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Summary. — Ultrasonic experiments are well suited to the investigation of classical
wave transport through strongly scattering media, and are playing a role that is often
complementary to investigations using light or microwaves. Advantages of ultrasonic
techniques are their ability to readily detect the wave field (not just the intensity), to
perform experiments resolved in both time and space, and to control the properties
of the medium being investigated over a wide range of scattering contrasts. This
first paper reviews what has been learned from ultrasonic experiments over the last
15 years about the ballistic and diffusive propagation of classical waves through
strongly scattering disordered media. These results are compared with studies of
ordered media (phononic crystals), where band gaps and super-resolution focusing
have been observed.
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1. – Introduction

For more than a decade, there has been growing interest in ultrasonic wave transport
in strongly scattering media. Just as for other classical waves, such as light and mi-
crowaves, much of this interest revolves around the many unusual wave phenomena have
been observed at intermediate frequencies, where the wavelengths are comparable to the
size of the scatterers [1]. Examples range from strikingly large variations in wave speeds
caused by strong resonant scattering (when a pulse can even appear to travel so quickly
through a sample that its velocity is negative) to the inhibition of wave propagation that
can occur in very strongly scattering samples when the waves become localized. In seek-
ing to discover and understand such wave phenomena, ultrasonic experiments have an
important role to play, partly because of the relative ease with which the full wave field,
rather than just the intensity, can be measured. Thus, ultrasonic techniques give direct
experimental access to the wave function and/or Green’s function, allowing both phase
and amplitude information to be obtained. Ultrasound is also well adapted to pulsed
experiments, enabling the path length dependence of the transmission or reflection to
be resolved in time, usually in the near field. Furthermore, the fact that the scattering
contrast is governed by differences in both velocity and density enables the scattering
strength to be controlled over a very wide range. As a result, experiments with acous-
tic or elastic waves can make important contributions to both fundamental studies and
practical applications of wave scattering in complex media, and are often complementary
to optical and microwave methods for investigating these phenomena.

In this paper, I will review the progress that has been achieved over the last 15 years in
understanding how ultrasonic waves propagate through both random and ordered media.
The regime of interest here is one where multiple scattering dominates, but the scattering
is not so strong that the interference effects leading to Anderson localization are present.
(The latter is the subject of the second paper in this series, while the third paper dis-
cusses applications such as Diffusing Acoustic Wave Spectroscopy.) To illustrate the
scope of information that is accessible to ultrasonic experiments in random systems, sec-
tion 2 summarizes results obtained for acoustic waves (longitudinal polarization only) in
a model system consisting of a suspension of glass beads in a liquid, where a rather com-
plete picture of wave transport has been achieved through transmission measurements.
Other types of acoustic scattering systems (plastic spheres and bubbles surrounded by
water), which lead to different wave behaviour, are also mentioned. By contrast to the
diffusive transport of energy that is seen in disordered systems, the propagation of mul-
tiply scattered waves in ordered media is characterized by a coherent multiply scattered
wave field, leading to band gaps and unusual focusing phenomena. These effects are
described in the last major section of the paper on phononic crystals (section 3).

2. – Acoustic wave transport in random media

Many features of ultrasound transport in strongly scattering media are demonstrated
by acoustic pulse propagation experiments that have been performed in a disordered
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medium consisting of randomly packed 0.5-mm-radius glass beads immersed in wa-
ter [2, 3, 4, 5]. Strong scattering in this model system is ensured by the large acoustic
impedance difference between glass and water (Zglass/Zwater ≈ 10, where Z=ρvp is the
acoustic impedance, ρ is the density and vp is the phase velocity). Although the transmit-
ted signals are dominated by multiply scattered waves at intermediate frequencies, the
phase sensitivity of piezoelectric ultrasonic transducers allows measurements to be made
of the weak signal that propagates ballistically through the medium without scattering
out of the forward direction. This ballistic signal remains coherent both temporarily and
spatially with the input pulse, so that it can be extracted by averaging the transmitted
wave field over many speckles, a procedure that causes the multiply scattered component
to cancel because of the random phase fluctuations from speckle to speckle. The sepa-
ration of the ballistic pulse from the multiply scattered waves, whose energy transport
was found to be well described by the diffusion approximation, allows a very complete
picture of wave transport in strongly scattering media to be obtained.

2.1. Ballistic propagation. – Figure 1 shows an example of how the ballistic pulse
can be extracted from the total transmitted field when the sample is sufficiently thin.
The experiments were performed by enclosing the suspension of glass particles in a cell
with thin walls that are transparent to ultrasound, and then placing the sample in a
water tank between a plane-wave generating transducer and a subwavelength-diameter
hydrophone detector. The hydrophone position was scanned in a plane near the surface
of the sample to measure the transmitted signal in many independent coherence areas,
or speckles, using a grid separation of approximately a wavelength. The wave field
averaged over more than 100 speckles reveals the ballistic pulse, shown by the solid
curve in fig. 1(b). The multiply scattered waveforms (fig. 1(c)), often called the coda,
especially in the context of seismic waves, since they arrive after the ballistic pulse, can
then also be obtained by subtracting the ballistic pulse from the total transmitted field
in each speckle. This demonstration of coherent ballistic pulse propagation provides
convincing experimental evidence that a (uniform) effective medium can still be defined
in the intermediate strongly scattering regime, a result that has been inferred less directly
in recent optical experiments [6].

The ballistic pulse contains information that is crucial for determining the frequency
dependence of the scattering properties of any sample, as it allows both the phase and
group velocities [vp = ω/k, vg = dω/dk] as well as the scattering mean free path ls [I(L) =
I(0) exp(−L/ls)], to be determined [5]. Here ω, k, L and I are the angular frequency,
wave vector, sample thickness and ultrasound intensity, respectively. Experimentally, vp

and ls are determined from the phase difference ∆φ and amplitude ratio A(L)/A(0) of
the fast Fourier transforms (FFT) of the ballistic and input pulses (vp = ωL/∆φ, ls =
−L/ ln[A(L)/A(0)]2 ). The group velocity is accurately measured by digitally filtering the
ballistic and input pulses using a narrow Gaussian filter, whose bandwidth is chosen to
be sufficiently narrow that pulse distortion due to dispersion is negligible, and measuring
the delay tg between their peak arrival times (vg = L/tg).

Results for randomly close packed suspensions of glass beads in water are shown in
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Fig. 1. – Comparison of the total field (a), average field (b) and scattered field (c) transmit-
ted through a thin sample (thickness, L = 1.7 mm) of glass spheres in water. The data are
normalized with respect to an input pulse of unit peak amplitude.

fig. 2 over a wide frequency range, corresponding to wavelengths from approximately
5a to 0.5a (dimensionless frequency range: 1 . kwa . 10, where kw is the wavelength
in water and a is the bead radius). For kwa > 2, strongly scattering is seen, with the
scattering mean free path approaching the bead radius, and the product kls ranging from
3 to 9. Both the phase and group velocities exhibit a considerable frequency dependence,
with the group velocity varying by more than a factor of 2. Note the very low values of
the group velocity near kwa = 2, where vg is substantially less than the sound velocities
in either water or glass (vw = 1.5 mm/µs, vglass = 5.6 or 3.4 mm/µs for longitudinal or
transverse polarizations).

The origin of these large velocity variations can be understood using an effective
medium model, based on a Spectral Function Approach (SpFA), which overcomes a
fundamental limitation of the traditional Coherent Potential Approximation (CPA) in the
intermediate frequency regime [3]. The scattering is calculated by modeling a typical glass
bead scatterer as an elastic sphere that is coated with a layer of water and embedded in a
homogeneous effective medium, which accounts for the presence of all the other scatterers.
The dispersion relation, ω versus k, for acoustic waves in the medium is then determined
by identifying the peaks of the spectral function, given by the negative imaginary part of
the Green’s function. The simple physical interpretation of the method is that these peaks
correspond to the locus of points in the frequency-wavevector plane where the scattering
is weakest, so that they delineate the modes that succeed in propagating through the



Ultrasonic wave transport in strongly scattering media 5

1.0

1.5

2.0
   v

E

   v
g

 v
E
 (

m
m

/µ
s)

1.2

1.4

1.6

1.8

 

v
p
  
(m

m
/µ

s)

0

1

2

3

4

 

    l*

    l
S

 l
 /

 a

0.6

0.8

1.0

1.2

1.4  DATA a = 0.47 mm

 DATA a = 0.25 mm

 THEORY

  
(m

m
/µ

s)

(c)

(d)

(a)

0 2 4 6 8

0.5

1.0

v
g a

n
d

 

k
w
 a

0 2 4 6 8
0.2

0.4

0.6

 k
w
 a

D
 /

 a
  
(m

m
/

(b)

Fig. 2. – Frequency dependence of (a) the phase velocity, (b) the group and energy velocities,
(c) the scattering and transport mean free paths, and (d) the diffusion coefficient. The dotted
horizontal line in (a) indicates the sound velocity in water. All data (symbols) and theory (solid
and dashed curves) were measured/averaged over a small 5% variation in the bead size.

medium and identify the effective medium properties. The approach is accurate so long
as kls & 2 [5]. This dispersion relation enables vp and vg to be calculated, giving
the excellent agreement with the experimental data shown in fig. 2. In addition, the
scattering mean free path can be determined from the scattering cross section of the
coated elastic sphere [3, 5]. By calculating the energy density of a typical scatter as a
function of frequency, the sharp features in the group velocity near kwa ∼ 2 and above
kwa ∼ 5 were found to be associated with resonances of the fluid coating and solid spheres,
respectively, leading in the first case to a slowing down of the velocity by tortuosity of
the connected fluid pathways and in the second case to resonant trapping of energy in
the solid scatterers [5]. The overall mechanism underlying the frequency dependence
of the phase and group velocities can be understood as follows: because of the strong
coupling between the resonant scatterers, the uniform effective medium sensed by the
coherent ballistic propagation is very strongly renormalized, in much the same way as
quantum mechanical resonances are shifted when there is strong coupling between them.
Thus, the ballistic pulse is still able to propagate coherently while being very strongly
affected by the scatterers. These experimental and theoretical results also show that the
group velocity remains well defined despite the strong scattering [3], thereby addressing
a question about the meaning of the group velocity in dispersive media that was raised
by Sommerfeld [7] and Brillouin [8] in the first part of the 20th century and discussed
more recently by Albada et al. [9].

Ultrasonic experiments on other types of suspensions with different acoustic properties
have also been performed to examine how ballistic pulse propagation is affected by the



6 J. H. Page

(a)

2 4 6 8 10
1

2

3

4

5

Fast   Slow

  L = 0.56 mm

  L = 2.46 mm

   Theory

2
ω 

a
 /

 v
f

2 4 6 8

 

 Fast longitudinal mode

 Stoneley branch

 Fluid dispersion relation

2 k a

(b)

2 k a  2 k a

(c)

10

Fast longitudinal mode

Fluid dispersion relation

Fig. 3. – (a), (b) Dispersion curves for a suspension of PMMA spheres in water. In (a), experi-
mental results are represented by symbols for two different sample thicknesses, and theoretical
predictions from the peaks of the spectral function (shown in (b)) are shown by the solid curves.
(c) Incident and transmitted pulses through a cloud of bubbles, which are shown in the grey
scale background picture behind the graphs. The bubbles were generated by an electrolysis
method and had a radius of ∼ 15 µm.

strength and character of the scattering resonances. One interesting example is a slurry
of randomly close packed plastic spheres in water, where gaps open up in the mode
spectrum due to scattering resonances having the character of interfacial or Stoneley
waves. These Stoneley-wave-like resonances involve both longitudinal and transverse
displacements inside the spheres, and compressional deformations of the surrounding
nearby liquid. As a result, a second longitudinal mode with slow velocities, due to the
coupling between these Stoneley wave resonances on adjacent spheres, is observed. This
slow mode was first discovered by Brillouin scattering experiments [10], which probe the
modes of the system by measuring the frequencies of the modes at fixed wave vector,
in contrast to ultrasonic pulse propagation experiments, which measure the velocities of
the modes at fixed frequency. Ultrasonic measurements of the dispersion relations are
shown in fig. 3(a), and compared with peaks in the spectral function (fig. 3(b)) predicted
by the SpFA model. Good overall agreement is found, confirming the basic character
of the unusual modes of this system. In contrast to the Brillouin scattering results,
the ultrasonic measurements reveal that because of absorption, longitudinal modes still
propagate inside the ”gap” and interfere with the Stoneley wave branch, leading to rich
behaviour that provides a stringent test of the accuracy of the SpFA model.

A second example of the effects of very strong scattering is acoustic pulse propagation
through a suspension of bubbles. The acoustic properties of bubbly suspensions are
dominated by a low-frequency multipole resonance, leading to a wide range of unusual
wave phenomena such as anomalous dispersion and superradiance (e.g., see refs. [11,
12, 13]). One remarkable consequence is shown in fig. 3(c), which provides compelling
experimental evidence that the group velocity is negative near the fundamental bubble
resonance frequency [14]. This unusual effect occurs because of pulse reshaping due to the



Ultrasonic wave transport in strongly scattering media 7

anomalous dispersion, which leads to constructive interference at the leading edge of the
pulse and destructive interference at the trailing edge; thus, the peak of the transmitted
pulse emerges from the sample before the peak of the input pulse has entered it, so
that the pulse transit time and hence group velocity is negative. It is noted that, at a
given time, the intensity of the incident wave is always greater than the transmitted one,
so that causality is not violated. In this case and in analogous examples for light [15],
the group velocity still accurately describes ballistic pulse propagation, providing the
bandwidth is sufficiently narrow, but can no longer correspond to the ballistic energy
transport velocity [16].

2.2. Diffusive propagation. – Transport beyond the scale of the mean free path is
dominated by multiply scattered waves (fig. 1(c)). So long as the thickness of the sample
is greater than about three mean free paths and the scattering is not so strong that
kls ∼ 1, the transport of energy in ultrasonic experiments is well described using the
diffusion approximation [2, 17]. In this approximation, all phase information is ignored
and the quantity of interest is energy transport, which is treated as a random walk
process, characterized by the diffusion coefficient D = vEl∗/3. Here vE is the average
local velocity of energy transport, and l∗ is the transport mean free path, or distance over
which the direction of propagation is randomized. The transport and scattering mean free
paths are related by l∗ = ls/(1−〈cos θ〉), where θ is the scattering angle, and are therefore
equal only when the scattering is isotropic. Dynamic (pulsed) measurements, which probe
the distribution of multiply scattered path lengths in the time domain, are sensitive to
D, while steady state (continuous wave) experiments, such as the measurement of total
energy transmission, are sensitive to l∗/L.

To demonstrate the applicability of the diffusion approximation to acoustic wave
transport in strongly scattering media, and to measure D, l∗ and vE over a wide frequency
range, an extensive series of pulsed and quasi-continuous-wave experiments have been
performed on the same glass bead suspensions described above [2, 4, 17]. For examples
of other approaches to investigating diffusive transport of acoustic waves in 3D and
2D systems, see references [18, 19]. In refs. [2, 4, 17], slab-shaped samples were used
and the diffusion coefficient was measured from the temporal evolution of the average
transmitted intensity, I(t), which was determined by averaging the square of the envelope
of the scattered sound field over a large number of independent speckles. Typical results,
which were obtained using a tightly focused incident pulse to create a point source, are
shown in fig. 4(a) for three different sample thicknesses, ranging from 7 to 30 scattering
mean free paths. Comparison of the experimental data with solutions of the diffusion
equation was facilitated by performing the measurements on slab-shaped samples, with
widths at least 10 times the thickness so that edge effects could be ignored (i.e., the
samples were excellent approximations to infinite slabs for the range of times over which
signals could be detected). Accounting for internal reflections at the front and back
faces of the slab and the possibility of dissipation inside the sample, the transmitted
intensity (flux) for a delta function diffuse source of unit strength in time and position,
δ(t)δ(x−x′)δ(y−y′)δ(z−z′), is given by the solution of the diffusion equation with these
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Fig. 4. – (a) Time dependence of the transmitted intensity, normalized so that the peak of the
corresponding input pulse is unity, for three randomly close-packed glass-bead-in-water samples
having different thicknesses L. The symbols represent experimental data taken with a point
source, and the solid curves are fits to the predictions of the diffusion approximation, from
which the diffusion coefficient and absorption time are determined. (b) Time dependence of the
mean square transverse width w2 of the diffuse halo for a slab shaped sample. The linear growth
of w2 is characteristic of a diffusion process, enabling D to be measured from the slope of the
straight line fit (solid line) independent of absorption and boundary conditions.

boundary conditions:

(1) I(t) = −D
∂U

∂z

∣∣∣∣
z=L

=
e−ρ2/4Dte−t/τa

2πL2t

∞∑
n=1

Ane−Dβ2
nt/L2

where τa is the absorption time, βm are the positive roots of the transcendental equation
tan β = 2βK/(β2K2 − 1), K is equal to z0/L with z0 = (2l∗/3)(1 + R)/(1 − R) (z0

is known as the extrapolation length, since it is the distance outside the sample where
the diffuse energy extrapolates to zero), R is the angle-averaged reflectivity of diffuse
sound at the sample boundaries (calculated from the acoustic impedance mismatch),
and the coefficients An are given by an analytic function of βn, K and z′ [2]. Here
ρ =

√
(x− x′)2 + (y − y′)2 is the transverse distance in the plane parallel to the slab

at which the intensity is detected relative to the point directly opposite the source.
The location of the diffuse source inside the sample, z′, has been shown by numerical
simulations to be equal to l∗ [20]. The solid curves in fig. 4(a) show the results of least
squares fits of eq. (1) to this data set, with the initial increase of I(t) being sensitive
to D and the tail quite strongly influenced by τa. The good agreement between theory
and experiment demonstrates the validity of the diffusion approximation for multiply
scattered sound, enabling reliable measurements of both D and τa to be made.

One advantage of the point source geometry is that it enables the growth of the
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diffuse halo to be measured in the transverse direction parallel to the surface of the slab.
This gives a method of measuring D directly, independent of boundary conditions and
absorption [2]. Experimentally, the average transmitted intensity at transverse distance
ρ (“off-axis”) and at ρ = 0 (“on-axis”) are measured by averaging over different sample
positions with source and detector positions fixed relative to each other. From eq. (1),
it can be seen that the ratio I(ρ, t)/I(0, t) is given simply by e−ρ2/4Dt = e−ρ2/w2(t), so
that the the transverse width w(t) of the diffuse halo grows as the square root of time,
as expected for a diffuse process. Plotting w2(t) versus time enables D to be measured
from the slope of a straight line fit to the data, as shown in fig. 4(b). The excellent
agreement between the values of D measured directly from the transverse width, and
from the more cumbersome fits of eq. (1) to the time of flight profile, gives additional
confidence in the accuracy with which the diffusion coefficient can be measured in pulsed
transmission measurements.

Ultrasonic experiments can also be performed using a good approximation to a plane
wave source by placing the sample in the far field of a planar immersion transducer.
The solution of the diffusion equation for this experimental geometry can be obtained by
integrating eq. (1) over x′ and y′, giving Iplane(t) = 4DtIpoint(ρ = 0, t). Again, accurate
measurements of D can be obtained by fitting this expression to the measured time-of-
flight profiles for this geometry (e.g., see ref. [2]). This exact solution of the diffusion
equation is often approximated by the somewhat simpler expression

(2) U(t) ≈ 2e−t/τa

π(L + 2z0)

∞∑
n=1

e−Dn2π2t/(L+2z0)
2
sin

(
nπ(z + z0)

L + 2z0

)
sin

(
nπ(z′ + z0)

L + 2z0

)

Equation (2) is a good approximation in many experimental situations, especially at long
times, but is not accurate for large values of the reflectivity R. At long times, in the
absence of absorption, eq. (2) is proportional to exp−t/τD, with τD = (L+2z0)2/(π2D).
This gives a very simple result for the exponential decay of the time of flight profile
in terms of the diffusion time τD, which is determined by the effective thickness of the
sample L + 2z0 and the diffusion coefficient.

Results for the frequency dependence of the diffusion coefficient in the glass bead
suspensions are shown in fig. 2(d). A considerable variation, roughly a factor 3, is seen
over the range of frequencies investigated. To determine its origin, experiments were
also performed for very long pulses to attain quasi-continuous-wave conditions, so that
l∗ could be measured from the thickness dependence of the total transmitted intensity,
I(L) = fn(l∗/L, α =

√
Dτa) (see ref. [2] for the complete expression). It was found

that l∗ has at most a very weak frequency dependence (fig. 2(c)), being approximately
equal to the diameter of the beads in the strong scattering regime. This weak frequency
dependence is also shown from calculations of l∗ using the SpFA model, where 〈cos θ〉
is determined from the average of cos θ weighted by the square of the angle-dependent
scattering amplitude (solid curve in fig. 2(c)). Hence the strong frequency dependence
of D must be due to the variation of vE , which was determined experimentally from
the ratio vE = 3D/l∗ using the measured values of D and l∗. Figure 2(b) compares the
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measurements of the energy velocity with the group velocity, showing that both vE and
vg, which describe the transport of energy through the sample by diffusive and ballistic
waves, respectively, are remarkably similar in magnitude and frequency dependence. This
similarity between vE and vg, which was not anticipated from earlier theoretical work for
light [9], appears to hold quite generally except in cases of extreme dispersion, where the
group velocity loses its meaning as the ballistic energy transport velocity (even though
vg still describes narrow-band coherent pulse propagation accurately in such extreme
conditions). The comparison shown in fig. 2(b) suggests a simple physical picture for
vE and its relationship to vg. Even in the forward direction, the transport of energy is
strongly affected by scattering resonances, which lead to a large scattering delay near the
minima in vg. It is reasonable to expect that wave pulses scattered through a non-zero
scattering angle will experience a similar, but not identical, scattering delay, so that in
this case vE should be similar to vg, with the relation between them taking into account
the additional angle-average scattering delay of the scattered waves [4].

These ideas can be formulated quantitatively by extending the SpFA model to cal-
culate the additional scattering delay experienced by a wave pulse. In this approach,
the angular dependence of the magnitude and phase shift in a typical scattering event
is calculated for each frequency component of the wave pulse from the complex scatter-
ing amplitude of the coated elastic sphere embedded in the effective medium. By in-
corporating these frequency-dependent phase and amplitude variations into the Fourier
components of the incident Gaussian pulse, and taking the inverse Fourier transform
to recover the scattered pulse, the corresponding time delay of the scattered pulse
envelope relative to the forward direction can be calculated for each scattering an-
gle. The intensity-weighted angular average of these additional scattering delays, ∆tave,
can then be used to express the energy velocity in terms of the group velocity, giving
vE = l∗/(l ∗ /vg + ∆tave) = vg/(1 − δm), where δm = ∆tavevg/l∗. Note that, in this
approach, vE , l∗, vg and δm are all calculated in a renormalized effective medium, which
accounts for the effects of the multiple scattering that become especially pronounced
for high volume fractions of scatterers. Excellent quantitative agreement between the
predictions of this model and the experimental data was found not only vE and l∗ but
also for the diffusion coefficient that is calculated from them using D = vEl∗/3.

In summary, these ultrasonic experiments in a model system consisting of glass beads
in water have enabled a quantitative and comprehensive assessment of the applicability
of the diffusion approximation to the description of energy transport by multiply scat-
tered acoustic waves. By comparing the parameters that govern diffusive and ballistic
transport over a wide frequency range, a unified physical picture of energy transport in
strongly scattering media has emerged. In addition, the success of the SpFA model in
describing the experimental results for both ballistic and diffusive waves highlights the
relevance of an effective medium description even in the strongly scattering intermediate
frequency regime. The methods developed in this work have facilitated both the search
for ultrasonic wave localization in more strongly scattering samples (see paper II, this
volume, p. 95) and the development of novel dynamic probes of multiply scattering
materials (see paper III, this volume, p. 115).
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3. – Wave transport in ordered media: phononic crystals in 2D and 3D

The character of ultrasound transport in strongly scattering media is changed dramat-
ically when the scatterers are arranged in an ordered array to form a phononic crystal.
These materials are the acoustic and elastic counterparts of photonic crystals for light,
and have been the subject of increasing interest since the early 1990s [21]. Because it
is relatively easy to control the strength of the scattering contrast between the com-
ponent materials, phononic crystals may be viewed as ideal media in which to study
the profound effects of lattice structure on wave propagation. Much of the initial re-
search concentrated on phononic band gaps, which occur due to Bragg scattering when
the wavelength is comparable to the lattice constants, leading to frequency bands where
wave propagation is forbidden. As a result, much is now known about the conditions
under which phononic crystals with compete band gaps can be fabricated, allowing wave
transport in this frequency range to be investigated and novel acoustic waveguides and
noise blocking devices to be constructed [22, 23, 24, 25, 26, 27, 28, 29, 30]. Methods for
making compact phononic crystal sound insulators have also been proposed and demon-
strated [25]. More recently, attention has turned to wave transport in the pass bands
both below and above the band gaps, where unusual negative refraction, diffraction and
focusing effects have been observed [31, 32, 33, 34, 35].

To illustrate the main differences between ultrasonic wave transport in ordered and
disordered structures, consider the results that have been obtained for 3D phononic crys-
tals made from 0.8-mm-diameter tungsten-carbide beads surrounded by water [28, 31]. In
this case, excellent crystal quality was assured by the availability of extremely monodis-
perse spheres due to the needs of the ballpoint pen industry, and meticulous hand-
assembly of the spheres in a custom-made mould. In transmission, multiple scattering
from the periodic array of scatterers leads to a transmitted pulse in the far field with a
well defined, but coherent, coda, so that the entire transmitted pulse can be analysed
by the methods outlined in section 2.1. Thus, ultrasonic pulsed techniques can readily
measure all the basic wave properties of the crystal, including the transmission coefficient
(from the ratio of the amplitudes of the FFTs of the transmitted and incident pulses)
and the band structure (from the phase shift at each frequency in the pulse, yielding the
variation of ω with k = ∆φ/L).

Typical results for the 3D tungsten-carbide/water crystal can be found in fig. 5.
The left pair of panels shows the transmission coefficient and the band structure of this
face-centred-cubic crystal, revealing a wide band gap due to Bragg scattering near 1
MHz (width ∼ 20% of the central frequency), where the spacing between layers of the
crystal is approximately equal to half the wavelength in water. In the [111] direction,
in which the experimental data were obtained, the gap is even wider, as shown by the
broad dip in the transmission coefficient, measured for a crystal consisting of 12 layers.
These results illustrate the relative ease with which wide band gaps can be obtained in
acoustics relative to optics, because of the large scattering contrast that can be achieved
in ultrasound (for this combination of solid spheres and liquid matrix, the longitudinal
impedance ratio is 60). Even wider gaps (∼ 100%) are found in solid-solid systems such
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Fig. 5. – left panels: Amplitude transmission coefficient along the [111] direction for a 12-layer
fcc phononic crystal made from tungsten carbide beads, and the corresponding band structure.
Experimental data are shown by the symbols, and the results of MST calculations by the solid
curves. A photo of part of the surface of the crystal is shown in the insert on the left. Right
panel: Thickness dependence of the group velocity at a frequency of 0.95 MHz in the first band
gap.

as steel beads in epoxy, where coupling with a resonance of the spheres enhances the band
gap considerably [29, 36]. In fig. 5 the experimental data are compared with predictions
of Multiple Scattering Theory (MST, indicated by the solid curves) [24], which is ideally
suited to calculating the properties of phononic crystals built from scattering elements
having simple geometric shapes such as spheres, where the scattering can be calculated
accurately with no adjustable parameters. Excellent agreement between theory and
experiment is found. Note that this agreement indicates that the band structure, which is
calculated for an infinite crystal, can be accurately measured by transmission experiments
in finite-thickness samples consisting of remarkably few layers.

The transmission coefficient in the middle of the gap (at f = 0.95 MHz) is found, both
experimentally and theoretically, to decrease exponentially with thickness as exp(−κL),
consistent with evanescent modes having imaginary wave vector κ. This suggests that
ultrasound is transmitted through the crystal by tunneling, whose dynamics can be in-
vestigated through measurements of the group velocity [28]. The right panel of fig. 5
shows that the group velocity increases linearly with sample thickness, an unusual result
that is the classic signature of tunneling, implying that the tunneling time is indepen-
dent of thickness. For the thickest crystals, the magnitude of vg is remarkably fast - see
the horizontal arrows in the figure for the longitudinal velocities in the two constituent
materials. The solid and dashed curves in the figure are calculated using Multiple Scat-
tering Theory both without and with absorption, the latter being taken into account
by complex moduli of the constituents. It can be seen that the theory with absorption
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gives a very satisfactory description of the experimental results, indicating how dissi-
pation, which has no counterpart in the quantum tunneling case, significantly affects
the measured tunneling time. This effect was interpreted using a so-called two modes
model, which allows the role of absorption to be understood in simple physical terms [28].
Absorption in the band gap of a phononic crystal cuts off the long multiple scattering
paths, making the destructive interference that gives rise to the band gap incomplete. As
a result, a small-amplitude propagating mode is produced in parallel with the dominant
tunneling mode, accounting for the reduction in the measured group velocity relative to
the predictions without absorption. This simple model was also found to give a good
quantitative explanation of the data [28].

Experiments on the same 3D tungsten-carbide/water phononic crystal were the first
to demonstrate ultrasound focusing by negative refraction [31] - another area of phononic
(and photonic) crystal research that is currently attracting considerable attention. At
frequencies in the pass band near 1.6 MHz in fig. 5, the initially diverging beam from
a quasi-point source was observed to be sharply focused in a plane that was quite far
from the crystal, where the focal spot could be easily measured. As is explained in
more detail below, focusing occurs because the group velocity inside the crystal is of
opposite sign to the wave vector, and as a result the direction of energy transport (which
is given by the group velocity) corresponds to a negative angle of refraction. In terms
of a simple ray picture, in which the rays are drawn parallel to the group velocity, the
wave vector components of the field from the source that are incident at angles ±θ

are refracted negatively as they enter the crystal, cross inside the crystal and are then
refracted negatively again as they leave the crystal, so that the emergent rays converge
to to a focus on the far side of the crystal. The data in these initial experiments were
interpreted using a Fourier imaging model that accounted for this unusual wave transport
through the crystal, giving a quantitative explanation of the observed focusing effect [31].

To explore the phenomena of negative refraction and focusing in phononic crystals in
more detail, a number of experiments and theoretical calculations have been performed
on 2D crystals [32, 33, 34, 35]. The most direct observations of negative refraction were
made by Sukhovich et al. [34], who constructed a prism-shaped phononic crystal of steel
rods, arranged in a triangular lattice at a volume fraction of 58% and surrounded by
water. This crystal has the advantage of a relatively simple band structure, as shown
by the solid curves (MST) and symbols (experiment) in fig. 6(a). The second pass
band, between the stop band along ΓM (the [1,1] direction) and the band gap near 1
MHz, has a single branch, which appears quite isotropic. This isotropic behaviour is
confirmed by the equifrequency contours (fig. 6(b)), which characterize the variation
with direction in the magnitude of the wavevector at a given frequency. The contours
are remarkably circular and shrink in radius as the frequency increases, indicating that
the wave vector has the same magnitude in all directions, and that the group velocity,
~vg = ∇~kω(~k), points towards the centre of each circular contour. Thus, for this band,
the group velocity and wave vector in the first Brillouin zone are antiparallel for all
directions of propagation, a situation resembling left-handed behaviour in negative index
metamaterials [37]. A consequence of vg and k being antiparallel is that waves arriving
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Fig. 6. – (a) Band structure of a phononic crystal of steel rods in water (triangular lattice of
1.02-mm-diameter rods with lattice constant a = 1.27 mm). The solid curves were calculated
using Multiple Scattering Theory calculations, and the symbols represent experimental data.
(b) Equifrequency contours at the three frequencies, 0.75, 0.85 and 0.95 MHz, in the second
pass band. (c) Snapshot the negatively-refracted pulse emerging from a phononic crystal prism
(angles 30◦, 60◦ and 90◦, as shown) after a narrow-band pulse (central frequency of 0.85 MHz)
was normally incident on the shortest face of the prism (in the direction of wide blue arrow).
The data were measured by scanning a hydrophone in a rectangular grid, digitally filtering the
pulses to narrow the bandwidth, and measuring the wave field at a particular moment in time
to construct the spatial variation of the field at that time.

at the surface of the crystal at non-normal incidence will be negatively refracted. This
effect is demonstrated by the experimental data shown in fig. 6(c), which was obtained
by directing a narrowband pulse with central frequency 0.85 MHz towards the shortest
face of the prism at normal incidence (see the wide blue arrow) and imaging the field that
emerged from the longest face using a miniature hydrophone. Since the wave pulse enters
the crystal at normal incidence, the pulse continues to travel inside the crystal in the
original direction, which is parallel to the group velocity. As the pulse leaves the crystal,
the outgoing field pattern is seen to bend backwards in the negative direction, showing
according to Snell’s law that the wave vector inside the crystal must also point in the
negative direction, opposite to the direction of the group velocity, as predicted from the
equifrequency contour. To emphasize this point, the directions of the Bloch wave vector
and group velocity inside the crystal are also shown in fig. 6(c), as well as the direction
of the refracted beam outside, which is perpendicular to the wave fronts. (Note that to
measure the direction of k, it crucial to measure the wave field and not just the intensity
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so that k can be determined from the wave fronts, as the position of maximum intensity
in the refracted beam in this pulsed experiment is also influenced by the time the pulse
reached the exit surface of the crystal, with the earlier arrivals being closer to the top of
the prism and corresponding to the signals on the top left part of the measurement area.)
Furthermore, the measured refraction angle is given within experimental uncertainty by
Snell’s law, using the value of the wave vector inside the crystal predicted by MST,
providing additional evidence that the data can be quantitatively described in terms of
negative refraction.

The direct observation of negative refraction in this 2D phononic crystal suggests
that it is a good system in which to investigate focusing by negative refraction in flat
phononic crystal lenses, and in particular to examine the ultimate image resolution that
may be possible. For this purpose, a rectangular-shaped six-layer crystal of steel rods
with the same crystal structure was constructed. Each layer contained 60 rods (to avoid
edge effects), and the layers were stacked in the ΓM direction, i.e. with the base of the
triangular unit cell parallel to the surface. To explore the resolution capabilities of the
lens, a narrow line source (width 0.55 mm, which is less than the wavelength in water at
the frequencies of interest) was built from piezoelectric polymer strips. When the crystal
was filled and surrounded by water, the best image of the source was measured at 0.70
MHz, the lowest frequency at which the equifrequency contours are circular. However, the
image resolution, as determined by the Rayleigh criterion (resolution equals half the full
width of the peak ∆, i.e., the distance ∆/2 from the maximum to the adjacent minimum
(zero)), was only 1.15λ, where λ is the ultrasonic wavelength in water. This is not as
good as the diffraction limit of λ/2, which is obtained when all propagating components
of the field from a point source are brought to focus in the image plane, because the
equifrequency contours inside and outside the crystal were not matched, cutting off all
angles of incidence greater than 56.8◦ in this case. To overcome this limitation, a second
crystal was built with thin transparent walls to enable the liquid inside the crystal to
be replaced by methanol, which has a lower sound velocity than water, shrinking the
frequency axis of the dispersion curve by 74%. As a result, the size of the equifrequency
contours of both the crystal and the water outside were perfectly matched at a frequency
of 0.55 MHz in the second band. Thus, all angle negative refraction (AANR) is achieved
at this frequency, and all others down to the bottom of the band at 0.50 MHz. The image
obtained at 0.55 MHz, when the source was placed 1.6 mm from the opposite surface of
the crystal, is shown in fig. 7(a). A good focal pattern is clearly seen, with the focal spot
narrowly confined both perpendicular and parallel to the crystal surface. By fitting a
sinc function (fig. 7(b)), the transverse width of the image was measured to be 3.0 mm,
with a corresponding resolution of 0.55λ. This shows that a flat phononic crystal with
equifrequency contours matched to those of the medium outside is capable of producing
images with an excellent resolution approaching the diffraction limit [34].

To achieve super resolution (better than the diffraction limit), it is necessary to cap-
ture and amplify evanescent waves from the source - something that clearly did not occur
for the data shown in fig. 7(a). However, when the source was brought even closer to
the surface of the crystal, 0.1 mm or λ/25 away, it was found that significantly improved
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Fig. 7. – Contour maps of the ultrasonic amplitude (magnitude of the FFT of the wave field at
the frequencies indicated) on the imaging side of a flat methanol-steel phononic crystal lens for
a 0.55-mm-wide line source, and corresponding plots of the amplitude through the focus. (a):
Image measured at 0.55 MHz for a source-lens distance of 1.6 mm. (b): Amplitude parallel to
the lens surface (circles) through the focus in (a). The data are compared with a sinc function
(red line), indicating a resolution ∆/2 = 0.55λ. (c) and (e): Images measured (c) and calculated
with FDTD (e) for a frequency of 0.53 MHz when the source-lens distance is only 0.1 mm. Note
the appearance of a bound mode of the crystal, which decays evanescently as the distance from
the surface (at z = 0) increases. (d) and (f): Comparison of experiment (circles) and theory
(solid curves) for the transverse width of the focal spot (d) and its variation with distance from
the surface of the crystal (f). Super resolution is evident from the half widths of the primary
peaks in (d), give a resolution of 0.37λ and 0.35λ for experiment and theory, respectively.

resolution could be obtained [35] . The best resolution was found at a slightly lower
frequency, 0.53 MHz, as shown by the experimental results in figs. 7(c)(d) and (f), which
are compared with Finite Difference Time Domain (FDTD) simulations in figs. 7(d)-(f).
Both the experimental and theoretical resolutions, 0.37λ and 0.35λ, are clearly better
than the diffraction limit. The reason why super resolution can be attained for this very
small source-crystal separation is that some of the evanescent waves from the source are
now able to couple to a bound mode of the crystal, and hence become amplified suf-
ficiently to participate in image restoration. Evidence for the excitation of this bound
mode can be seen in the field patterns of figs. 7(d) and (e), which show several subsidiary
peaks that are largest at the crystal surface; these additional peaks (not seen in (a)) de-
cay rapidly with distance from the crystal, as expected for the evanescent decay of bound
crystal modes. Additional evidence for the existence of this bound mode was obtained
from FDTD calculations of the band structure of a finite crystal slab with the same num-
ber of layers as in the experiment. These calculations revealed a nearly flat band that
extends from 0.525 MHz at the water to 0.51 MHz at the zone boundary; as it lies below
the water line, this mode is bound to the crystal slab as it cannot propagate in water.
The best focusing is seen at 0.53 MHz, as this frequency lies between the frequency for
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perfectly matched equifrequency contours (0.55 MHz) and the resonance frequencies of
the bound mode (0.51 - 0.525 MHz), but is still close enough to the bound mode that
it can be excited. Calculations of the field patterns inside the phononic crystal indicate
that this bound mode is a slab mode of the crystal, and not a surface mode.

This demonstration that super resolution can be achieved in practice with phononic
crystal lenses is enabling a detailed study of the many factors that can influence the
optimum resolution. Perhaps the most interesting question concerns the mechanism that
sets the resolution limit for this crystal. This is determined by the largest transverse wave
vector kmax that the crystal will support, with the most logical choice for kmax being
the wave vector at the Brillouin zone boundary of the crystal along the ΓK direction
(parallel to the surface of the lens). (Note that since the bound mode that is excited is
a slab mode of the crystal, it is the bulk Brillouin zone boundary and not the surface
Brillouin zone boundary that sets the resolution limit, allowing better resolution to be
achieved for this triangular lattice than would be found for the surface modes that were
considered by Luo et al. for photonic crystals.) This condition gives kmax = 4π/3a. If we
assume perfect transmission for all transverse wave vectors k⊥ less that kmax, and zero
transmission for k⊥ greater than kmax, then the image amplitude will vary with distance
x parallel to the crystal surface as

∣∣∣
∫ kmax

−kmax
exp[ik⊥x]dk⊥

∣∣∣ = |2 sin(kmaxx)/(kmaxx)| so
that the resolution limit ∆min/2 = π/kmax = 3a/4. This condition gives ∆min/2 = 0.34λ

at 0.53 MHz, which is very close to our experimental and FDTD results.
In conclusion, these experimental and theoretical results demonstrate the conditions

needed to achieve optimal focusing: (i) the equifrequency surfaces/contours should be
spherical/circular, (ii) the equifrequency surfaces in the phononic crystal and in the
medium outside should be matched, and (iii) the crystal should have a bound mode
at a frequency close to the operational frequency, in order to enable amplification of
evanescent waves from the source, for super resolution to be attained. The analysis
of the maximum possible resolution that can be obtained with the 2D methanol-steel
phononic crystal will be useful for designing new phononic crystal lenses in which the
super resolution may be enhanced.

4. – Conclusions

Experiments with ultrasonic waves are playing an increasing important role in probing
and understanding the rich diversity of wave phenomena that occur in strongly scatter-
ing media. In disordered media, the phase sensitivity of ultrasonic detectors enables
pulsed experiments to separate the coherent, forward-scattered signal, which propagates
ballistically through the medium, from the multiply scattered coda. Thus, transmission
experiments can be used to obtain a very complete set of measurements of wave transport
through the medium, allowing the parameters that describe both ballistic and diffusive
propagation to be compared over a wide frequency range. Such measurements have been
performed on a simple model system of glass beads in water, illustrating the potential of
ultrasound for gaining useful insights into the character of wave transport in the presence
of strong multiple scattering, and laying a useful foundation for future experiments on
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more complex systems.
In the second part of this paper, the properties of ordered acoustic media, or phononic

crystals, have been reviewed. The main emphasis has been on focusing by negative re-
fraction, where super-resolution imaging has recently been demonstrated experimentally.
This area of research continues to grow, providing complementary information and ap-
plications to analogous optical experiments on photonic crystals.
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