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Summary. — Some fifty years after Anderson localization was first proposed,
there is currently a resurgence of interest in this phenomenon, which has remained
one of the most challenging and fascinating aspects of wave transport in random
media. This paper summarizes recent progress in demonstrating the localization
of ultrasound in a “mesoglass” made by assembling aluminum beads into a disor-
dered three-dimensional elastic network. In this system, the disorder is sufficiently
strong that interference leads to trapping of the waves at intermediate frequencies,
as demonstrated by studying three different fundamental aspects of Anderson lo-
calization: time-dependent transmission, transverse confinement of the waves, and
the statistics of the non-Gaussian intensity fluctuations. Additional ultrasonic ex-
periments have been performed to reveal the multifractal character of the wave
functions near the Anderson transition. This is the first time that so many different
aspects of localization have been studied simultaneously, providing very convinc-
ing evidence for the localization of ultrasonic waves in the presence of disorder in
three dimensions, and enabling new aspects of Anderson localization to be studied
experimentally.

(∗) Published in the Proceedings of the International School of Physics Enrico Fermi,
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1. – Introduction

During the 1980s, it was realized that Anderson localization [1, 2] - the spatial trap-
ping of waves due to disorder - is not only a quantum effect, but is, more generally,
a phenomenon that may occur for any type of wave: quantum or classical. This phe-
nomenon results from the interference of waves that have been multiply scattered in a
disordered medium, and therefore should be observable so long as the disorder is suffi-
ciently strong and coherence is maintained, the latter condition being readily satisfied
for classical waves such as light, microwaves, sound, elastic waves, and even seismic
waves. To appreciate the analogy that exists between quantum and classical wave be-
haviour in disordered media, one need go no further than to compare the Schrodinger
and Helmholtz equations in the presence of disorder, as is outlined in appendix A. This
comparison shows that these equations for quantum and classical waves have the same
form, but with an important difference. This difference implies that it is only possible to
localize classical waves at intermediate frequencies where the wavelength is comparable
to the size of the scattering inhomogeneities, and not more or less trivially at very low
frequencies, as in the case for electrons. This absence of “bound states” for classical
waves, and the need to achieve sufficiently strong scattering, makes the localization of
classical waves challenging to observe in practice.

Not withstanding these challenges, there are several reasons why classical waves are
potentially better adapted to observing the phenomenon of Anderson localization di-
rectly. For electrons or other quantum particles (e.g., cold atoms), experiments must
be performed at low temperatures to minimize the effects of inelastic scattering, which
destroys phase coherence. There is no such restriction for classical waves. Classical waves
also have the advantage that the analogue of electron-electron interactions (nonlinear-
ities) can be avoided by suitable choices of materials and power levels. Perhaps most
significant is the versatility of experiments with classical waves, where measurements as
a function of both time and space are feasible, potentially yielding much more informa-
tion about localization than is possible by simply measuring the total transmittance at
a single frequency. The latter is equivalent to measuring the overall sample conductance
for electronic systems, the technique that has been used almost exclusively in studies of
electron localization.

Once these advantages of classical waves were appreciated, experimental work showing
strong localization of both acoustic and electromagnetic waves followed in one- and two-
dimensional systems (1D and 2D), as well as in quasi-1D waveguides [3, 4, 5, 6, 7,
8]. These were significant steps forward, as they permitted localized wave functions
and their statistical properties to be studied directly, stimulating many new theoretical
advances as well. However, the central question in the field, whether or not classical waves

Course CLXXIII, “Nano Optics and Atomics: Transport of Light and Matter
Waves”, edited by R. Kaiser, D.S. Weirsma and L. Fallani (IOS, Amsterdam; SIF,
Bologna, 2011) pp. 95-114. The original publication is available from SIF at
http://www.sif.it/SIF/en/portal/books/series/rendiconti fermi.
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could be localized in three dimensions (3D), has been more difficult to answer, despite
several tour-de-force experiments in optics [9, 10, 11]. Three dimensions is especially
important, as it is only in 3D that scaling theory predicts the existence of a real transition
from propagating to localized modes [12]. In seeking experimental evidence, one of the
problems, in addition to the challenges mentioned above, has been absorption, which
is always present to some extent for classical waves, and which leads to a reduction
in total transmission having the same dependence on sample thickness as localization.
Thus, to demonstrate 3D localization convincingly, it is necessary to combine a number
of experimental approaches that can probe key signatures of localization: e.g., anomalous
dynamics (time dependence), spatial confinement of the waves, and the statistics of the
large intensity fluctuations.

This paper describes the recent progress that has been achieved using ultrasonic
experiments, in combination with advances in the self-consistent theory of localization,
to unambiguously demonstrate Anderson localization in three dimensions [13]. One key
to this success has been the construction of sufficiently strongly scattering samples, which
are described in the next section (section 2). The following sections outline the three
main experimental approaches that have been exploited to obtain evidence of localization:
time dependent transmission (section 3), transverse confinement (section 4) and statistics
(section 5). This last section ends with an example of an aspect of localization in 3D
that has not been accessible to experimental study previously, namely the structure of
localized wave functions as characterized by their multifractal properties [14].

2. – Mesoglasses: porous elastic solids with very strong scattering

In samples suitable for localization experiments, it is generally important to maxi-
mize the scattering strength and minimize the absorption (or dissipation). Despite the
very large scattering contrast between solids and liquids for ultrasonic waves, with differ-
ences in acoustic impedance as large as 10 to 60 being readily achievable, suspensions of
solid spherical particles in a fluid, as described in [15], were found to have insufficiently
strong scattering. This is true even in the intermediate frequency regime, where the
wavelength is comparable to the size of the scatterers and shape resonances can enhance
the scattering. The other problem with such samples is the relatively large dissipation,
one important contribution being viscous losses at the interface between the solid and
liquid phases. To avoid this difficulty, we decided to take a different approach and in-
vestigate porous, single-component solid systems instead. Our initial experiments were
performed on highly porous solid networks of well-sintered glass beads, revealing inter-
esting plateaus in both the diffusion coefficient and the density of states [16]. However,
in spite of very strong scattering, no evidence of localization was seen in these early
experiments. To make better samples for observing Anderson localization, three impor-
tant steps were taken: the glass particles were replaced by aluminum, thereby further
reducing the intrinsic absorption in the constituent particles; the particle radius a was
increased, allowing higher effective frequencies (ka) to be accessed using the same ultra-
sonic transducers; and a new way was developed for joining the particles together into
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Fig. 1. – One of the samples in which the localization of ultrasonic waves was observed in the
intermediate frequency regime. The aluminum beads are brazed together with weak elastic links
to form a disordered solid network, in which the ultrasonic waves become trapped after strong
multiple scattering from the pores.

a solid network, allowing for better control of the interparticle contacts, and hence the
scattering strength. In this way, a disordered elastic network of aluminum beads was
created by brazing the beads together to form weak elastic bonds between the beads
while preserving their spherical shape, as shown in Fig. 1. Such a structure may be
viewed as a “mesoglass” in which the beads are linked by narrow necks to form a disor-
dered material with mesoscopic particles as the building blocks rather than atoms, and
with elastic bonds between the particles rather than interatomic forces. The beads were
monodisperse, with a diameter of 4.11±0.03 mm, and the samples had an aluminum vol-
ume fraction of approximately 55%, corresponding to random loose packing of the beads
before brazing. The samples were slab-shaped, with circular cross sections of diameter
much larger than the thickness L, which ranged from 8 mm to 23 mm.

To study the samples using ultrasonic immersion techniques [15, 17], the samples
were first waterproofed with very thin plastic walls, so that the samples remained dry
when immersed in a water tank between the generating and detecting transducers. This
procedure ensured that wave transport occurred through the aluminum network, where
the incident acoustic wave from the water (longitudinal polarization only) was converted
into an elastic wave in the solid (which supports both longitudinal and transverse polar-
izations). Measurements were performed over a wide frequency range from 100 kHz to
several MHz, since this corresponds to the intermediate frequency regime for this struc-
ture, where the wavelength is comparable to the bead and pore sizes and very strong
scattering is expected. Initial characterization of the samples was performed by measur-
ing the amplitude transmission coefficient, obtained from the ratio of the fast Fourier
transforms of the transmitted and input signals. These measurements confirmed the
existence band gaps in this type of system, as first reported by Turner and Weaver in



Anderson localization of ultrasound in three dimensions 5

1998 [18]. The gaps occur because the coupled resonances of the aluminum beads broaden
to form pass bands, with band gaps forming in between; wide band gaps are observed
so long as the coupling is not too strong, which is the case for our samples. For some of
the samples, it was possible to extract the coherent ballistic pulse and measure the lon-
gitudinal phase and group velocities vp and vg, as well as the scattering mean free path
l. Very strong scattering was demonstrated by the observation that, outside the band
gaps, the product of wave vector and mean free path varied from nearly 1 to 2.5 over
this frequency range, thus approaching the Ioffe-Regel limit kl = 1. Although we were
not able to measure kl for transverse waves in these experiments, previous experiments
on sintered glass bead networks have shown similar values of kl for both transverse and
longitudinal waves in the strong scattering regime [19]. Localization is expected when
kl . 1, but the exact critical value klc at which the transition occurs is not known [20],
and is likely to be wave and sample dependent; thus, these initial measurements suggest
that localization of ultrasonic waves may indeed be possible in these samples.

3. – Time-dependent Transmission

Our first experiment to investigate wave transport by multiply scattered waves in
these samples was performed using a short quasi-planar incident pulse and measuring
the time-dependent transmitted field with a miniature hydrophone. The hydrophone was
scanned over a square 55x55 grid parallel to, and within a few wavelengths of, the sample
surface. The grid separation was typically equal to the wavelength in water (for more
details on the method, see [15] and [17]). A schematic diagram of the setup is shown in
fig. 2(a). Several representative waveforms measured at different positions in the speckle
pattern are shown in fig. 2(b); this example was recorded for a two-cycle input pulse with
a central frequency of 0.25 MHz, showing that data for a long range of propagation times,
corresponding to progressively longer and longer multiple scattering paths, is observable
in these samples. Before determining the time-dependent intensity I(t), the waveforms
were digitally filtered to limit the bandwidth to 5% of the central frequency of the pulse.
The average transmitted intensity I(t) was then determined by squaring the envelope
of the field at each position, averaging over each position in the speckle pattern, and
normalizing by the peak of the input pulse. Typical time-dependent intensity profiles
are shown in figs. 2(c) and (d), revealing the excellent signal-to-noise and large dynamic
range obtained at both low and high frequencies in the range of interest between 0.1 and
3 MHz.

Note that, even though both compressional (longitudinally polarized) and shear (trans-
versely polarized) waves are excited in these elastic materials, in which shear waves
typically propagate at roughly half the speed of longitudinal waves, a single intensity
profile I(t) is seen at all frequencies. This occurs because the polarizations mix at each
scattering event. Thus, after only a few scatterings, the total energy density becomes
equipartitioned between compressive and shear waves [21, 22, 23], according to their
respective energy densities UL and UT . For weak disorder,
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Fig. 2. – (a) Schematic diagram indicating the experimental setup for measuring the time-
dependent transmission. (b) The transmitted field measured by the hydrophone at three dif-
ferent positions near the sample surface. The source was a short two-cycle pulse with a central
frequency of 0.25 MHz. The peak of the input pulse occurs at t = 0. (c) Transmitted intensity
I(t) at a representative frequency of 0.2 MHz in the diffuse regime for a sample with thickness
L = 14.5 mm. The best fit to diffusion theory (solid red curve) with R = 0.85 yields D = 3.0
mm/µs and l∗ = 2.5 mm, with τa being to large to be measurable. (d) I(t) for the same sample
at a frequency of 2.4 MHz in the localized regime. The data cannot be fitted by diffusion theory
(dashed blue curve), but is well fitted by the self-consistent theory of localization (solid red
curve) with ξ = 15 mm, l∗B = 2 mm, DB = 16 mm2/µs and τa = 160 µs.

(1) UL (ω) ∝ ρL (ω) =
k2

2π2

dk

dω
∝ ω2

v2
p,Lvg,L

(2) UT (ω) ∝ 2ω2

v2
p,T vg,T

Since the energy density depends on the inverse of the cube of the wave speeds, transverse
waves dominate the energy transport. At sufficiently low frequencies, one one might
expect that the transport is diffusive and that there are no renormalization effects due
to interference, so that the Boltzmann diffusion coefficient DB = vEl∗B/3 and transport
mean free path l∗B are observed. In this regime, providing that the scattering is isotropic
(l = l∗) and the energy velocity is equal to the group velocity, a simple relation can be
derived for the effective energy-density-weighted average diffusion coefficient:
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Here, the effective transport mean free path being given by

(4) l∗ =
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and the effective energy velocity by
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1
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2
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)/(
1
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p,Lvg,L

+
2

v2
p,T vg,T

)
.

While the general case is more complex, these relations give some insight into the conse-
quences of energy equipartition, and provide a simple starting point for comparing data
with the predictions of the diffusion approximation whenever the ballistic parameters
can be measured.

For our brazed aluminum bead samples, the ultrasonic wave transport was indeed
found to be diffusive at low frequencies. The evidence for diffusive transport can be
seen in the exponential decay of the ensemble-averaged transmitted intensity at long
times, I(t) ∝ exp(−t/τD), which was observed for frequencies up to 0.4 MHz. In this
frequency range, the entire time dependence of I(t) is well described by diffusion theory,
as is illustrated in fig. 2(c), which compares diffusion theory with data measured at 0.2
MHz. By fitting theory to experiment, the diffusion coefficient was determined, and the
transport mean free path was estimated from the dependence of the transmitted intensity
on boundary conditions. One consequence of the equipartition of elastic energy inside
the sample is that the internal reflection coefficient R is large, as the outside medium
only supports longitudinal waves; nonetheless R can still be reliably determined from
the measured ballistic parameters by accounting for the angle-dependent reflection coef-
ficients for all polarizations [24], thereby reducing the number of fitting parameters. In
this frequency range, D was found to be roughly independent of frequency, consistent
with earlier experiments on sintered glass bead networks [16]. Significantly, we found
that absorption, which attenuates I(t) by the factor exp(−t/τa), where τa is the ab-
sorption time, was too small to measure in this frequency range, consistent with our
expectations that absorbtion would be much much lower for these samples than in most
strongly scattering acoustic systems, such as suspensions of particles in a fluid [17]. The
success in interpreting these data using diffusion theory establishes that multiply scat-
tered ultrasound propagates diffusively in the lower part of the intermediate frequency
range, which is the diffusive regime for this system.
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In the upper part of the intermediate frequency range (∼ 2 MHz), the time depen-
dence of I(t) shows qualitatively different behavior: at long times, I(t) decays more slowly
than in the diffusive regime, with a non-exponential tail that cannot be explained by the
diffusion approximation (fig. 2(d)). This behavior has been viewed as a slowing down of
the effective diffusion coefficient D(t) with propagation time, reflecting a time-dependent
renormalization of D due to interference effects associated with localization [7, 10]. Phys-
ically, the waves become trapped by the disorder, but eventually manage to escape from
the sample, suggesting that Anderson localization may be occurring in these samples. To
interpret these data quantitatively, we exploit recent progress in the self-consistent the-
ory of localization, initially developed for electron localization by Vollhardt and Wölfle
in 1980 [25, 26]. The basic idea in this theory is to described the renormalization of
the diffusion coefficient by accounting for constructive interferences between reciprocal
paths, which lead to an increased probability that a quantum particle or classical wave
returns to the same spot. The recent progress [27, 28] enables the dynamics of wave trans-
port to be predicted for experiments such as ours, which involve open three-dimensional
systems. The new aspect of this theory is the incorporation of boundary conditions self-
consistently, thereby accounting for the fact that the return probability is less reduced
near the boundaries, where the wave may escape, so that the renormalization of D by
interference is less there. This leads to a position-dependent dynamic diffusivity kernel
D(~r, t− t′). The solid curve in fig. 2(d) is a fit of the self-consistent theory to our data at
2.4 MHz, and gives an excellent description of the experiment at all propagation times.
From this fit, we are able to determine the localization length ξ = 15 mm for this sample.
This measurement of ξ is feasible since several key parameters (l and vp, and hence kl

and R) are known for our sample from independent ballistic measurements, leaving the
localization length, the bare transport mean free path l∗B , the diffusion time τD , and the
absorption time τa as fitting parameters. In the self-consistent theory, the localization
length is related the ratio of kl to its critical value at the mobility edge, χ = kl/(kl)c,
by ξ/l∗B = [6/(kl∗B)2c ]χ2/(1 − χ4). Thus ξ is positive in the localization regime where
χ < 1, and negative in the diffuse regime, where the absolute value of ξ plays the role
of a correlation length in the vicinity of a phase transition. The most important points
to emerge from the fitting are not only that the self-consistent theory describes the time
dependence of the measured I(t) very well, but also that it is only possible to fit to the
experimental measurements with the theory when ξ > 0. This gives strong evidence for
the dynamic localization of ultrasound in our sintered aluminum bead system.

4. – Transverse Confinement

The measurements of the time-dependent transmission described in the previous sec-
tion give only indirect evidence of Anderson localization. Is it possible to observe local-
ization more directly? To answer this question, the quasi-plane wave source was replaced
by a point source (approximately a wavelength wide), and the transmitted intensity was
measured as a function of both position and time on the opposite face of the sample. The
point source was obtained by focusing the input pulse through a narrow aperture onto
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Fig. 3. – (a) Schematic illustration (not to scale) of the setup for measuring the dynamic trans-
verse confinement of the transmitted intensity emitted by a point source in the localization
regime. (b) Average time- and position- dependent intensity, I(ρ, t) at several positions ρ for
the setup shown in (a). The frequency (2.4 MHz) and sample are the same as in fig. 2(d). (c)
Mean square width w2

ρ(t) of the intensity ratio I(ρ, t)/I(0, t) as a function of time for the data
shown in (b) and for a second sample with a thickness L = 23.5 mm. The frequency is 2.4 MHz
for both samples. The solid curves are the best fits of the self-consistent theory to the experi-
mental data (symbols) with l∗B = 2 mm, DB = 11 mm2/µs, ξ = 15 mm for the L = 14.5 mm
sample, and ξ = 7 mm for the L = 23.5 mm sample. Other parameters used in the calculations,
kl = 1.8 and R = 0.82, were determined from independent ballistic measurements. The dashed
line shows the linear time-dependence of w2 that would occur for diffuse waves, using a value
for D of 1.25 mm2/µs. (d) Dependence of the intensity ratio on distance ρ at selected times,
showing the non-Gaussian profile that is found both experimentally (symbols) and theoretically
(solid curves).

the sample surface at the point ρ = 0, as shown schematically in fig. 3(a). The transmit-
ted wave field was measured with subwavelength resolution using a hydrophone, which
was moved over a range of transverse positions ρ for a given position of the source. The
transmitted intensity I(ρ, t) was calculated from the measured field as indicated in the
previous section. To average the intensity for each ρ and t over a large number (typically
552 = 3025) of speckle spots, the position of the sample was scanned in the x− y plane
parallel to the surface of the sample. Typical data for I(ρ, t) at 2.4 MHz, measured on
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the same sample for which I(t) is reported in fig. 2, are shown in fig. 3(b). As expected,
data for larger ρ start later because the distance from the source is greater; what was not
expected is that the curves for different ρ decay at essentially the same rate at long times,
i.e., they differ by a time-independent factor at long times. To understand this behaviour,
the crucial quantity is the ratio I(ρ, t)/I(0, t), which probes the dynamic spreading of the
intensity profile in a plane parallel to the surface of the sample. Most importantly, this
ratio is independent of absorption, since at each time, the absorption factor exp(−t/τa) is
the same for any ρ and therefore cancels in the ratio. We characterize this dynamic spatial
profile of the intensity by its width wρ(t), defined by I(ρ, t)/I(0, t) = exp(−ρ2/w2

ρ(t)).
As shown in ref. [15], w2

ρ(t) = 4Dt ∝ t in the diffuse regime, providing an accurate
method for measuring D that is independent of absorption and boundary conditions. By
contrast, in the localized regime, the transverse width wρ(t) exhibits completely different
behaviour, shown in fig. 3(c) for two samples of different thickness. Instead of increasing
linearly with propagation time, w2

ρ(t) saturates, approaching a constant value for each
ρ at long times. Furthermore, the transverse spatial profile of the intensity is no longer
Gaussian in the localized regime, since w2

ρ(t) depends on ρ - another clear departure from
diffuse behaviour that is especially evident in the thinner sample. These results indicate
that the data cannot be explained by assuming a diffusion coefficient D(t) that depends
only on time, since in this case the magnitude of w(t) ∼ ∫

D(t)dt would be independent
of ρ [29]. The observed non-Gaussian shape of the spatial profiles is shown explicitly
in fig. 3(d) for a range of times separated by (almost) equal intervals at long times, but
by narrower intervals at early times. These data were measured on the thinner sam-
ple. A Gaussian curve with width equal to the sample thickness (dashed curve) is also
included in this figure for comparison. Both figs. 3(c) and (d) show that the intensity
profile initially grows with time, but then converges to a constant profile at long times,
revealing how the initial propagation of the waves away from the source is brought to
a halt by localization. This is exactly what is meant by localization. These data are
therefore a very direct demonstration of 3D Anderson localization, and are, to the best
of our knowledge, the most direct observations of this phenomenon to date.

Additional information about Anderson localization in these samples can be obtained
by comparing the data with the predictions of the self-consistent theory. The solid curves
in fig. 3(c) demonstrate that the behaviour of the dynamic transverse width is accurately
predicted by the self-consistent theory, which gives an excellent fit to the data for all t

and ρ, with a single set of parameters for each sample. The fits give ξ = 15 mm for the
thinner sample (L = 14.5 mm – the same sample whose the time dependent transmission
is plotted in fig. 2), and ξ = 7 mm for the thicker sample (L = 23.5 mm). These results
suggest that the scattering is stronger in the thicker sample due to small differences in
microstructure, showing that ξ is very sensitive to the degree of disorder, quantified by
kl, near the localization threshold, as theory predicts. It is worth emphasizing explicitly
that the non-Gaussian character of the experimental intensity profiles is quantitatively
described by the self-consistent theory, showing the importance of accounting for the
position dependence of D in the theory. These measurements of the localization length
at 2.4 MHz enable us to estimate the proximity to the mobility edge (kl)c, with kl being
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only 1% below (kl)c at this frequency.
Compared with the plane wave case 2(d), these fits of the self-consistent theory for

w2
ρ(t) provide a more accurate determination of the localization length. One reason is

the elimination of absorption, so there is one less parameter to fit. In addition, the self-
consistent theory predicts that the transverse width at long times depends predominantly
on both the localization length ξ and sample thickness L, and since it is straightforward
to measure L, the measurement of w2

ρ(t) provides a more direct way of determining ξ.
For thick samples (L >> ξ), the width is no longer influenced by ρ, i.e., the statistical
profile is again Gaussian, and the dependence of w2 at long times on L and ξ has been
shown to have a simple scaling form [31]: w2(t → ∞) ≈ 2Lξ(1 − ξ/L); thus, to leading
order, the long time limit of w2 is simply 2Lξ.

One of the interesting predictions of the theory is a strong and rapid renormalization
of the effective diffusion coefficient. As a result, DB cannot be measured directly even at
the earliest times at which transmission measurements can be made. The best fits give
surprisingly large values of DB , which imply vE > vp. Further theoretical work is needed
to understand these apparently very large values of the energy velocity in the localized
regime.

As the frequency is lowered, the transverse width increases, as is shown in fig. 4. One
would expect that in the localized regime, the width wρ(t) will always saturate at long
times, whereas in the diffuse regime, the width will continue to grow with time as the
energy density continues to expand in the transverse direction, albeit slowly near the
mobility edge. These expectations are confirmed by the self-consistent theory, where
recent calculations for thick samples show that the asymptotic value of w2(t) as t →∞
remains finite not only in the localized regime but even at the mobility edge, where the
saturation value is approximately equal to the thickness of the sample, w∞ ≈ L [31].
The experimental results plotted in fig. 4 appear consistent with these predictions. At
the lowest frequency shown (0.7 MHz), the width clearly continues to increase without
limit, and its increase is almost linear, indicating that at this frequency, the transport is
subdiffusive. At 1.0 MHz, w2

ρ(t)/L2 remains less than 1 throughout the range of times
where the signal could be measured, but is still increasing at the longest times, suggesting
that this frequency is very close to, but on the diffusive side of, the critical value fc at
the mobility edge. At higher frequencies, w2

ρ(t)/L2 remains well below 1, and clearly
saturates at long times for frequencies above 1.8 MHz, indicating that localization has
set in. These results illustrate the behaviour of the transverse width in the vicinity of the
Anderson transition, suggesting that it should be possible to use transverse confinement
to measure the variation of the localization length as the mobility edge is approached.
Work is currently in progress to examine this behaviour in detail.

Another interesting question concerns the time dependence of the transverse width,
especially at early times where it characterizes the initial growth of the spatial intensity
profile. In the localized regime, one might anticipate that the intensity would spread out
from the source at a slower rate than for diffuse waves; does this imply that w2

ρ(t) still
increases as a power law, with a smaller exponent than in the diffuse regime, or is the
behaviour more complex? To examine possible power-law behaviour more closely, the
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Fig. 4. – (a) Time dependence of the transverse width for several frequencies in the strong
scattering regime, showing that the width increases as the frequency is lowered. The mean
square width is normalized by the sample thickness squared (L = 23.5 mm for these data). The
data are plotted for ρ = 25 mm, but the dependence on ρ is not large for this thick sample
(see fig. 3). A mobility edge can be inferred to lie at a frequency between 1 and 1.8 MHz for
this sample. (b) The same data plotted on doubly logarithmic scales to display the power-law
behaviour of the time dependence near the mobility edge. At 1.0 MHz, the data are consistent
with a crossover from t2/3 to t1/2 behaviour, as predicted by the dynamic self-consistent theory
of localization.

experimental results for w2
ρ(t)/L2 are replotted in a doubly logarithmic scale in fig. 4(b).

This figure shows that such behaviour is exhibited at 1.0 MHz near the mobility edge, but
that there appear to be two power-law regimes. The data are consistent with an initial
growth of wρ(t)2/L2 as t2/3, followed by a slower t1/2 regime, which at this frequency
extends up to the maximum time at which signals could be recorded reliably. A t1/2

regime is also seen over a smaller range of times (∼ half a decade) at 1.4 MHz, before
w2

ρ(t)/L2 starts to level off towards a constant value (the long-time data are not plotted
here because the signal-to-noise ratio is poor at these times, preventing an accurate
measurement of how the width levels off, although it is nonetheless clear that it drops
below the t1/2 curve for times t > 220 µs). These power laws have been predicted by
the self-consistent theory for the initial expansion of the intensity from a point source
located deep inside a thick sample (L >> l) [31], where a relatively simple estimate of
the return probability may be obtained by neglecting the position dependence of D. By
solving for D(Ω) at the mobility edge, Cherroret et al. show that the mean square radius
of the 3D intensity profile grows as t2/3 at short times (t << L2/DB), and as t1/2 at
longer times (t >> L2/DB) [31]. Assuming that the mean square transverse width for
a slab sample scales with time in a similar way near the mobility edge, this provides a
qualitative explanation of the time dependence seen in their numerical calculations [31]
and in our experimental results (fig. 4). However, this simple argument for the initial
time dependence of w2(t) does not explain the saturation at longer times.

To end this section, it is worth emphasizing again that these measurements of the
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dynamic transverse confinement of the intensity due to localization are independent of
absorption, which has been a major obstacle to reaching definitive conclusions in previous
experiments [6, 9, 10, 11, 32]. The method provides a direct way of observing the trapping
of waves by disorder. The behaviour revealed in figs. 3(c) and (d) is both qualitatively
and quantitatively different to that seen for diffusive waves, and provides unambiguous
evidence for the localization of ultrasound in these 3D samples.

5. – Statistical Approach to Localization

The previous sections have examined the marked changes that occur in the temporal
and spatial profiles of the average intensity in the localized regime. Localization also leads
to very large fluctuations in the transmitted intensity, and the measurement and analysis
of their statistical properties can be used to reveal other signatures of localization [6]. To
investigate this statistical approach to localization, we have measured the large spatial
fluctuations of the intensity that occur in ultrasonic speckle patterns [13]. These were
measured by scanning the hydrophone in a plane near the surface of the samples when
illuminated on the opposite side with short pulse having a spatial profile that corresponds
quite closely to a broad Gaussian beam. By taking the Fourier transform of the measured
variations in the transmitted field, ψ(x, y, t), the variation of the intensity I(x, y) at each
frequency in the bandwidth of the incident pulse was determined, enabling the near-field
speckle patterns to be plotted, as illustrated in figs. 5(a) and (b) for frequencies in the
diffuse and localized regimes, respectively. Even by eye, a clear difference can be seen
between these two cases. In the diffuse regime, the speckles overlap and the overall
fluctuations are less. By contrast, localized speckle patterns are characterized by a few
very intense peaks, which are well separated from each other, so that the fluctuations
across the speckle pattern are very much larger.

These intensity fluctuations can be quantified by plotting their distribution functions,
shown in figs. 5(c) and (d), where we plot the probability P (Î) of observing the different
values of the intensity normalized by the mean, Î = I/〈I〉. In the diffuse regime, P (Î) is
close to the well-known Rayleigh distribution, P (Î) = exp(−Î), for random wave fields
described by circular Gaussian statistics, such as can be observed for light from a laser
beam scattered off a rough, random surface. The small deviations seen for P (Î) < 10−2

in fig. 5(c) can be explained by the leading order corrections to Rayleigh statistics cal-
culated by Shnerb and Kaveh [33], and by Nieuwenhuizen and van Rossum [34]. Their
expression, P (Î) = exp(Î)[1+(Î2−4Î +2)/3g], contains only one parameter, the dimen-
sionless conductance g, and gives an excellent description of the experimental results,
with g = 11.4± 0.8 >> 1. By contrast, near 2.4 MHz in the localized regime (fig. 5(d)),
the intensity distribution function exhibits huge departures from Rayleigh statistics, with
greatly enhanced probability of observing large values of the normalized intensity, ex-
tending up to 50 times the average. To improve the accuracy of the measurements, P (Î)
for the localized regime was determined from data for four equivalent samples over a
range of 101 frequencies between 2.35 and 2.45 MHz. Figure 5(d) shows that the data
can be extremely well fitted over the entire range of intensities by Nieuwenhuizen and van
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Fig. 5. – (a),(b): Comparison of the near field speckle patterns, showing the spatial variation of
the intensity normalized by its average value, I(x, y)/ 〈I〉, at frequencies of 0.20 (a) and 2.4 MHz
(b). In (a), the speckle pattern is typical of the diffuse regime, with broad overlapping speckle
spots, while in (b) the pattern is dominated by narrow intense peaks that are characteristic of
Anderson localization. In these two figures, the colour scale is different, but the z-axis scale
(perpendicular to the plane) is the same so that the striking differences in these speckle patterns
can be readily seen. (c): The measured probability distribution P (Î) at 0.2 MHz (open circles)
is close to the Rayleigh distribution (dashed blue line). The solid magenta curve is best fit of
the theory of ref. [34] to the data with g = 11.4. (d): At 2.4 MHz, the probability of observing
large intensities relative to the mean is very much greater than for diffuse waves. The solid curve
shows the theory [34] for P (Î) with g = 0.80, and is in excellent agreement with the experimental
data (solid symbols). At large Î & 25, the data can also be described by a stretched exponential
with the same value of g (dotted curve). The large deviation from Rayleigh statistics with
g < 1 provides additional evidence that the Anderson localization of ultrasound has occurred
at frequencies near 2.4 MHz. [Nature Physics, 4, 945 (2008)]

Rossum’s theory for P (Î), yielding a value of g = 0.80±0.08. The theoretical expressions
used in the fits were determined for a broad Gaussian beam incident on a slab-shaped
sample, and account for interference processes dominated by the loopless connected dia-
grams [34]. For large intensities, the data can also be fitted by a stretched exponential,

exp(−2
√

gÎ), with the same value of g, a simple analytic form of P (Î) that can be de-
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duced from the complete intensity distribution derived in ref. [34]. These observations
of very large intensity fluctuations, for which the analysis of P (Î) reveals g < 1, provide
additional evidence [6] that localization has occurred in our samples at high frequencies.
This interpretation is consistent with the Thouless criterion that g < 1 implies localiza-
tion. It is remarkable that such good agreement between theory and experiment for P (Î)
has been found, as the theory was derived for the intensity in the far field and for g > 1;
this excellent agreement suggests a universality of the statistics of localized waves.

A simple way of characterizing the intensity fluctuations is measuring the variance,
〈Î2〉. At 0.2 MHz, we find 〈Î2〉 = 1.12 ± 0.02, very close to the value of 1 for Rayleigh
statistics, while at 2.4 MHz, a much larger value is found, 〈Î2〉 = 2.74 ± 0.09. The
variance of the normalized speckle intensities can be directly related to the dimensionless
conductance, 〈Î2〉 = 1 + 4/(3g) [6], providing an easier way of determining g. Using our
measured values of 〈Î2〉, this relation gives g = 11.5± 2 at 0.2 MHz, and g = 0.77± 0.04
at 2.4 MHz, in good agreement with the values of g determined from fitting the intensity
distributions. Note that the localization condition g < 1 implies that localization will
be reached when the variance 〈Î2〉 > 7/3 [6]. The measured variance at 2.4 MHz is
larger than the threshold value 7/3, again supporting our conclusions that ultrasound is
localized at this frequency.

The ability of these ultrasonic experiments to measure the wave functions very near
the surface of a localized sample suggests that the spatial structure of localized wave
functions can now be investigated experimentally. There is a large body of theoretical
and numerical work that predicts that wave functions at the Anderson transition have
multifractal character - a striking relation between the spatial structure of wave functions
and their large fluctuations at criticality [35]. However, there have been virtually no
experimental studies until very recently. The following paragraphs outline recent progress
in using our ultrasonic data to examine this remarkable aspect of critical wave functions
close to the Anderson transition [14].

Multifractality implies that the moments of the wave function intensity, I(~r) =
|ψ2(~r)|/ ∫ |ψ2(~r)|dd~r depend anomalously on length scale, with each moment scaling as
a power law with a different exponent. Note that I(~r) is now normalized by the total
intensity, rather than the average intensity, and is therefore normalized in the same way
as |ψ2(~r)| for quantum systems. To characterize this length scale dependence experimen-
tally, one can either vary the size L of the samples, or, with a sample of a fixed size,
divide the sample into boxes of linear size b, and vary b. The latter is easier to implement
in practice, and is therefore used for our experimental data; it allows the size dependence
to be expressed in terms of the dimensionless scaling length Lg/b, where Lg is the size
of the speckle pattern over which the intensity is normalized. Note that in this analysis,
since we can only measure the wave function on or near the surface of the sample, the
dimension of the measurement space is d = 2, even though the sample is definitely three
dimensional. This procedure is illustrated in fig. 6, which shows the transmitted intensity
for three frequencies near 2.4 MHz for a point source. (The point source geometry has
the advantage in this context of being more likely than an extended beam to excite a
single wave function.)
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Fig. 6. – Speckle patterns at three representative frequencies near 2.4 MHz [(a) 2.35 MHz, (b)
2.375 MHz, and (c) 2.425 MHz] when a point source is incident on the opposite face of the
sample. In (a) and (b), the speckle intensities very close to the sample surface are plotted as
three-dimensional intensity maps, so that the large fluctuations with position are easy to see. In
(c), a contour plot is shown to illustrate the box-counting method used to determine the system
size dependence in terms of the dimensionless scaling parameter Lg/b. In this example, the box
size b is 2.

The length scale dependence of the moments of the intensity is quantified by the
generalized Inverse Participation Ratios (gIPR), which are defined as

(6) Pq =
n∑

i=1

(IBi)
q =

n∑

i=1

[∫

Bi

I(~r)dd~r

]q

.

Here IBi is the integrated probability inside box Bi of linear size b, with λ < b < Lg,
and the summation is performed over all of the n = (Lg/b)d boxes. By definition, P1 ≡ 1
and P0 ≡ n. The length scale dependence was studied experimentally experimentally
by determining the “typically averaged” gIPR for a single realization of disorder. In the
critical regime, the average gIPR are expected to scale anomalously with Lg/b as

(7) 〈Pq〉 ∼ (Lg/b)−τ(q) ≡ (Lg/b)−d(q−1)−∆q ,

where the exponent τ(q) is written in terms of the normal (Euclidean) dimension d(q−1)
and the anomalous dimension, ∆q. Typical results for 〈Pq〉 from the ultrasonic data at
2.4 MHz are shown in fig. 7(a) for integer values of q between -2 and 3. By plotting the
data on doubly logarithmic scales, power law behaviour is clearly seen over more than a
decade in Lg/b, as shown by the excellent fits of the data to straight lines. The slopes
of these linear fits yield τ(q), from which the anomalous exponents ∆q were determined
by subtracting off the normal part d(q− 1). Average values of the anomalous exponents
were determined by averaging over many frequencies between 2.0 and 2.6 MHz.
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Fig. 7. – (a) An example of the dependence of the gIPR on box size at a frequency of 2.4 MHz,
for integer values of q between −2 and 3. Box sizes of b = 2, 3, 4, 68, 12 and 24 were used.
The grid size, Lg, was 55. (b) The anomalous exponents ∆q measured for localized ultrasound
(solid squares) and diffuse light (open circles). For the localized ultrasound exponents, the data
mirrored relative to q = 1/2 are indicated by the dashed curve, showing the symmetry of the
measured values of ∆q. The solid curve is a fit to the parabolic approximation.

The q-dependence of the anomalous exponents is shown in fig. 7(b), where the results
for localized ultrasonic wave functions are compared with data from an optical speckle
pattern for diffuse waves. The behaviour seen for these two data sets is obviously very
different. For the diffuse optical data, the open circles in this figure show that ∆q ≈ 0,
consistent with expectations for a normal (extended) wave function that ∆q = 0 for every
q. By contrast, for multifractal wave functions, such as are expected in the critical regime
of the Anderson transition, τ(q) and hence ∆q are expected to be continuous functions
of q, with substantial departures from Euclidean behaviour. This is precisely what fig. 7
shows for ∆q determined from the ultrasonic data, clearly indicating that each intensity
moment has a different fractal exponent. In other words, the q-dependence of ∆q in
fig. 7(b) reveals unambiguous evidence for multifractality of the localized ultrasound
wave functions.

The ultrasonic data in fig. 7(b) enables a recently predicted symmetry relation for
the anomalous exponents ∆q to be tested experimentally. This relation, ∆q = ∆1−q,
was predicted to hold exactly for multifractal wave functions at the Anderson transi-
tion [36]. The dashed blue curve in fig. 7(b) represents the experimental results reflected
about q = 1/2, showing that this symmetry relation is consistent with our data. As the
theoretical predictions of this symmetry relation were made in the context of particu-
lar symmetry classes of electronic systems, its observation in our ultrasonic experiments
provides evidence for the universality of critical properties at the Anderson transition.

The solid curve in fig. 7(b) is a fit of the predictions of the parabolic approximation
to our data. This analytic approximation, derived in first-order perturbation theory for
an Anderson transition in 2 + ε dimensions, gives the simple expression ∆q = γq(1− q).
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This expression describes the ultrasonic data well, with γ = 0.21. The parabolic ap-
proximation also gives simple analytic expressions for two other important measures of
multifractality, the probability density function and the so-called singularity spectrum,
both of which were also measured for our ultrasonic data, as reported in ref. [14]. The
measurement of all three manifestations of multifractality, anomalous exponents, the (log-
normal) probability density function and the singularity spectrum, have demonstrated
an aspect of Anderson transitions that has not been studied experimentally before. This
opens up a number of interesting questions for future work, such as seeking an under-
standing of why the value of γ for the ultrasonic data is smaller than predicted for the 3D
Anderson tight-binding model [35], and exploring the relationship between multifractal
properties and the critical exponents governing the Anderson transition [37].

6. – Conclusions

Ultrasonic experiments have several advantages for observing and studying Anderson
localization. As for all classical waves, they benefit from the convenience and versatility
that is associated with performing experiments at room temperature. More important is
the ability to readily investigate not only average wave transport at a single frequency,
but also the propagation of the multiply scattered wave fields resolved in time and space.
This has enabled the development of a new approach, transverse confinement, that has
permitted the most direct observation so far of Anderson localization in 3D, and provides
a valuable method for guiding future investigations of localization for any type of wave.
In particular, the measurement of the dynamic transverse confinement is a powerful way,
which is not affected by absorption, for assessing whether or not waves are localized; it
also enables the localization length to be measured.

By combining this approach with measurements of the time-dependent transmission
and the statistics of the large non-Gaussian intensity fluctuations, recent ultrasound ex-
periments, in conjunction with theoretical advances, have enabled the most unambiguous
demonstration of 3D Anderson localization of classical waves to date. These results sug-
gest that ultrasonic experiments on well controlled samples may be able to investigate
previously unexplored aspects of 3D Anderson localization. One of these aspects, the
characterization of the multifractal spatial structure of wave functions near the Ander-
son transition, has already been realized. It is reasonable to anticipate that an even more
complete study of 3D Anderson localization using ultrasound is now within reach.

Appendix A.

Schrodinger and Helmholtz equations in disordered media

A quantum particle of energy E in a random potential V (~r)is described by the wave
function ψ(r) exp (−iEt/~), where ψ(~r) obeys the time-independent Schrodinger equa-
tion
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(A.1)
[
− ~

2

2m
∇2 + V (~r)

]
ψ(~r) = Eψ(~r).

A monochromatic scalar classical wave (e.g., sound, or light if one neglects polariza-
tion) with angular frequency ω obeys the Helmholtz equation

(A.2)
[
∇2 +

ω2

v2

]
ψ(~r) = 0,

where, for the example of acoustic waves, the wave function ψ(~r) corresponds to the
pressure. In a disordered medium, the wave velocity v(~r) varies with position, and the
Helmholtz equation can be rewritten in terms of the fluctuations of wave speed relative
to the average speed v0 as

(A.3)
[−∇2 + σ (~r)

]
ψ(~r) =

ω2

v2
0

ψ(~r)

Here σ(~r) = ω2/v2
0 − ω2/v2(~r). This equation has the same form is the Schrodinger

equation if one considers σ(~r) to play the role of an effective potential (the analogue of
2mV (~r)/~2), and ω2/v2

0 to play the role of an effective energy (the analogue of 2mE/~2).
This analogy indicates that similar wave phenomena can be expected for quantum parti-
cles and classical waves. However, there is an important difference. Since σ(~r) > ω2/v2

0
always, the classical wave case corresponds to the quantum case only when E > V (~r)
for all ~r. Thus classical waves can never be trapped by disorder in a trivial way anal-
ogous to the trapping of a low-energy particle in the bottom of a potential well. For
classical waves, lowering the frequency also lowers the effective disorder potential seen
by the wave, since σ(~r) is proportional to ω2, so that localization is most likely to oc-
cur at intermediate frequencies where the wavelength is comparable with the size of the
inhomogeneities and the scattering is greatest.
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