was predicted for these two velocities.
Such large differences between ve and vgr were confirmed by
ultrasonic experiments on so-called “resonant emulsions” for
which nrel is also larger than 1 [14]. Thus it seems that the
refractive index of the scattering particles plays an important
role in the behavior of the energy velocity. However, a detailed
comparison between all of these experiments is hindered by
significant differences in the nature of the scattering (e.g.,
acoustic versus optical scattering, solid scatterers versus fluid
scatterers in acoustics), motivating a fresh examination of the
influence of refractive index on the behavior of the energy
velocity. The ideal comparison would involve experiments
on samples in which only the relative refractive index of the
scatterers is varied.

In this paper, we follow this “ideal” path by examining the
role of the scatterers’ sound speed on the energy velocity by
performing ultrasonic experiments on two carefully chosen
model systems. Our model systems are emulsions in which
the droplet materials have very different acoustic velocities.
The all-fluid structure of our samples means that only scalar
acoustic waves propagate, enabling reliable comparisons with
theories for the energy velocity which have been developed
for scalar waves [18,19]. Furthermore, we study samples
with low concentrations of scatterers for which theoretical
models based on the independent scattering approximation
are expected to be accurate [16]. Our emulsion samples are
made either from fluorinated FC40 oil droplets (nrel = 2.3)
suspended in a water-based yield-stress fluid (diluted hair
gel) or from GaIn droplets (nrel = 0.56) suspended in another
water-based yield-stress fluid (diluted solution of xanthan
gum in water). The intrinsic losses of these materials are
very low in the MHz range so that the effects of multiple
scattering on wave transport are not masked by absorption.
Through choice of droplet size and ultrasonic frequency, we
are able to study wave transport in the intermediate frequency
regime (k0a > 1, with k0 the wave number in the pure gel and
a the radius of the droplets), where strong scattering occurs
and may be further enhanced by “shape” resonances of the
droplets (analogous to Mie resonances in optics but for scalar
waves in our acoustic systems). In this regard, a first look
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FIG. 1. Scattering cross section of a single droplet of FC40 oil
(red solid line) and GaIn alloy (blue solid line) both immersed in
water. Red and blue arrows indicate resonant frequencies for FC40
and GaIn droplets, respectively.

at the scattering properties of our droplets can be gleaned
by comparing calculations of their scattering cross sections,
which are shown in Fig. 1. For these systems, the scattering
cross section for a single droplet is either comparable to or
much greater than the geometric cross section (πa2) in the
intermediate frequency regime, confirming that the scatter-
ing is indeed strong. Furthermore, this figure shows striking
differences in the impact of resonances on the scattering
for the two types of droplets. For the FC40 oil droplet, its
low sound speed results in strong, low frequency resonances
whereas, for the GaIn droplets, the resonances occur at higher
frequencies and are weak—barely visible in the figure. This
basic comparison of the scattering properties of the droplets
already suggests that one might expect significant differences
in the energy velocity for wave transport through suspensions
of these droplets.

The outline of the paper is as follows. The fabrication
method for producing the samples and ultrasonic measure-
ment procedures are described in Sec. II. Two ultrasonic
setups are used in order to measure the average wave and
the diffuse parts of the transmitted wave field. In both cases,
pulsed experiments are used. Thus we are able to directly
compare the energy velocity of the multiply scattered waves
with the group velocity that characterizes the transmission
of the average wave field in pulsed experiments. Section III
presents the experimental results for scalar wave propagation
in our dilute samples and the comparison of experiment with
theory. For the coherent ballistic waves, the experimental
results are compared to calculations performed using the
independent scattering approximation (ISA), which we show
gives accurate predictions for the scattering properties of the
samples. In particular, we contrast the behavior of the group
velocity for the two samples, confirming that it remains well
defined even when the dispersion due to scattering is strong.
For the diffuse waves, the transport of energy through the
samples is well described by the diffusion approximation,
enabling the diffusion coefficient to be measured and com-
pared with theory. We show how these measurements can
be used to determine the energy velocity. The rest of this
section is dedicated to discussions and theoretical descriptions
of the energy velocity, including the scattering delay induced
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FIG. 2. Fluorinated oil droplets (a) and (b) as well as GaIn
droplets (d) and (e) suspended in the yield-stress fluids. Panel
(a) shows the droplets immediately after injection; they are well
mixed during transfer to the ultrasonic measurement cell to ensure
that their positions are disordered. The lens magnification was ×50
for images (a) and (d) and ×250 for (b) and (e). The size distributions
obtained by optical methods are plotted in (c) for the FC40 droplets
and (f) for the GaIn droplets (the red dashed lines represent the
Gaussian fits used to assess the droplet polydispersity).

by energy trapped in the particles in the resonant regime.
The comparison of the results for the two samples shows
very convincingly that the phase velocity inside the scatterers
not only affects the magnitude of the scattering resonances
but also influences the energy velocity significantly, even
at frequencies for which the scattering is not affected by
resonances.

II. EXPERIMENTS

A. Sample fabrication

Our “resonant emulsions” [Figs. 2(a) and 2(b)] are made
from fluorinated oil (FC40) droplets (with sound speed v1 =
0.64 mm/μs, density ρ1 = 1.85 g/cm3, and amplitude at-
tenuation coefficient due to absorption α1 = 10−3 f 2 mm−1 at
frequency f in MHz) randomly dispersed in a yield-stress
fluid consisting of diluted hair gel (v0 = 1.48 mm/μs, ρ0 =
1 g/cm3, and α0 = 5 × 10−5 f 2 mm−1). This yield-stress fluid
has a small nonzero shear modulus that is sufficient to prevent
the droplets from sedimenting [24], but frequency-dependent
rheological behavior that makes its acoustic properties sim-
ilar to those of water at the megahertz frequencies used in
our ultrasonic experiments [11]. For convenience, the main

TABLE I. Properties of the FC40 and GaIn emulsion samples.
The sample thickness and slab diameter are for the diffusion coeffi-
cient measurements only; thinner samples were used for the average
wave measurements so that the ballistic pulses could be clearly
resolved.

FC40 emulsion GaIn emulsion

Droplet v1 (mm/μs) 0.64 2.74
Droplet ρ1 (g/cm3) 1.85 6.28
Host matrix v0 (mm/μs) 1.48 1.52
Host matrix ρ0 (g/cm3) 1.00 1.00
Droplet radius ā (mm) 0.17 0.31
Volume fraction φ (%) 5 16
Polydispersity P (%) 4 2
Sample thickness L (mm) 26 12
Slab diameter D (mm) 94 50

properties of both constituents are summarized in Table I.
Microfluidic techniques [11,13] are employed in order to
fabricate an almost monodisperse population of droplets: a
moving syringe (at constant velocity V = 35 mm/s) contin-
uously injects the oil (at constant flow rate Q = 35 μL/min)
within the water-based gel matrix via a thin needle with an
inner radius that is approximately equal to the droplets’ mean
radius ā = 0.17 mm. The size of the droplets can easily be
chosen by setting the needle velocity V and the flow rate Q
of the injection. Displacements and flow rates are controlled
by robotics, which ensures the very low standard deviation σ

of the droplets’ size distribution. Indeed, with this method,
the polydispersity P = σ/ā is about 4% [Fig. 2(c)] in all
experiments, which ensures that sharp resonances can be
detected [25], since most of the droplets have the same size
and thus the same resonant frequency.

In comparison with the relatively well studied FC40 emul-
sions [13,14,25], the fabrication of GaIn droplet suspensions
[Figs. 2(d) and 2(e)] is more challenging. Gallium-indium
eutectic alloy (v1 = 2.74 mm/μs, ρ1 = 6.28 g/cm3, and low
absorption [26]) was purchased from the Indium Corporation
and droplets of this alloy were prepared using a microfluidic
chip made of glass capillaries [27]. This eutectic alloy remains
liquid at room temperature and is thus suitable for fabrication
of emulsions. In this chip, the coflowing geometry permits
us to generate droplets of GaIn in a carrier fluid made of a
mixture of water and polyvinylalcohol (PVA, ∼1% in mass,
with a molar mass of 70 000 g/mol and 98% hydrolysis).
The final capillary, with an inner diameter of ∼600 μm,
fixes the diameter of the GaIn droplets and is surface-treated
with a hydrophilic polymer coating (Mirapol Surf S 500 from
Solvay) in order to prevent surface fouling. Large flow rates
of about 1 mL/min for each fluid yield a large number of
droplets in a matter of minutes. The droplets are characterized
using optical microscopy; they have a radius of ∼0.31 mm
with a polydispersity P ∼ 2% [Fig. 2(f)]. Eventually, these
droplets are collected “on-the-fly” in a large (∼200 mL),
slowly stirred, maturing bath that contains water and PVA
and where we measured the dissolved dioxygen content (∼10
to 20 ppm). This agent is of prime importance to oxidize
the surface of the droplets [28] and make the surface rigid
enough to enable the droplets to be redispersed in a yield-
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FIG. 3. Experimental setup for measuring the average wave field
transmitted through the emulsion samples.

stress fluid with negligible coalescence or deformation. For
the GaIn droplet emulsions, a dilute solution of xanthan gum
in water was used as the matrix, since the acidity of hair gel
makes it unsuitable, as it attacks the thin nanometric oxide
layer on the GaIn surface (thickness ∼ few nanometers [29]).
Consequently, the sound speed in the matrix for the GaIn
emulsions is slightly higher than for the FC40 emulsions
(Table I), but the absorption in this matrix is still expected
to be very small and similar to that of the FC40 emulsions.

B. Average transmitted wave field

In order to measure the average wave field that has traveled
through our samples, two broadband ultrasonic transducers,
with a central frequency of 5 MHz, were placed on opposite
sides of, and in direct contact with, the emulsion (Fig. 3).
In this configuration, near field diffraction effects due to the
finite size of the transducers may lead to an overestimation of
the dispersion of the sample. In our case these effects were
estimated by following the method described in Ref. [30]
and were found to be negligible (the relative error induced
by near field effects on the attenuation and phase velocity
measurements is about 1%). With this setup, the average part
of the transmitted wave was measured by taking advantage
of the spatial averaging of the acoustic field across the large
surface area of the receiver (1-in. diameter, corresponding to
a spatial average over more than 1500 speckles at 2.5 MHz).
Furthermore, the propagation distance (z = 2 mm for the
FC40 emulsion and z = 9 mm for the GaIn emulsion) is small
enough to ensure that the average wave field was not too atten-
uated by scattering effects. The wave number k of the ballistic
pulse was obtained from a differential measurement between
two acquisitions: a reference signal, measured through pure
gel matrix, and the average transmitted signal through the
sample (Fig. 4).

For both emulsions, dispersion and/or frequency-
dependent attenuation caused the shape of the transmitted
pulses to differ from the reference pulses. For example, in
Fig. 4(a), the tail on the transmitted pulse, which shows up as
a small secondary pulse occurring around 3 μs, is a signature
of the strong dispersion in the FC40 emulsion caused by
droplet resonances, and is not due to an echo between the
transducers. Scattering effects induced by these resonances
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FIG. 4. Transmitted signals through 2 mm of FC40 emulsion
(a) and 9 mm of GaIn suspension (b). The black dashed lines
represent the reference signals in the yield-stress fluid host matrices
for these two cases. Plots (c) and (d) represent the magnitude of
the corresponding Fourier transforms for FC40 and GaIn samples,
respectively (where the black dashed lines are Fourier transforms of
the reference signals).

are also responsible for attenuation peaks, which can be
identified by dips in the average signal spectrum [Fig. 4(c)].
Neither of these resonance effects is visible in Figs. 4(b) and
4(d), indicating how very weak the GaIn droplet resonances
are compared with those of the FC40 droplets. Note that the
difference in the overall magnitude of the pulses (and their
Fourier transforms) for the two emulsions is also significantly
influenced by the difference in propagation distances for these
measurements.

From these measurements of the average wave pulses,
we extract the phase velocity vph = ω/Re[k] and extinction
length �ext = 1/(2 Im[k]) using a “spectral division” method:

�ext =
[

2 ln

( |Sref|
|S|

)/
z

]−1

,

(1)

vph =
(

ϕ − ϕref

ωz
+ 1

v0

)−1

,

where Sref = |Sref|eiϕref and S = |S|eiϕ represent the Fourier
transforms of the reference and average transmitted pulses,
respectively (Fig. 4). (Note that the phase of the ultrasonic
signals is represented by the symbol ϕ, which should be dis-
tinguished from φ that denotes volume fraction.) This method
allows direct measurement of the extinction length and phase
velocity over a wide frequency range (from f = 1 MHz to
f = 8 MHz), so that a large set of droplet resonances can
be observed for the FC40 emulsions. The extinction of the
ballistic pulse during its propagation has two origins: the
attenuation by scattering and the absorption due to the intrin-
sic viscosity of the fluids. The expression for the extinction
length is thus

1

�ext
= 1

�s
+ 1

�a
, (2)
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FIG. 5. Representation of the experimental setup used to mea-
sure the time- and position-resolved transport of multiply scattered
acoustic waves inside the samples.

where �s is the scattering mean free path (the characteristic
attenuation distance of the ballistic intensity due to scattering)
and �a is the absorption length which represents the losses.
For the fluids considered here, we can be confident that �ext ∼
�s, since the absorption length �a is estimated to be typically
about 100 times larger than �s over the frequency range of the
measurements [14]. The extinction of the average wave during
its propagation is thus almost entirely due to scattering rather
than viscous dissipation in the fluids.

With this ballistic pulse measurement, we can also measure
the group velocity. The transmitted signals through the emul-
sions and through the pure matrix reference medium were
narrow-band filtered (50 kHz FWHM bandwidth) around each
frequency of interest in order to obtain Gaussian pulses [2,9].
The time of flight of the peaks of the pulse envelopes, tpk and
tpk,ref, then gives the group time of emulsion and reference
signals, apart from a possible shift due to a likely difference
between the trigger and the initial time at which the pulses
entered each medium. This shift was determined from the
difference between the peak arrival time of the reference pulse
through the pure matrix and its known group time, which
is given by z/v0, as the matrix is nondispersive. The group
velocity vgr of the emulsions was then determined from

vgr =
(

tpk − tpk,ref

z
+ 1

v0

)−1

. (3)

Repeating the process for many filtering frequencies within
the bandwidth of the unfiltered pulse yields frequency-
resolved measurements of the group velocity.

C. Multiply scattered waves

The experimental setup used to probe the propagation of
the multiply scattered waves is illustrated in Fig. 5. In order
to measure the total time-dependent transmitted field in the
regime where multiple scattering dominates, the propagation
distance was increased (z = 20 mm for the FC40 emulsion
and z = 10 mm for the GaIn suspension), and the large
receiver was replaced by a small needle hydrophone (with
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FIG. 6. Transmitted unfiltered coda (for two transverse distances
ρ) at a depth z = 10 mm within the GaIn suspension (a) and z =
20 mm within the FC40 emulsion (b).

a diameter of 500 μm, which is approximately equal to
the acoustic wavelength). The hydrophone was immersed in
the emulsion and, because of its small size, was capable of
resolving the spatial variation of the acoustic wave field inside
each sample. In these experiments, the incoming wave was
generated by a focusing transducer and was further confined
to a well localized pointlike source by an acoustic diaphragm,
which was placed on one side of a circular slab containing
the sample. This acoustic diaphragm consisted of an air slab,
which acts as an opaque barrier for MHz ultrasound, with a
soft-solid cylinder in the center, which acts as a transparent
aperture. The cylindrical aperture had a diameter of about
5 λ0 (the wavelength in the pure matrix at f = 2.5 MHz),
and was made from PDMS (polydimethylsiloxane). The input
signal was a short Gaussian pulse (centered around 2.5 MHz).
The hydrophone detector was attached to motorized stages,
allowing the diffuse field to be probed at any point (ρ, θ, z)
within the circular slab (where ρ = z = 0 mm denotes the
midpoint of the source at the input face of the emulsion).

Figure 6 shows the time dependence of the transmitted
fields for the two samples at different transverse positions
ρ within the slab. These long coda signals, which arrive
after the (much smaller) ballistic pulse, are characteristic of
multiple scattering contributions, since they extend over a
range of times that greatly exceeds the width of the input
pulse (200 to 1000 times longer than the input pulse width
for the two emulsion samples investigated). Furthermore, the
slow decrease in the amplitude of these signals with time is a
signature of low absorption, due to very low intrinsic acoustic
losses in the fluids employed to fabricate the samples.

To characterize the diffusive transport of energy by the
multiply scattered waves, the average field (averaged over all
transverse positions for a given z) was first subtracted from
the total transmitted field in order to suppress any residual
ballistic component and obtain only the multiply scattered
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FIG. 7. On the top: unfiltered transmitted speckle patterns (spa-
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exp[−ρ2/(4Dt )] to the data and the arrows indicate the half width at
half maximum [=w(t )/

√
ln2] of the diffuse halo.

field (the coda). The envelopes of the time-dependent trans-
mitted fields were then calculated and squared to determine
a quantity proportional to the energy density at the position
of the hydrophone z inside the sample. If the propagation
distance is large enough (��∗) [4], the ensemble-averaged
energy density obeys the diffusion equation with characteris-
tic diffusion coefficient D. From the solution of the diffusion
equation for a point source incident on an infinite slab of
thickness L, the evolution of the energy density as a function
of time and position is known to have the form U (z, ρ, t ) =
U (z, 0, t ) ˙exp[−ρ2/(4Dt )], where U (z, 0, t ) is a relatively
complicated function that includes the effects of boundary
conditions and absorption [5,31]. For a given value of z, the
ratio R(ρ, t ) = U (ρ, t )/U (0, t ) is a Gaussian that describes
the transverse growth of the diffusive halo. To illustrate exper-
imentally the behavior of the halo for one of our emulsions,
we show in Fig. 7 (top panels) the energy density U (ρ)
of the transmitted speckle pattern at three different times t ,
normalized by its values for the on-axis (ρ = 0 mm) position.
While the top panel of Fig. 7 reveals the characteristic spatial
fluctuations of speckle patterns, the angular averaged energy
density profiles shown in the lower panels clearly show the
smooth Gaussian shape of the ensemble averaged diffuse halo.
Note that good ensemble averaging was achieved not only
by angular averaging over many different positions of the
hydrophone (thereby probing different regions of the sample)
but also by stirring the emulsion via the movement of the
hydrophone from one position to another inside the sample.
The fits of Gaussians to these averaged spatial profiles (red
solid curves) then enable the diffusivity D to be measured, and
give consistent results for the three times at which the profiles
are shown. Thus the measurement of the dynamic transverse
spatial profile R(ρ, t ) enables D to be measured, and this
approach has the advantage of avoiding the complications

of boundary conditions and absorption that influence the full
profile U (z, ρ, t ) [5].

To measure the diffusion coefficient as a function of fre-
quency, the transmitted time-dependent field (coda) at each
position of the hydrophone was filtered numerically with
a narrow-band Gaussian filter (� f = 20 kHz) about several
central frequencies before determining the normalized aver-
age energy density ratio R(ρ, t ). The procedure for accurately
measuring D was to capitalize on the linear dependence
of the width squared of the diffuse halo on time, w2(t ) =
−ρ2/ln[R(ρ, t )] = 4Dt , and to perform a linear least squares
fit of w2(t ) versus t so as to determine D from the slope.
The procedure was repeated for several different ρ values to
reduce the measurement uncertainty. This fit was performed
for the range of times �t over which numerical simulations of
diffusion in a slab show that lateral walls of the cell have no
effect on the evolution of the halo.

III. RESULTS AND DISCUSSION

A. Effective wave number

The propagation of the average field is determined by the
effective wave number k, which is directly related to the phase
velocity and extinction length introduced in Sec. II B:

k = ω

vph
+ i

1

2�ext
. (4)

The frequency dependence of the effective wave number may
be readily calculated theoretically using the ISA, thereby
enabling our experimental data to be compared with theory.
The theoretical expression for the wave number, taking into
account the size distribution of the droplets, is [25]

k2 = k2
0 +

∫
a

4πηa f (0)da, (5)

where ηa is the Gaussian size distribution of the droplets:
ηa = η/(

√
2πσ )e−(a−ā)2/2σ 2

, with η being the average droplet
concentration. In the far field approximation, the scattering
function f (θ ) = | f (θ )| exp[iϕs(θ )], with magnitude | f (θ )|
and phase ϕs(θ ), represents the scattering amplitude in the
direction given by the angle θ with respect to the incident
wave vector, and is given by the following expression:

f (θ ) = 1

ik0

∑
n

(2n + 1)AnPn(cos θ ). (6)

Here Pn denote the Legendre polynomials and An are the
amplitude coefficients of the scattered field, given by Eq. (A4)
[25,32]. From Eqs. (4) and (5), we directly obtain vph and
�s = �ext (when no dissipative effects are taken into account),
and calculate vgr from the numerical derivative of ∂ω/∂k.

For the FC40 emulsion, the strong impact of droplet res-
onances on the acoustic properties is clearly visible in our
experimental data for the extinction length, phase and group
velocities, as reported in Fig. 8. Notably, at the resonant
frequencies of a single droplet, there are dips in the scattering
mean free path, rapid increases in the phase velocity, and
sharp peaks in the group velocity [25]. Excellent agreement
is found between these measurements and theoretical predic-
tions based on the ISA. It is worth noting that the excellent
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v

v

k ⎯a

v
v

FIG. 8. Measured (a) extinction length �ext (essentially equal
to the scattering mean free path), (b) phase vph, and (c) group
velocities vgr versus frequency for the two different samples (shown
by red circles for the FC40 emulsion and blue squares for the GaIn
suspension). Independent scattering approximation predictions are
represented by solid lines for the volume fractions φFC40 = 5% and
φGaIn = 16% and the polydispersities PFC40 = 4% and PGaIn = 2%.
Velocities are normalized by the sound speed in the pure matrix
v0. Resonant frequencies are identified by red arrows for a FC40
droplet with a = 0.17 mm and blue arrows for a GaIn droplet with
a = 0.31 mm when both are immersed in their respective yield stress
fluids. The arrows delineating the resonant frequencies correspond to
frequencies for which the amplitude of the wave field is a maximum
inside the droplets, as determined by the coefficients Bn given by
Eq. (A5). The dashed lines in (a) represent ISA predictions for �∗ as
discussed in the text (Sec. III B, third paragraph).

agreement between the experimental measurements of the ex-
tinction length and the ISA predictions for the scattering mean
free path further confirm that dissipation in these samples is
very small (virtually negligible for coherent wave propagation
straight through the samples). These theoretical predictions
take into account the size distribution of the droplets, which,
while quite narrow, as noted in Sec. II A, is still sufficient
to blur somewhat the sharp features in these curves due to
the dependence of resonant frequency on droplet radius [25].
Nonetheless, the scattering resonances of the FC40 droplets
are sufficiently strong that distinct minima in �s and peaks
in vgr remain very clearly resolved. By contrast, for the
suspension of GaIn droplets, the resonances are so much
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FIG. 9. (a) Time dependence of the ensemble-averaged energy
density of the acoustic field at position z inside the samples as a
function of time (time-of-flight curves), normalized by the incident
energy density U i

0 (from a pointlike source in both time and space).
These data are for a filtering frequency f = 3.0 MHz and for two
different transverse distances ρ. The measurement positions z are the
same as those given in the caption to Fig. 6. The experimental data
for the two samples are represented by open symbols. The solid lines
represent the results of numerical simulation of diffusion for a point
source in a slab with the geometry of our experimental setup (Fig. 5).
Measured diffusivity D and calculated transport mean free path �∗

are used as inputs for this simulation. (b) Time dependence of the
width squared w2(t ) of the diffusive halo deduced from the measured
ratio U (ρ, t )/U (0, t ) of the time-of-flight curves (symbols). The
solid lines represent the linear fits w2(t ) = 4Dt used to extract the
diffusion coefficient D from these measurements.

weaker that their effect on the frequency dependence of the
acoustic velocities and mean free path is washed out by the
weak polydispersity and, even close to the first resonance of
the GaIn droplets at Re[k0]a = 5.6, no obvious structure in
the data is visible (Fig. 8).

B. Diffusion coefficient and transport velocity

The experimental results for the propagation of the average
wave through the two samples (Sec. III A) demonstrate that
these emulsions have large scattering strengths. In particular,
in the case of the FC40 emulsion, the scattering mean free path
�s is approximately equal to the wavelength in the pure matrix
λ0. For the GaIn suspension, the mean free path is larger
but remains sufficiently small (�s ∼ 4–5 λ0) for multiple
scattering effects to be observed. As discussed in Sec. II C, the
transport of energy by the multiply scattered coda waves can
be described using the diffusion approximation, which gives
simple predictions for the time dependence of the transmitted
average energy density and for the transverse growth of the
diffuse halo. Typical results at 3.0 MHz are shown in Fig. 9
for both samples. Figure 9(a) shows the temporal evolution
of the average energy density, normalized by the incident
energy density U0, for two transverse distances ρ = 0 mm
and ρ = 20 mm, while Fig. 9(b) illustrates the increase in
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FIG. 10. Measured diffusion coefficients versus frequency for
the GaIn and FC40 emulsions (open blue squares and red circles,
respectively). The dashed lines represent theoretical calculations for
D = ve�

∗/3, using the predictions for �∗ (Fig. 8) and ve [Eqs. (7) and
(8)] discussed in the text.

the transverse width squared w2(t ) with time. Both graphs
demonstrate that diffusion in the GaIn sample happens much
more rapidly. This difference is quantified by the slopes of
the linear least squares fits of w2(t ) versus time [solid lines
in Fig. 9(b)], from which we determine that the diffusion
coefficients are DFC40 = 0.81 ± 0.01 mm2μs−1 for the FC40
emulsion and DGaIn = 2.42 ± 0.09 mm2μs−1 for the GaIn
suspension at this frequency. Because of the finite transverse
width of our slab-shaped samples, a numerical solution of
the diffusion equation, taking into account this difference
in sample shape from that of an infinite slab, was used
to generate the theoretical curves for U (ρ, t )/U0 shown in
Fig. 9(a). In these calculations, the diffusive source position
was z′ = �∗, the internal reflection coefficient at the interface
between the emulsions and air was calculated to be 0.999,
and the absorption time τa = 65 μs for GaIn and τa = 180 μs
for FC40.

By repeating this procedure for measuring D from w2(t )
at different filtering frequencies (Sec. II C), we obtain the
experimental values of the diffusion coefficient shown as a
function of frequency in Fig. 10. As might be anticipated
from the typical results in Fig. 9 at 3 MHz, Fig. 10 shows
that D for the GaIn suspension is much larger than for the
FC40 emulsion throughout the entire frequency range of
the measurements. Also, the variation of D with frequency for
the GaIn sample is quite smooth, whereas the influence of the
sharp resonances for FC40 droplets is reflected in the much
greater variation with frequency of D for the FC40 emulsion.
The natural question to ask is whether these differences in
D = ve�

∗/3 are mainly due to differences in the mean free
paths or whether these differences also indicate significant
differences in the behavior of the energy velocity for these
two systems.

To answer this question, we first calculate the frequency
dependence of �∗ within the ISA using the well-established
expression �∗ = �s/(1 − 〈cos θ〉), where 〈cos θ〉 =∫ π

0 cos θ | f (θ )|2 sin θ dθ/
∫ π

0 | f (θ )|2 sin θ dθ is the weighted
average of cos θ over scattering angles θ [1,33]. The reliability
of this �∗ estimation is expected to be very good and is
supported by the excellent agreement between the ISA model

v
k a

v

v
v

FIG. 11. Frequency dependence of the measured energy velocity
in (a) GaIn and (b) FC40 (solid red circles). To highlight the
important differences in the energy velocities in these samples, the
energy velocities are compared with our data for the phase and group
velocities from Figs. 8(b) and 8(c). Theoretical predictions are shown
by the solid and dashed lines, as indicated in the legend. Results are
normalized by the sound speed in the pure matrix v0.

and our experimental data for the scattering mean free path
[Fig. 8(a)]. These results for �∗ are plotted along with �s in
Fig. 8(a), and show substantial differences in �∗ between the
two systems at low frequencies but much smaller differences
at higher frequencies.

From these results for �∗, the measurements of D, and the
relation ve = 3D/�∗, we determine the energy velocity ve as a
function of frequency for the two samples, and compare their
values in Fig. 11 with the phase and group velocity measure-
ments. Strikingly, this figure shows that the energy velocity for
the GaIn emulsion, for which the acoustic phase velocity of
the droplets is greater than the surrounding gel, has an energy
velocity that is fairly close to, but nonetheless significantly
larger than, either the group or phase velocities (ve > vgr and
ve > vph) throughout the entire frequency range of the mea-
surements [Fig. 11(a)]. Note that these experimental values of
the energy velocity for the GaIn system are not influenced by
droplet resonances, which occur only at frequencies beyond
the accessible range in the diffusion coefficient measurements.
By contrast, as has been also reported previously [14], the
energy velocity for the FC40 emulsion, for which the acoustic
velocity of the droplets is smaller than the surrounding fluid, is
substantially smaller than either the group or phase velocities
(ve 	 vgr and ve < vph) [Fig. 11(b)]. In this case, droplet
resonances play a huge role in the behavior of the velocities,
leading to large dispersion in the effective medium and a
correspondingly large increase in the group velocity near the
resonances, whereas the transport velocity of the multiply
scattered waves ve is significantly slowed down for the same
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frequencies [Fig. 11(b)]. Even between the resonances, the
energy velocity for the FC40 emulsion is lower than any of
the other velocities (vph, vgr, v0).

To help understand these contrasting results for ve, we
use a theory developed by van Tiggelen, van Albada, La-
gendijk, and Tip [18,19] for optical systems containing ran-
domly distributed scatterers such as TiO2 particles. To em-
phasize the fundamental ideas, this theory was initially for-
mulated for scalar waves, and is therefore especially appli-
cable to our acoustic emulsion systems. In this theory, a
generalized Boltzmann equation for the correlation function
〈ψ (r1, t1)ψ∗(r2, t2)〉 of the scalar wave function ψ (r, t ) was
solved in the Kubo limit for low concentrations of scatterers,
when the self-energy and vertex function can be evaluated to
leading order. The energy flux J and energy density U were
expressed in terms of the Laplace transform with respect to
time and the Fourier transform with respect to position of this
correlation function, leading to a relation involving J and U
that, once an equation of continuity was satisfied, yielded an
expression for the energy velocity ve of the following form:

ve = v2
0/vph

1 + δ
, (7)

where the parameter δ, rewritten in terms of the notation of
this paper, is equal to

δ = 2πηvgr

(
vph

ω

∂ Re f (0)

∂ω
+

∫ π

0
sin(θ )| f (θ )|2 ∂ϕs(θ )

∂ω
dθ

)
.

(8)
The delay parameter δ accounts for the influence on ve of the
energy temporarily stored in the scattering inclusions during
diffusive transport, and can lead to a very significant slowing
down of the energy velocity when there are strong scattering
resonances. As can be seen from Eq. (8), δ is the sum of two
contributions, δ = �1 + �2, where

�1 = 2πηvgr
vph

ω

∂ Re f (0)

∂ω
(9)

and

�2 = 2πηvgr

∫ π

0
sin(θ )| f (θ )|2 ∂ϕs(θ )

∂ω
dθ. (10)

In order to interpret this expression for ve [Eq. (7)], it is
instructive to write the group velocity in terms of a group
delay parameter �gr. By determining the group velocity from
vgr = ∂ω/∂k using the ISA expression, Eq. (5), for the wave
number, we obtain

vgr = v2
0/vph

1 + �gr
, with �gr = v2

0

vphvgr
�1. (11)

In the absence of resonances or when the resonances are
weak, v2

0/vphvgr ≈ 1 and we have �gr ≈ �1. The �1 term
then corresponds to the group delay contribution to the energy
velocity. The �2 term corresponds to the additional contribu-
tion [16] that accounts for the scattering delay given by the
angular averaged phase shift ∂ϕs/∂ω of the scattered wave
in each scattering event. As predicted by van Tiggelen et al.
[19], this scattering contribution �2 compensates the very
large or even negative values of the group delay that may
appear around resonances and ensures that the energy velocity
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FIG. 12. Delay parameters �1, �2, and �gr calculated from
scattering properties of a GaIn suspension with φGaIn = 16% and
ā = 0.31 mm (a) and a FC40 emulsion with φFC40 = 5% and ā =
0.17 mm (b). These results are presented for polydisperse popu-
lations of scatterers with PGaIn = 2% and PFC40 = 4%. The black
arrows represent the resonant frequencies of an isolated droplet. Note
that the y-axis scale in (a) extends over a much smaller range of
values than in (b).

properly accounts for the energy carried by the elastically
scattered waves.

These three different delay parameters �1, �2, and �gr

are plotted as a function of frequency in Fig. 12 for the two
different samples. This calculation shows the close similarity
between �1 and �gr at frequencies away from resonances
(in particular for the GaIn suspension [Fig. 12(a)] for which
dispersion effects are weak). Furthermore, in the case of
fluorinated oil droplets [Fig. 12(b)], �2 and �gr vary in the
opposite way with frequency (when �2 increases with fre-
quency �gr decreases with frequency, and vice versa), thereby
explaining the large difference between ve and vgr for this
system. This effect is due to the low sound speed within the
scatterers, which causes a large radiative delay of the energy
that is temporarily stored within the droplet. This difference
between vgr and ve was predicted in optics [18,19] but direct
experimental confirmation was lacking due to the difficulty in
measuring simultaneously the group and energy velocities of
light in heterogeneous media.

Previous experiments using ultrasound [6,7] have also
demonstrated the impact of the scattering delay on the energy
velocity, but in these cases both the energy and group veloci-
ties were reduced and did not exhibit such opposite behavior
as is shown in Fig. 11(b) [34]. These observations were due
to the different character of the resonances in these samples
containing hard solid scatterers with high sound speeds rela-
tive to the surrounding medium (the usual case in ultrasonic
experiments). For example, in the case of concentrated sus-
pensions of glass beads in a fluid, the dominant resonance at
low frequencies may be described as a tortuosity resonance [9]
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that causes both the energy and group velocities to be reduced.
Their results were interpreted using a model [6] motivated
by their experimental findings for energy transport by wave
pulses: the energy velocity was determined from the group
velocity by accounting for the additional scattering delay that
the multiply scattered waves experience as they are scattered
through all possible scattering angles. This additional delay
was expressed directly in terms of the intensity-weighted
angular average �tave of the scattering time delay ∂ϕs(θ )/∂ω,

�tave =
∫

dθ sin θ | f (θ )|2 ∂ϕs

∂ω∫
dθ sin θ | f (θ )|2 , (12)

where the normalization factor in the denominator is propor-
tional to the cross section, and hence equal to 1/(2πη�s).
Thus �tave = �2(�s/vgr). If we start from Eq. (7) and write
ve explicitly in terms of �gr and �tave, we obtain

1

ve
= vph

v2
0

(1 + �1 + �2)

= vph

v2
0

[
1 + vphvgr

v2
0

�gr

]
+ vphvgr

v2
0

�tave

�s
. (13)

When the dispersion is weak so that v2
0/vphvgr ≈ 1, Eq. (13)

becomes

1

ve
≈ 1

vgr
+ �tave

�s
, (14)

which is the approximate expression for ve used successfully
to interpret the data in Refs. [6] and [7]. The interpretation
of this expression is more straightforward than Eq. (7), since
Eq. (14) shows very clearly that ve is determined by the sum
of a group delay and a multiple scattering delay. As shown in
Fig. 11, this simple expression gives predictions in excellent
agreement with Eq. (7) for the GaIn suspension over the entire
frequency range, but slightly underestimates the minima in ve

near the sharp resonances of the FC40 emulsion.
In the case of the GaIn suspension, the calculation of the

delay parameters shows the reason for the low dispersion
in the sample, with �gr nearly equal to �1 and both delay
parameters very close to zero over most of the frequency
range. While the magnitude of the scattering delay �2 is also
small, the most striking feature is that �2 is negative over
the entire frequency range investigated: the presence of par-
ticles with a fast acoustic velocity relative to the surrounding
medium induces an advance of the scattered waves and ve >

vgr. For light scattering experiments with dielectric particles
in vacuum, even in the simplest case of vgr ≈ c2/vph (with c
being the speed of light in vacuum), this kind of observation
is impossible since the inequality ve > vgr would lead to
ve > c. In acoustics, however, where the wave speed v0 of the
surrounding medium is not an absolute quantity and is many
orders of magnitude less than c, there is no such problem
with ve > v0. Furthermore, although quite weak, the GaIn
droplet resonances still cause a slowing down of multiply
scattered wave transport relative to the energy velocity at
neighboring frequencies, since �2 exhibits peaks near the
resonant frequencies.

As additional information that is relevant to understanding
the mechanism underlying the large differences in energy
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FIG. 13. Average acoustic energy divided by the droplet volume
E1 normalized by the energy density of the incident wave Ei

0. Red
and blue arrows indicate the resonant frequencies for the FC40 and
GaIn droplets, respectively.

velocities for the two emulsion systems, we show in Fig. 13
the calculated acoustic energy density within the droplets E1

normalized by the incident acoustic energy density Ei
0. For an

outline of the basic steps used in this calculation, please refer
to the Appendix. As can be seen in Fig. 13, this calculation
shows that the energy density within each scatterer is globally
much higher for the FC40 droplets than for the GaIn droplets.
In particular, the ratio E1/Ei

0 is always much larger than 1 for
the FC40 emulsion, whereas it is always much less than one
for the GaIn emulsion over most of the frequency range. This
difference in behavior is mostly due to the large difference in
the acoustic velocities of FC40 and GaIn: the high velocity
of GaIn relative to the matrix impedes the incident energy
from entering and then being confined within the droplets,
whereas the reverse is true for FC40 [35]. Furthermore,
near the resonant frequencies of the droplets, peaks in the
ratio E1/Ei

0 are visible for both systems, and these peaks
are especially large and narrow for the FC40 droplets. This
identifies the mechanism for the scattering delays that cause
the dips in energy velocity near these frequencies, confirming
that the resonances lead to trapping of the waves within the
scatterers.

IV. CONCLUSION

Ultrasonic experiments [2,5–7,14] can provide direct ob-
servation of the transmitted wave field through strongly scat-
tering media with excellent temporal and spatial resolution,
thereby enabling both the average wave and multiply scattered
coda waves to be measured. Hence, as shown in this work, a
complete set of wave scattering and transport parameters is
accessible to experiment, unlike in optics where a similar set
of measurements seems to be almost prohibitively challenging
[8,18,21,36,37]. We have used this advantage of ultrasonic
experiments to investigate wave transport in two contrasting
model systems consisting of almost monodisperse emulsions,
with either FC40 or GaIn droplets suspended in yield-stress
fluids. The all-fluid character of these systems ensures that
only scalar (acoustic) waves are involved, simplifying both
the relevant theoretical models and the character of the droplet
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resonances, which follow a simple multipolar sequence. The
very low intrinsic absorption in the fluids constituting these
emulsion samples is another favorable characteristic, enabling
the exploration of ultrasonic wave transport over a wide tem-
poral range. In addition, emulsion samples with low droplet
concentrations were fabricated so that models based on the
independent scattering approximation or solutions of the
Boltzmann transport equation in the low concentration limit
would be applicable, and were found to accurately describe
the experimental data.

This combination of experiments and theory has enabled us
to show unambiguously how changing the relative refractive
index of the scatterers from being greater than 1 to less than
1 impacts wave transport in the multiple scattering regime.
While the influence of the relative index nrel on both the
scattering and transport parameters is very significant, it is
its effect on the energy velocity ve that seems the most
striking and unexpected. For the FC40 emulsion, with droplet
index nrel = 2.3 (similar to n for TiO2 particles in optics),
we confirm that the resonances are strong and ve is very
substantially slowed down near these resonances by as much
as a factor of 2 relative to the matrix velocity v0, while the
group velocity reaches very large values at these frequencies
(vgr � v0). By contrast to this emulsion containing high re-
fractive index droplets where ve 	 vgr, we find the opposite
behavior in the GaIn emulsion (ve > vgr ≈ v0), an effect that
we have shown is due to the high sound speed in GaIn
(nrel = 0.56). The low relative refractive index of GaIn in
this all-fluid scalar wave system results in a shift to higher
frequencies of the multipolar resonances, which are also quite
weak by comparison with FC40. Consequently, there is an
appreciable range of frequencies over which there is strong
multiple scattering but no droplet resonances occur, and it is
at these frequencies where the energy velocity is most clearly
seen, both experimentally and theoretically, to be larger that
any of the other velocities (albeit by only 10 to 20%). This
result was not anticipated, based on previous work on low
index solid inclusions in a fluid matrix [6,7]. The mechanism
behind this contrasting behavior of the energy velocity in these
two emulsion systems is elucidated by our calculations of
the energy density in a droplet relative to the energy density
of the incident wave; these calculations show that for high
index droplets, E1/Ei

0 � 1, pointing to resonant trapping of
energy inside the droplets as being responsible for the low
energy velocity, while for low index droplets, E1/Ei

0 < 1 in
the strong scattering regime, and the waves are excluded from
the droplets rather than being trapped inside.

The excellent control of sample properties that are feasible
through soft-matter techniques [38] suggests that it will be
interesting to explore other scalar wave systems in acous-
tics by further tuning the sound speed contrast between soft
scatterers and the surrounding fluid medium, the strength
of the resonances, and the concentration of the scattering
inclusions. In this way, it may be possible to study wave
transport in model systems with even stronger scattering, and
maybe even to observe complex phenomena such as Anderson
localization. The experimental study of Anderson localization
for scalar classical waves in three dimensions would be a
new experimental avenue of exploration that complements
previous work on the Anderson localization of elastic waves in

mesoglasses [39–43], and would avoid the complexities that
challenge observations of Anderson localization of light in
three dimensions due to its vector nature [44,45].
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APPENDIX: SCATTERING OF AN ACOUSTIC PLANE
WAVE BY A LIQUID SPHERE

1. Pressure field expressions

We consider a homogeneous liquid sphere of radius a (with
density ρ1 and sound speed v1) immersed in another fluid (ρ0,
v0). When a plane wave is incident on the sphere, the aim
of the calculation is to find expressions for the pressure field
amplitudes An and Bn of the waves that are scattered away
from the sphere and refracted inside the sphere, respectively.
Because of the symmetry of the problem, we use a spherical
polar coordinate system ( �er, �eθ , �eφ) with its origin at the center
of the sphere. Under these conditions, the incident plane wave
[with wave vector �k0 = (ω/v0) �ez] is expressed as

ψ i
0(r, θ, t ) =

∞∑
n=0

in(2n + 1) jn(k0r)Pn(cosθ )e−iωt , (A1)

where jn are spherical Bessel functions of order n and Pn are
the Legendre polynomials. Under the same conditions, the
scattered ψ s

0 and refracted ψ1 fields are expressed as

ψ s
0(r, θ, t ) =

∞∑
n=0

in(2n + 1)Anhn(k0r)Pn(cosθ )e−iωt (A2)

and

ψ1(r, θ, t ) =
∞∑

n=0

in(2n + 1)Bn jn(k0r)Pn(cosθ )e−iωt , (A3)

where hn are spherical Hankel functions of the first kind.
The partial wave amplitudes An and Bn are determined by

using continuity conditions of pressure ψm and displacement
(−→um = −→∇ ψm/ρmω2) for the two regions m = 0 and m = 1 at
the surface r = a of the sphere. Thus we obtain

An = − q j′n(k0a) jn(k1a) − jn(k0a) j′n(k1a)

qh′
n(k0a) jn(k1a) − hn(k0a) j′n(k1a)

(A4)

and

Bn = An
hn(k0a)

jn(k1a)
+ jn(k0a)

jn(k1a)
, (A5)

where q = ρ1k0

ρ0k1
and ′ denotes the derivative with respect to the

parameters kma. The An and Bn coefficients are then functions
of incident wave frequency ω. From Eq. (A5), the resonant
frequencies ωr are identified from the peaks of the modulus
of Bn, |Bn|. For ω = ωr , a given order n corresponds to a
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particular symmetry of the scattered wave pattern (monopolar
n = 0 or dipolar n = 1 modes, for example).

2. Energy density calculation

In terms of the pressure ψ and displacement �u fields, the
acoustic energy density associated with each partial wave n in
region m is written as follows:

En
m = 1

2

(
ψn

m

)2

ρmv2
m

+ 1

2
ρmω2|−→um|2. (A6)

Since the energy density associated with the scattered wave
Es

0 decreases slowly with distance from the scatterer, only
reaching zero at infinity, the exact numerical calculation
of the ratio E1/E0 is not possible. Thus, for the calcu-
lations in Fig. 13, we only consider the energy density
of the incident wave Ei

0 (which is constant in the re-
gion r > 0) and the energy density within the droplet E1

(which varies in the limited region r � a), and charac-
terize the relative energy density inside a droplet by the
ratio E1/Ei

0.
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