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Summary. — Mesoscopic wave physics underpins many of the new developments
in ultrasonic spectroscopy for probing the physical properties of complex heteroge-
neous materials. In this paper, two examples of recent progress are summarized.
The first is Diffusing Acoustic Wave Spectroscopy (DAWS), which is a powerful
approach for investigating the dynamics of strongly scattering media, one example
being velocity fluctuations in fluidized suspensions of particles. Recent advances in
using phase statistics to probe the particle dynamics are shown to give increased
sensitivity in some situations; this work has also led to new insights into the mean-
ing of phase for multiply scattered waves. The second topic is the spectroscopy of
soft food biomaterials, illustrated by experimental studies of ultrasonic velocity and
attenuation in bread dough. Since wheat flour dough contains one of the strongest
scatterers of ultrasonic waves (bubbles) dispersed in a viscoelastic matrix that is also
very dissipative, appropriate ultrasonic techniques provide an excellent means for
investigating its structure and dynamics. In addition to fundamental studies, unrav-
eling the contributions of bubbles and matrix to dough properties is relevant to the
baking industry, because the bubbles ultimately grow into the voids that determine
the structural integrity of bread – an important quality attribute. The interpreta-
tion of ultrasonic experiments on bread dough over three decades in frequency is
giving new insights into this complex material, as well as providing the basis for
new non-destructive methods of evaluating both dough processing behaviour and
the breadmaking potential of different flours.
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1. – Introduction

The fundamental studies of ultrasonic wave transport in strongly scattering random
media, described in refs. [1, 2, 3, 4, 5], have facilitated the development of ultrasonic
techniques for probing the physical properties of complex materials. Many such materi-
als are mesoscopic, with internal structures on length scales comparable with ultrasonic
wavelengths, and it is the structure and dynamics at this mesoscopic scale that determine
their macroscopic physical properties. Familiar examples include foams, gels, slurries and
a wide range of food biomaterials, all of which are playing an increasing important role in
industrial applications, and hence our prosperity. Mesoscopic structure, however, often
leads to multiple scattering of ultrasound, making traditional imaging methods impos-
sible and motivating the development and application of new approaches for extracting
useful information.

This paper reviews two examples of ultrasonic spectroscopy and their application to
novel materials characterization methods. The next section outlines Diffusing Acoustic
Wave Spectroscopy (DAWS), a powerful technique in field fluctuation spectroscopy for
investigating the dynamics of strongly scattering media. Differences with the comple-
mentary technique of Diffusing Optical Wave Spectroscopy are discussed, highlighting
the advantages of DAWS in some contexts. DAWS is illustrated with experiments on
suspensions of particles and bubbles. Recent progress in probing dynamic properties
using the phase of multiply scattered waves, which can readily be measured for ultra-
sound but less easily for light, is summarized. Diffusing Acoustic Wave Spectroscopy,
introduced in 2000 [6] and described in detail in ref. [7], has also been reviewed in ref. [8],
and more recently in a broader context in Physics Today [9]. The interested reader is
encouraged to consult these references for additional information.

Section 3 illustrates the characterization of food materials using ultrasound. Many
food materials are both strongly scattering and strongly absorbing for ultrasound, and
in cases where the multiple scattering coda is suppressed by dissipation, it is not feasible
to use techniques such as DAWS to probe their evolution during processing. Nonetheless
information on the mechanical properties of foods is important in the preparation and
production of foods with appealing texture, which is crucial for making foods palatable
to eat. This information can be obtained from spectroscopic techniques that rely on
ballistic propagation, and are especially valuable when data over a wide range of ultra-
sonic frequencies are available. This approach is illustrated with experiments on bread
dough [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], where processing challenges encountered
when incorporating nutritional supplements may make ultrasonic monitoring techniques
of particular value to the functional foods industry.

(∗) Published in the Proceedings of the International School of Physics Enrico Fermi,
Course CLXXIII, “Nano Optics and Atomics: Transport of Light and Matter
Waves”, edited by R. Kaiser, D.S. Weirsma and L. Fallani (IOS, Amsterdam; SIF,
Bologna, 2011) pp. 115-131. The original publication is available from SIF at
http://www.sif.it/SIF/en/portal/books/series/rendiconti fermi.
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2. – Diffusing Acoustic Wave Spectroscopy

Diffusing Acoustic Wave Spectroscopy (DAWS) determines the dynamics of a strongly
scattering medium from the temporal fluctuations of ultrasonic waves that are scattered
many times before leaving the medium [6, 7]. Because multiply scattered waves are used,
the technique is extremely sensitive to the motion of the scatterers in the medium, or to
the evolution of the properties of the host material in which the scatterers are located;
this sensitivity results from the large number of scattering events that are involved, lead-
ing to long trajectories over which cumulative changes in the detected waves occur. As
the name suggests, there is much in common with the analogous technique of Diffusing
Optical Wave Spectroscopy (often simply abbreviated DWS) [20, 21], although there are
differences in the way in which the measurements are made and in the range of appli-
cations for which the two techniques are well suited. One advantage of DAWS is that
the scattered wave field is measured, not the intensity, so that the field correlation func-
tion g1(τ) is determined directly. Thus, there is no need to invoke the Siegert relation
to interpret measurements of intensity correlation functions using models for the field
correlation functions. Another advantage of detecting the wave field in DAWS is that
the phase of the scattered fields can be exploited, offering the potential of better sensi-
tivity in some cases. The other major technical difference is the ease with which pulsed
measurements can be performed, enabling the detected changes to be monitored for a
fixed path length of the multiply scattered waves and therefore simplifying the analysis.
Finally, since ultrasonic wavelengths and wave periods are both larger (typically ∼ 1 mm
and 1 µs), DAWS is sensitive to dynamics on longer length scales than is possible with
light (or x rays), enabling different types of materials and phenomena to be investigated.
By varying the frequency, this range of length scales can be extended significantly, and
can range up to kilometres for seismic applications.

Figure 1 shows two contrasting examples of evolving multiply scattered wave fields
that can be used to probe changes in the system under investigation. Figure 1(a) shows
a typical experimental setup in DAWS, where a pulsed incident wave from a generating
transducer propagates through a sample containing moving particles or bubbles (fig. 1(b))
and is detected by a hydrophone. A typical multiple scattering path is indicated by the
red arrows. Two segments of the transmitted field are shown in fig. 1(c), showing that at
early propagation times, almost no change in the transmitted field is seen, while at later
times, the wave field changes significantly as the scatterers move. Note that there are
two relevant times in this problem, the propagation time t of the waves in the medium,
which sets the sensitivity, and the evolution time T , which sets the time scale over which
the dynamics are recorded. In DAWS, the medium can be interrogated repeatedly on a
scale set by the pulse repetition time ∆T , which can be varied over a wide range to match
the rate at which the system is evolving; in this case, T = m∆T , where m is an integer.
Figure 1(c) shows that the waves are decorrelated in both amplitude and phase as the
evolution time increases, due to the motion of the bubbles in the suspension. Analysis
of the detected field fluctuations can be used to probe the velocities of the bubbles.
By contrast, the changes in the waveforms shown in fig. 1(d), which were detected on
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Fig. 1. – (a) Typical setup for measuring the dynamics of fluidized suspensions or bubbles us-
ing Diffusing Acoustic Wave Spectroscopy. The red arrows indicate a multiple scatttering path
through the sample. (b) Photograph of ∼ 20-µm-diameter bubbles generated by an electrolysis
technique. These small bubbles move in complex swirling patterns through water. (c) Two seg-
ments of the scattered wave fields transmitted through a fluidized suspension of glass particles,
observed at three evolution times separated by 60 ms. The waveforms are very similar at early
propagation times, but exhibit large fluctuations in both phase and amplitude a later times.
(d) Waveforms detected by a seismograph on Mount Merapi, the site of an active volcano in
Indonesia, after an air gun was used to generate short low frequency pulses 2 km away. The
evolution time interval between the two recorded signals (red and blue traces) is two weeks. The
shift in the phase of the waves can be most simply measured from a windowed cross correlation
function of the fields at the two times; this phase shift is related to a small change in the seismic
velocity, as explained in ref. [9].

Mount Merapi by a seismograph located 2 km away from the source, at evolution times
separated by two weeks, are shifted in propagation time but remain similar otherwise.
In this case, there is a uniform change in the medium, and the phase shift is related to
a change in the seismic wave speed.

To determine the changes in the medium from the evolution of the scattered wave
fields, it is helpful to describe the multiply scattered waves detected at propagation time
t and evolution time T as the superposition of waves that have propagated along each
scattering path p. This can be shown explicitly by writing the measured field ψ(t, T ) as
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the real part of a complex field (the complex analytic signal)

(1) Ψ(t, T ) = A(t, T )ei[ωt+Φ(t,T )] =
∑

p

ap(t, T )ei[ωt+φp(t,T )] .

Here ω is the central frequency of the pulse, Φ(t, T ) is the total phase of the scattered
waves at the detector and φp(t, T ) is the phase along a single multiple scattering path,
which may be conveniently called the “path phase”. As the medium evolves in time, the
waves still propagate along these scattering paths, but the path lengths change, so that ψ

is a function of both propagation time t and evolution time T . One direct way of relating
the changes in ψ(t, T ) to the dynamics of the medium is to take the autocorrelation
function of the field at a fixed propagation time ts, thereby selecting multiple scattering
paths with an average length s = ts/vE and a narrow path length range determined by
the source pulse width. The field autocorrelation function g1,ts(τ) is

(2) g1,ts (τ) =
∫

ψ (T ) ψ (T + τ) dT∫ |ψ (T )|2dT
'

〈
e−i ∆φp(τ)

〉
,

where ∆φp (τ) is the change in phase of a path containing n scattering events during the
evolution time interval τ . Here n = vEts/l∗, where vE and l∗ are the transport velocity
and mean free path of the multiply scattered waves. In general, the phase change for each
path can be written as the sum of the ensemble average phase shift 〈∆φpath (τ)〉 and the
deviation from the average value δφpath (τ), enabling the autocorrelation function (2) to
be written as a product of two factors, involving the average phase shift and its variance
respectively:

(3) g1,ts (τ) ' cos (〈∆φpath (τ)〉) exp
(
−1

2
〈
δφ2

path (τ)
〉)

.

To obtain this result, the contribution to g1 from the ensemble average of
〈
e−i δφpath(τ)

〉
is obtained to leading order using a cumulant expansion [6, 7, 8], and the real part of g1

is taken, since this corresponds to the experimental situation.
A nonzero average phase shift arises when there is a uniform dilation of the medium

seen by the waves, such as can occur if there is a change in wave velocity, which shifts the
arrival time of all the scattered waves in the same way (e.g., see fig. 1(d)). In the case of
a small wave velocity change ∆v, 〈∆φ〉 = −ωt∆v/v, where ω is the angular frequency.

When the scatterers are moving, such as for the example of moving bubbles in
fig. 1(b),(c), the dominant contribution to the decay of g1 comes from the path phase
variance

〈
δφ2

path

〉
. In this case, the path phase variance can be related to the phase

fluctuations for each step j along a path, which are given by ~kj ·∆~rrel,j where ~kj is the
wave vector of the wave scattered between the jth to the (j + 1)th scatterers, and ∆~rrel,j

is their relative displacement [6, 7, 8]. When the successive phase shifts along the paths,
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as well as the directions of ~kj and ∆~rrel,j , are uncorrelated, the field autocorrelation
function is given by

(4) g1,ts (τ) ≈ exp
[
−nk2

6
〈
∆r2

rel (τ, l
∗)

〉]
.

(Here the average phase shift in eq. 3 has been set to zero, as is observed for fluidized
particles; then,

〈
δφ2

path

〉
=

〈
∆φ2

path

〉
). This equation shows that the decay of the corre-

lation function is determined by the relative mean square displacement of the scatterers
that are separated, on average, by the average step length of the multiply scattered
waves, l∗. Measuring the field autocorrelation function thus enables the relative motion
of the scatterers to be determined on a length scale that can be tuned by the ultrasonic
frequency.

Typical DAWS results for the dynamics of fluidized particles, suspended by flowing
the liquid upwards to counteract sedimentation, are shown in fig. 2. In this example,
the scatterers are 1-mm-diameter glass spheres surrounded by a liquid mixture of water
and glycerol. At short evolution times, the motion of the particles is ballistic since
the relative mean square displacement grows quadratically with time,

〈
∆r2

rel (τ, l
∗)

〉
=〈

∆V 2
rel (l

∗)
〉
τ2, allowing the variance in the relative particle velocities to be measured

directly from the slope of
〈
∆r2

rel (τ, l
∗)

〉
versus τ2. The root mean square relative velocity

∆Vrel =
√
〈∆V 2

rel〉 determines the characteristic time scale of the motion, τDAWS ≡
1/[
√

nk∆Vrel(l∗)], so that, with this definition, the field autocorrelation function can be
written in a very simple way as g1(τ) = exp[− 1

6τ2/τDAWS].
By varying the frequency, the scattering strength and hence also l∗ was varied (see, for

example, ref. [1]), enabling the relative particle velocity to be measured over a wide range
of inter-particle distances R = l∗ inside the suspension. Figure 2(b) shows that at short
distances, the relative particle velocity increases as the square root of distance, but that at
longer distances it levels off to the value

√
2Vrms, where Vrms is the absolute rms particle

velocity that can be measured directly in the single scattering regime using Dynamic
Sound Scattering [6]. The saturation value

√
2Vrms is the relative velocity of particles

that move independently, indicating that all correlations in the motions become lost at
large inter-particle separations. These observations can be summarized mathematically
as follows:

(5)

〈
∆V 2

rel (l∗)
〉

=
〈(

∆~V (~r + l∗)−∆~V (~r)
)2

〉

= 2
〈
∆V 2

〉− 2
〈
∆~V (~r + l∗) ·∆~V (~r)

〉

= 2 V 2
rms (1− CV (l∗))

where

(6) CV (R) =

〈
∆~V

(
~r + ~R

)
·∆~V (~r)

〉

〈∆V 2〉 = exp[−R/ξ]
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Fig. 2. – (a) Mean square relative displacement of glass beads in a fluidized suspension measured
by Diffusing Acoustic Wave Spectroscopy. The data are plotted for several volume fractions of
beads φvf , showing τ2 behaviour indicative of ballistic particle motion at short times. (b)
Root mean square relative velocity, divided by the fluidization velocity Vf , as a function of the
ultrasound transport mean free path l∗ normalized by the bead radius a. The mean free path
l∗ determines the average particle separation at which the velocity fluctuations are measured.
The solid curves are fits of eq. 5, with CV given by eq. 6, to the data for two volume fractions,
enabling the particle velocity correlation length ξ to be measured at each volume fraction. (c)
The particle velocity correlation function as a function of the average inter-particle separations
R = l∗ at which the relative velocities are measured. The data show a good fit to the exponential
function exp (−R/ξ), confirming the form of the correlation function that was assumed in (b).
The different symbols represent data measured at different volume fractions of scatterers, with
all the data collapsing onto a common curve when CV is plotted as a function of R/ξ.

is the particle velocity correlation function, whose decay rate is determined by the veloc-
ity correlation length ξ. Equations 5-6 show how particle velocity correlation function can
be determined from the relative velocity fluctuations measured in DAWS experiments,
yielding the experimental results shown in fig. 2(c). The data in figs. 2(b) and (c) show
that the assumed exponential decay of the velocity correlations with distance is consistent
with observations, and enable the correlation length to be measured over a wide range of
particle concentrations (with φvf varying from 0.08 to 0.50 in this case). The correlation
length ξ measures the range of distances over which the particles move together, and
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Fig. 3. – (a)-(d) The wrapped phase shift probability distribution P (∆Φ) at several time intervals
τ . Experimental data are represented by the open symbols, and theoretical predictions by the
solid curves. The dashed curves show the approximate expression for P (∆Φ) given by eq. 7. The
only fitting parameter in the comparison of theory and experiment is the path phase variance〈
∆φ2

path(τ)
〉

at each time τ , yielding a value of τDAWS equal to 89 ms for these data. (e)
Comparison of the relative mean square displacement of the particles determined from the
phase data and from the field correlation function.

is an important quantity for understanding the physics of fluidized suspensions. Fig-
ure 2(c) also reveals a remarkable scaling of the velocity correlations for different particle
concentrations when CV is plotted as a function of R/ξ. Thus, Diffusing Acoustic Wave
Spectroscopy can provide information on the dynamics of suspensions that is relevant
both to fundamental studies of the motions in suspensions and turbulent fluids, and to
practical applications such as monitoring mixing processes, the performance of chemical
slurry bed reactors, and slurry flow in industrial processing.

By capitalizing on the ability of ultrasonic techniques to measure the phase and
amplitude of the multiply scattered waves, DAWS has recently been extended to monitor
system dynamics by analysing the fluctuations of the phase of the waves in time-varying
systems [22]. Not only has this helped to advance our understanding of mesoscopic wave
physics, where the role of phase for multiply scattered waves has often been ignored,
but it has also provided a new approach for probing evolving media with increased
sensitivity in some situations. Experimentally, the wrapped phase Φ(t, T ) ∈ (−π : π]
was extracted from the measured field at any evolution time T by a numerical technique
that is equivalent to taking a Hilbert transform and obtaining the complex analytic signal
A(t, T ) exp{i[ωt + Φ(t, T )]}. Information on the dynamics of the medium is contained in
the phase difference over the time interval τ , ∆Φ(τ) = Φ(T + τ) − Φ(T ), which, since
the phase difference is still a phase, is best represented between −π and +π, and was
therefore re-wrapped ∈ (−π : π]. To relate this phase difference to the particle dynamics,
the relationship between the measured phase shift ∆Φ(τ) and the evolution of the path
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phase ∆φpath(τ) was established. The simplest way to do this is via the wrapped phase
difference probability distribution P (∆Φ(τ)), which can be calculated for random wave
fields described by circular Gaussian statistics from the joint probability distribution of
the fields at two times Ti and Tj = Ti +τ [22]. Results for the same fluidized suspensions
of glass particles used for the data in fig. 2 are compared with theory in fig. 3(a)-(d),
showing how the statistics of the phase difference evolve as the scatterers move, with the
distribution becoming wider as the relative mean square displacement of the particles
increases. At long times when the fields are no longer correlated, P (∆Φ(τ)) reaches a
flat distribution. At short time intervals τ and small ∆Φ, P (∆Φ(τ)) has the simple form

(7) P (∆Φ) =
1
2

〈∆φ2
path〉[

〈∆φ2
path〉+ ∆Φ2

]3/2
,

showing explicitly how the distribution depends on the path phase variance
〈
∆φ2

path(τ)
〉

and hence on the relative mean square displacement of the particles. While the general
expression for P (∆Φ(τ)) is more complicated [22], it still only depends on one parameter,
the path phase variance, allowing the excellent fits of theory and experiment shown
in fig. 3 to accurately measure the mean square relative displacement of the particles.
Figure 3(e) shows that measurements of

〈
∆r2

rel (τ)
〉

from P (∆Φ) and g1 are in superb
agreement over a wide range of evolution time intervals τ , validating this phase method.
The insert of this figure also shows an example where measurements of P (∆Φ) yields more
accurate results. In this case, the presence of amplitude noise due to gain fluctuations
degrades the field correlation measurements of the particle dynamics at short times, but
has little effect on the phase statistics, which still give an accurate measurement of the
particle motions.

Another way of characterizing the dynamics is to measure the variance of the wrapped
phase difference

〈
∆Φ2(τ)

〉
. The variance of the measured phase shift is very different to

the path phase variance
〈
∆φ2

path(τ)
〉
, since the phase of the measured field is determined

by the superposition of waves along all paths reaching the detector, while the path phase
variance is determined by the fluctuations in the phase along a typical path (see eq. 1).
Remarkably, a universal relation has been found between the wrapped phase variance
and the path phase variance, as shown in fig. 4(a) by the solid curve. This universal
relation means that the particle dynamics can be determined directly from the measured
phase variance (open squares in fig. 3) – a simpler procedure than fitting the theoretical
expression for P (∆Φ) to experimental data. Both methods work well for evolution times
that are short enough that

〈
∆Φ2(τ)

〉
is less than its upper limit of π2/3, which occurs

when P (∆Φ) has become flat.
Information on the dynamics can be followed to longer times by unwrapping the phase,

removing the jumps of 2π to determine the evolution of the cumulative phase Φc(τ). Here,
as an example, we consider the cumulative phase shift variance, which is plotted as a
function of τ/τDAWS in fig. 4(b). At early times, its increase with time is the same as the
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Fig. 4. – (a) Relation between the measured phase shift variance
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and the path phase
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〉
. For the wrapped phase, this relationship is universal (solid curve), while

unwrapping the phase destroys the universality, giving the cumulative phase shift variance〈
∆Φ2

c(τ)
〉

greater sensitivity to the dynamics at long times. (b) The time dependence of the cu-
mulative phase shift variance

〈
∆Φ2

c(τ)
〉
, showing a cross over to phase diffusion for times longer

that τDAWS, with a phase diffusion coefficient that is influenced by the long-time dynamics.

.

wrapped phase variance, but at long times
〈
∆Φ2

c(τ)
〉

becomes proportional to time, with〈
∆Φ2

c(τ)
〉

= DΦτ , enabling the phase diffusion coefficient DΦ to be measured. If the
particles continue to move in ballistic trajectories at long times, DΦ = 1/τDAWS, but if
the relative motion slows down, due to deviations from ballistic particle trajectories due
to particle interactions, DΦ is reduced. The solid curve in fig.4(b) shows a fit to a simple
empirical crossover model [6], indicating that the characteristic time τc for such deviations
to set in is about 7τDAWS. An interesting general point to emerge from this analysis of
the cumulative phase shift variance is that unwrapping the phase destroys the universal
relationship between the measured phase variance and the path phase variance; this
actually has a positive benefit since it gives the cumulative phase shift variance increased
sensitivity to details of the particle motions at long times. The behaviour is shown by
the dashed and dotted curves in fig. 4(a).

Another advantage of examining the phase statistics has been demonstrated by theory
and experiment for the probability distributions of the phase derivatives with evolution
time. These distributions have been determined for Φ′, Φ′′, Φ′′′ and found to be re-
markably sensitive to early time dynamics, allowing the relative particle motions to be
determined up to the 6th power in time - something that simply could not be achieved
from measurements of the field correlation function. Another interesting quantity is the
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cumulative phase correlation function, where current work is showing that, for evolving
systems such as the bubbly liquids, the phase correlation function can be used to in-
vestigate motions at remarkably long times, beyond those accessible to field correlation
measurements. Thus, progress in measuring and understanding the phase statistics and
correlations of multiply scattered fields is continuing to advance the capabilities of Dif-
fusing Acoustic Wave Spectroscopy for investigating the dynamics of strongly scattering
materials.

3. – Probing food biomaterials with ultrasound

Many foods are heterogeneous on length scales that are comparable with the wave-
lengths of ultrasound in the 100 kHz to 10 MHz range, making ultrasonic spectroscopy of
food materials a promising approach for investigating their mechanical properties, struc-
ture and dynamics. Because both scattering and dissipation of ultrasound are generally
strong in such materials, most information on their properties comes from ballistic veloc-
ity and attenuation measurements. In this section, I focus on one example, bread dough,
which contains one of the strongest scatterers of ultrasound, namely bubbles, with the
bubbles being dispersed in a viscoelastic matrix, which contributes to the ultrasonic ab-
sorption. Thus, the physics of how ultrasound propagates in dough is remarkably rich.
Understanding the effect of bubbles on the properties of dough is also critical to control-
ling the texture of bread, and hence its quality. As a result, ultrasonic characterization
of bubbles in bread dough is potentially important to the food industry.

Ultrasonic experiments on bread dough reveal different properties as the frequency
is varied [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Indeed, there are three important fre-
quency regimes. These are identified in fig. 5, which shows experiment and theory for
the ultrasonic attenuation and phase velocity in bread dough over almost three decades
in frequency. At low frequencies, f < 100 kHz, bubbles in dough drastically reduce the
sound velocity, due to the large compressibility of the bubbles. There is excellent sensi-
tivity to the presence of bubbles but no information on their sizes. The attenuation is
relatively low in this frequency regime, making experiments easier. For frequencies be-
tween 100 kHz and 8 MHz, there is a strong resonant interaction between the ultrasonic
waves and the bubbles, leading to a very large variation in the velocity and attenuation.
Their frequency dependence at these intermediate frequencies depends on the bubble
sizes, raising the interesting possibility of extracting information on the bubble size dis-
tribution in this opaque medium from ultrasonic measurements. At high frequencies,
f > 8 MHz, the ultrasonic attenuation and velocity depend on matrix properties only,
enabling structural relaxations of the molecular ingredients of the matrix to be probed.

The sensitivity of ultrasound to the concentration of bubbles in the low frequency
regime (at f ∼ 50 kHz) is shown in fig. 6. The dough samples were prepared by mixing
together a strong Canadian breadmaking flour (CWRS), salt and water, to produce
a lean-formula mechanically developed dough [23]. For these experiments, the bubble
concentration was adjusted by varying the headspace pressure during mixing. As the
bubble concentration is increased, the ultrasonic velocity drops dramatically, reaching



12 J. H. Page

I II III

frequency (MHz)

Fig. 5. – The ultrasonic attenuation and phase velocity as a function of frequency up to 10 MHz
for a typical dough sample with a bubble concentration of 12%. The roman numerals and boxes
indicate the three frequency regimes, as discussed in the text.

values less than the velocity of sound in air for concentrations above 2%. This behaviour
can be understood qualitatively in the Wood’s approximation for the low frequency
compressibility of a bubbly liquid. In this approximation, the average compressibility of
the sample κs is simply the volume-fraction-weighted average of the compressibilities of
the bubble inclusions i and surrounding matrix m

(8) κs = φvfκi + (1− φvf)κm

where φvf is the volume fraction of bubbles. Thus, since phase velocity and compress-
ibility are related by v =

√
1/ρκ, where ρ is the density,

(9)
1

ρsv2
s

=
φvf

ρiv2
i

+
1− φvf

ρmv2
m

and the average sound velocity for concentrations of bubbles in this range reduces ap-
proximately to

(10) vs ≈ vair

√
ρair

ρsφvf
.

The density ratio in the square root factor in this expression shows why the velocity
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Fig. 6. – The ultrasonic velocity (a) and attenuation (b) in bread dough as a function of bubble
volume fraction at 50 kHz.

is so much less than the velocity in air (340 m/s); the effective medium behaves as a
material with the low compressibility of air, but with a larger density. For dough, this
approximation underestimates the velocity at all volume fractions because it neglects the
shear modulus of the dough matrix, which can be included in a more complete (but also
more complicated) effective medium model [24]. For the higher volume fractions, where
the complex shear modulus µm = 0.39+ i0.14 MPa can be reasonably extrapolated from
existing lower frequency shear rheology data on dough prepared at ambient pressure [14];
this model gives excellent agreement with experiment. At lower concentrations, however,
the measured velocities are larger than this prediction, suggesting that the shear modulus
of the dough matrix increases at low volume fractions. Thus the presence of bubbles in
the dough enables the shear properties of the dough to be investigated using longitudinal
waves - a considerable advantage as longitudinal ultrasonic measurements are easier to
perform in lossy materials such as dough.

As shown in fig. 6(b), the ultrasonic attenuation increases as the square root of the
volume fraction in this low frequency regime, a frequency dependence which is predicted
by effective medium theories (solid line) [24, 16]. By treating the interaction of ultrasound
with bubbles in a viscoelastic medium, it can be shown, at frequencies well below the
resonance frequency ω0 of the bubbles, that the attenuation is predicted to have the
form:

(11) α =

√
3φvf

a2

ω2Γ
ω3

0

Here a is the radius of the bubbles, and Γ is the damping rate, which at low frequen-
cies depends on viscous losses and thermal dissipation. If viscous losses dominate, the
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(a1)   

(c2)   (b2)   (a2)   

(b1)   (c1)   

Fig. 7. – Frequency dependence of the ultrasonic attenuation (a1),(a2) and velocity (b1),(b2),
showing the broad spectral features characteristic of resonant interactions with bubbles. The
grey curves represent experimental data, and the solid black curves are theoretical predictions
of the model outlined in the text. (See ref. 16 for more information.) The numbers (1) and (2)
identify the times after mixing at which the data were taken: 53 minutes for (1) and 90 minutes
for (2). The solid curves in (c1) and (c2) are the bubble size distributions inferred from the
ultrasonic data at these two times. The dotted curve in (c2) are the results of x-ray tomography
measurements.

dependence of α on bubble size in eq. 11 cancels out, since Γviscous = 4µ′′/ρωa2 and the
resonant frequency of the bubbles depends inversely on the bubble radius, ω0 ∝ a−1.
Thus, in this regime, the attenuation is sensitive only to the amount of gas entrained in
the bubbles, and not on how the gas is distributed, providing a good indicator of the
amount of gas entrained in the dough.

The sensitivity of these low-frequency measurements to bubble concentration is en-
abling the ultrasonic velocity and attenuation to be used to monitor dough mixing, where
reliable methods of determining optimum mixing conditions are of considerable value [18].
For doughs prepared with leavening agents, ultrasonic velocity and attenuation can be
used to monitor the growth of the bubbles due to incorporation of CO2 [12]. Low fre-
quency velocity measurements can also be used to assess dough quality [25], and since
these ultrasonic measurements can be performed on small samples, such measurements
are potentially very useful in wheat breeding programs.

At intermediate frequencies, the resonant coupling of ultrasound with the bubbles
causes the attenuation and phase velocity to exhibit a large frequency dependence, with
broad peaks that contain information on the bubble size distribution (fig. 7). To inter-
pret the experimental data, Leroy et al. [16] have used a model that extends the well-
established model for the resonant interactions of sound with bubbles in liquids [26, 27, 28]
to viscoelastic materials, by incorporating a simple correction to the resonant frequency
proposed by Alekseev and Rybak [29]. Physically, the effects of finite shear rigidity are to
shift the resonant frequency to higher frequencies and also to weaken the resonance. This
model has been tested on transparent agar gels, where the bubble sizes can be measured
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optically, and found to describe the data well [16]. Applying the same model to dough,
as described in ref. [16] and shown by the solid curves in figs. 7(a),(b), the bubble size
distribution can be estimated. The inferred bubble size distributions at two times after
mixing are shown in fig. 7(c). At the later time, the evolution of the size distribution had
slowed down sufficiently to enable bench-top x-ray tomography measurements to inde-
pendently measure the size distribution (dotted curve in fig. 7(c)) [15]. This comparison
indicates that the analysis of the ultrasonic data estimates smaller bubble sizes than the
x-ray measurement, although comparison between results is not straightforward because
the conditions of sample preparation were not the same in both cases. Work is continu-
ing to understand the origin of this discrepancy, so that the ultrasonic technique can be
developed to unambiguously determine bubble sizes. Since ultrasonic measurements can
be performed quickly, potentially even online, this information has practical relevance
for monitoring dough quality during breadmaking. Even though questions remain to
be resolved concerning the absolute sizes of the bubbles determined from the ultrasonic
velocity and attenuation, the shift of the resonance features in the ultrasonic data to
lower frequencies at the later observation time shows the effects of disproportionation in
the dough due to Ostwald ripening; this phenomenon leads to an increase in the aver-
age size of the bubbles with time as gas diffuses from the smaller bubbles to the larger
ones [30]. Such information on the dynamics of the bubbles in bread dough is valuable
for understanding the evolution of the bubble structure.

Measurements of ultrasonic velocity and attenuation in dough in the high frequency
range (above the bubble resonance regime, f > 8 MHz) reveal information on matrix
properties. The frequency dependence of the data show signatures of ultrasonic relaxation
phenomena, which can be interpreted using a molecular relaxation model [33, 34]. Dif-
ferent fast relaxation times were observed for ambient-mixed dough (5 ns) and vacuum-
mixed dough (1 ns) [31]. These relaxation times may be associated with conformational
rearrangements in glutenin - the supermolecular structure of proteins in the gluten ma-
trix - perhaps due to the loop-to-train transition that is thought to play a role in the
elasticity of glutenin [32]. Thus data in this frequency range can probe ultrasonic stress-
induced changes in the secondary structure of gluten proteins that are important for
understanding the viscoelastic properties of this complex food material.

This example of ultrasonic spectroscopy shows that both ultrasonic velocity and at-
tenuation are sensitive probes of the gas cell structure of bread dough, enabling new
approaches to optimizing loaf quality to be developed. Ultrasound can be used to follow
the evolution of the gas cells (bubbles) throughout the entire breadmaking process, from
the initial entrainment of gas bubbles in dough during mixing, though the expansion of
the gas cells during proofing, all the way up to the final foam structure of bread. Ul-
trasound can also be used to probe changes in the viscoelastic properties of the dough
matrix. Remarkably, despite the complexity of dough and bread as mesoscopic materials,
their mechanical properties can be elucidated using relative simple physics models. This
combination of factors is leading to a new awareness of ultrasound’s potential to provide
novel information on technical issues of importance to the cereals processing industry.
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4. – Conclusions

Ultrasonic spectroscopy is both contributing to and capitalizing on advances in the
wave physics of complex mesoscopic materials. As a result, new approaches that ex-
ploit the advantages of ultrasonic techniques are being developed to characterize the
structure and dynamics of this increasing important class of materials. This paper has
discussed two examples. The first was Diffusing Acoustic Wave Spectroscopy, which is
a sensitive technique for monitoring changes in materials in which conventional imaging
techniques are impossible due to multiple scattering, and which is complementary to Dif-
fusing Optical Wave Spectroscopy. DAWS is based on direct measurements of the field
autocorrelation function, and has been extended recently to probe dynamics using the
phase of multiply scattered waves. This approach has some advantages practically, as
well as being a way of advancing our understanding of phase in mesoscopic wave physics.
In this paper, the application of this technique to the investigation of particulate and
bubbly suspensions was demonstrated, but many more applications of this technique can
be envisaged (e.g., in process control).

The second example considered here was the characterization of biological materials
of importance in food science. Many such materials have internal length scales that
are comparable with the wavelength of ultrasound, making ultrasonic spectroscopy a
particularly relevant approach. The studies of bread dough that were summarized in
this paper demonstrate how advances in physics underpin practical applications. The
latter are of considerable economic potential in the rapidly growing functional foods area,
where the interaction of functional ingredients with the bubble structure can damage the
taste and appearance of food products unless remedial action is taken. By monitoring
the properties at an early stage in production and helping to understand the dynamics
of these interactions, ultrasonic techniques can help overcome such problems.
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