
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 96, 220201(R) (2017)

Acoustic double negativity induced by position correlations within a
disordered set of monopolar resonators
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Using a multiple scattering theory algorithm, we investigate numerically the transmission of ultrasonic waves
through a disordered locally resonant metamaterial containing only monopolar resonators. By comparing the
cases of a perfectly random medium with its pair correlated counterpart, we show that the introduction of short
range correlation can substantially impact the effective parameters of the sample. We report, notably, the opening
of an acoustic transparency window in the region of the hybridization band gap. Interestingly, the transparency
window is found to be associated with negative values of both effective compressibility and density. Despite
this feature being unexpected for a disordered medium of monopolar resonators, we show that it can be fully
described analytically and that it gives rise to negative refraction of waves.
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The interaction between waves and matter is increasingly
exploited, whether it be for shaping wave fields [1], focusing
[2], absorbing [3–5], or cloaking [6–8]. Among all these
challenges, there continues to be extensive interest in a
promising route for super-resolution focusing via the design
and realization of left-handed (or doubly negative) materials,
as proposed by Pendry [9]. Such behavior has been realized
through the development of locally resonant metamaterials that
consist of an assembly of subwavelength resonant inclusions
inside a continuous matrix [10,11]. Exploiting the band folding
inside a periodic structure [12–20] turned out to be a rewarding
alternative strategy to observe high resolution focusing. By
contrast, locally resonant metamaterials have the advantage
that their subwavelength internal structure enables their de-
scription by effective medium theories. Because the reso-
nances occur at very low frequencies, the effective properties
of metamaterials are usually believed to rely on the individual
features of the scatterers and on their concentration rather
than on their spatial distribution. As a result, opportunities
for tailoring their properties by exploiting both subwavelength
resonators and the way they are spatially distributed remain
largely unexplored.

For acoustic waves, the relevant parameters to describe the
effective properties are the density ρeff and compressibility
χeff. By going beyond the isotropic scatterer approximation
employed in Foldy’s [21] seminal work, Waterman and
Truell [22] proposed a relationship that only depends on the
concentration n and on the forward f (0) and backward f (π )
scattering functions of the inclusions:

χeff

χ0
= 1 + 2πn

k2
0

[f (0) + f (π )], (1a)

ρeff

ρ0
= 1 + 2πn

k2
0

[f (0) − f (π )], (1b)

where χ0, ρ0, and k0 are the compressibility, the density, and the
wave number in the host medium. Equation (1a) indicates that
negative compressibility is relatively easy to obtain. Indeed,
for scatterers exhibiting a monopolar resonance, such as gas
bubbles, Re[f (0) + f (π )] can reach large negative values so

that Re[χeff] < 0. Monopolar scattering, however, will not
affect the effective density because it gives f (0) − f (π ) = 0.
Thus, to achieve double negativity, it is necessary to invoke
higher mode resonances such as dipolar ones. A number of
previous studies [23,24] have shown that incorporating two
different resonators, one monopolar and the other dipolar,
within the unit cell of a metamaterial can be a successful
strategy. Equally convincing results were obtained using the
original idea of designing a single metainclusion that featured
both kinds of resonances for overlapping frequency ranges
[25,26]. However, the last requirement can be particularly
challenging for acoustic waves and reduces the possibilities
to a small handful of inclusion types. Moreover, the dipolar
mode is not easy to excite in the long wavelength regime
meaning that one is limited in terms of miniaturization.

In this Rapid Communication, we introduce another strat-
egy without the requirement that the individual inclusions have
both monopolar and dipolar resonances and demonstrate how
a three-dimensional (3D) doubly negative metamaterial can be
created that is populated solely with monopolar subwavelength
resonators. Starting with a random distribution of these
resonators, we impose a pair-wise spatial correlation between
them. We show, both numerically and analytically, that multi-
ple scattering coupling within each pair leads to the creation
of two modes: a symmetrical mode, which influences the
compressibility, and an antisymmetric mode, which influences
the dynamic mass density. Thus, these pair-wise correlations
enable the conditions needed for acoustic double negativity to
be achieved. To show these effects convincingly, we compare
a perfectly random sample, for which the interference between
the incident and the scattered fields lead to the opening of a
band gap above the resonance frequency, with a pair-correlated
collection of the same scatterers. We demonstrate that such
pairing significantly impacts the propagation and is responsible
for the appearance of a transparency window within the band
gap. We carefully study the effective parameters of both kinds
of samples and present evidence that the spatial correlations
between scatterer pairs lead to simultaneously negative values
of the dynamic mass density ρeff and compressibility χeff

inside this transparency window; note that this occurs even
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though negative values of ρeff are usually acknowledged to
be unreachable for monopolar materials. We verify that an
acoustic wave, with a frequency lying inside the transparency
window, is negatively refracted as it impinges on a slab of
randomly distributed paired scatterers. Finally we discuss the
influence of dissipation on the doubly negative behavior and
apply our results to a suspension of bubbles in a yield stress
fluid.

We consider a monopolar acoustic scatterer characterized
by its radius a and an isotropic scattering function given by
the Lorentzian law:

f (ω) = −a

1 − ω2
0/ω

2 + i(k0a + δ)
, (2)

with ω0 being the monopolar resonance frequency and δ the
damping factor accounting for dissipation. We first investigate
the case of a conservative scattering process for which δ = 0
[27]. For a sample consisting of N scatterers for which the
positions and radii are known, one can apply the multiple scat-
tering theory (MST) as introduced by Lax [28]. Because the
calculation turns out to become very demanding in the case of
a high number of inclusions, we have developed a numerical
algorithm which was introduced in Ref. [29] and enables us
to fully determine the acoustic linear response to any kind of
excitation for a sample containing up to 30 000 scatterers.

From now on, we consider the following set of parameters:
a = 100 μm, n = 2.38 mm−3, c = 1500 m.s−1, and f0 =
ω0/2π = 203 kHz (λ0 = 7.4 mm). We address both cases of
(i) a perfectly random sample and (ii) a disordered collection of
pairs oriented along the z direction and separated by a distance
d = 250 μm. We compute the propagation of an axisymmetric
Gaussian beam traveling along the z direction through a thin
slab of the metamaterials (see Fig. 1). We first probe the
pressure field at the center of the cloud and obtain the spectra
reported in Fig. 1. The left plot [Fig. 1(a)] shows the simulation
results in the fully disordered case. The spectrum exhibits the
classical features for such samples, notably resonant modes
of the slab at low frequencies and sharp scatterer resonances
near ω0 [29,30]. Above ω0, the scatterers’ response is out
of phase with respect to the incident field and the effective
compressibility χeff becomes negative. Because the scattering
is completely isotropic [f (0) = f (π )], the effective density
remains unaffected (ρeff = ρ0). As a result, the effective wave
vector keff = ω

√
ρeffχeff becomes imaginary and the coherent

field is evanescent, so that propagation ceases (band gap). The
spectra show that the density of states vanishes beyond ω0

(colored area) which is consistent with the previous analysis.
In the case of the pair-correlated sample (right, [Fig. 1(b)]),
we observe a narrowing of the band gap together with the
appearance of resonant peaks within this band gap. This can
be explained considering that the multiple scattering between
the two resonators of a single pair may generate a dipolar
antisymmetric mode, which can change the sign of ρeff. In the
region of this dipolar resonance, the real part of keff can then
become substantial, thus restoring the propagation.

To go further into the analysis, we directly determine keff(ω)
by simulating the transmission and reflection coefficients of
the metaslab and applying the method detailed in Ref. [31].
Hence we obtain the dispersion relation along the z direction
for both the perfectly disordered and pair correlated samples

(a) (b)

FIG. 1. Schematic illustration of the numerical setup together
with the pressure field spectra obtained for two different configu-
rations: (a) a spatially random distribution of noninterpenetrating
scatterers and (b) a spatially random distribution of pairs of scatterers
separated by a distance d = 250 μm and aligned parallel to the z

axis. In both cases, a = 100 μm and n = 2.38 mm−3.

[Figs. 2(a) and 2(b), symbols]. In the case of the perfectly
random sample (blue symbols), one can clearly identify the
classical polaritonlike evolution for which the wave vector
is essentially real below ω0 and purely imaginary within the
band gap [32–34]. However, the medium populated with pairs
of resonators shows a significantly different behavior: (i) the
transition from a propagative to an evanescent state occurs
at lower frequencies, (ii) the real part of the wave number
exhibits a sharp peak while its imaginary part nearly cancels
for ω/ω0 � 1.3, thus explaining the opening of a propagating
band near this frequency, and (iii) this band has negative
values of Re(kz), consistent with left-handed behavior for
the metaslab in this frequency range. The analytic description
(solid lines) was obtained using Eqs. (1) and (2). In the case of
the random sample we simply have f (0) = f (π ) = f and
predict behavior (blue dashed line) that is consistent with
the numerical results. In order to describe the pair-correlated
sample, we took into account the multiple scattering to
compute the wave amplitude scattered off a pair of resonators
[35,36]:

f (0) + f (π )

2
= −2a

1 − a/d − ω2
0/ω

2 + 2ik0a
(3)

f (0) − f (π )

2
= −k2

0d
2a/2

1 + a/d − ω2
0/ω

2 + ik3
0ad2/6

. (4)

Note that these expressions show the existence of a monopolar
resonance at ω1 = ω0/(1 + a/d)1/2 and a dipolar resonance at
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FIG. 2. Real (a) and imaginary (b) parts of the reduced wave vector projected along the propagation (Oz) axis for a spatially random
sample of a = 100 μm scatterers (blue open symbols) and for a pair correlated disordered sample of the same scatterers (red symbols). The
concentration is n = 2.38 mm−3. Solid lines refer to analytical predictions obtained by applying Eqs. (1) and (2) in the case of an isotropic
scatterer (blue dashed line) and in the case of a pair of isotropic scatterers (red solid line). The horizontal dotted lines indicate positions of
the single scatterer resonance frequency (ω0), symmetrical mode frequency (ω1), and antisymmetrical mode frequency (ω2). (c) Real part of
the reduced effective density obtained by numerical computation in the correlated scenario for three different concentrations: n = 0.10 mm−3,
n = 0.14 mm−3, and n = 0.18 mm−3 (respectively light, medium, and dark green symbols).

ω2 = ω0/(1 − a/d)1/2. After substituting Eqs. (3) and (4) in
(1) and solving for keff(ω), we obtained the dispersion relation
represented in Fig. 2 (red solid line). Although the frequency of
the monopolar resonance seems to be slightly underestimated
by the model for both kinds of sample, we observe very good
agreement in the region of the negative band that is found to
open at frequency ω2.

As the scatterer pairs are aligned along a specific direction
(Oz), the question arises whether the negative density behavior
is limited to normal incidence only. In Fig. 3, we investigate
the case of a Gaussian beam impinging on the medium at an
angle of θ = 51.5◦. We compare the numerical results for both
the random (left) and the pair-correlated (right) samples. We
represent the field maps for a monochromatic excitation at
frequencies ω1 (top) and ω2 (bottom). Note that the pressure
fields corresponding to a single realization of disorder (not
shown here) generally feature very sharp hotspots within the
sample. It is hence more instructive to compute the coherent
field which can be retrieved by averaging the field over 1000
statistically independent configurations. As can be anticipated
from Fig. 2, both samples show similar refractive behavior
at frequency ω1. At frequency ω2 however, they exhibit
thoroughly different transmissions. Because propagation is
forbidden in the perfectly disordered sample (Fig. 3, bottom
left), the incoming field is entirely reflected at the first interface.
However, in the pair-correlated case, a substantial part of the
incident wave is transmitted at the same frequency (Fig. 3,
bottom right). Note the negative bending of the wavefronts
inside the sample, and the downward shift in the position of the
transmitted beam, both of which indicate negative refraction
for the pair correlated sample at ω2. Overall, Figs. 1–3 provide
unambiguous evidence that introducing a pair correlation
within a disordered sample of monopolar resonators can cause

double negativity in a transparency window where negative
refraction occurs.

To enable meaningful comparison with possible experi-
ments, losses need to be taken into account. Thanks to our
analytical derivation, one can easily establish the following

FIG. 3. Refraction patterns for an obliquely incident Gaussian
beam (θ = 51.5◦). Left: Perfectly random sample. Right: pair-
correlated sample. Two frequencies are investigated: ω1 (top) and
ω2 (bottom). Arrows indicate the propagation directions. The edges
of each quadrant are 6 cm long and the sample thickness is 5 mm.
Parameters: a = 100 μm, d = 250 μm, n = 2.38 mm−3.
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criterion for double negativity [35]:

πnd2a > 2δ + k3
0ad2/3. (5)

When δ = 0, we simply need to make sure that n > nmin =
k3

0/(3π ), which is very easy to satisfy since nmin � 0.14 mm−3

at ω2. This prediction is close to the behavior reported for
the effective density around ω2 [see Fig. 2(c)]. One can also
estimate the width of the negative band [35], yielding here
a value of 5%, which is consistent with our observations.
However, when δ �= 0, (5) might indicate that double negativity
no longer occurs anymore. For instance, let us consider
a sample of pair-correlated air bubbles with a = 100 μm
trapped in a yield stress fluid. In this scenario, the dissipation
originates from thermal and viscous processes and one can
reasonably consider a resulting damping factor of δ = 0.05
[37,38] at ω0. For such a value, the minimum concentration
allowing (5) to be met amounts to nmin = 5.40 mm−3, which
exceeds the concentration considered above (n = 2.38 mm−3).
As a consequence, the doubly negative behavior is not expected
anymore. However, the dispersion curve corresponding to this
pair-correlated sample [see Fig. 4(a)] still exhibits a significant
negative band in the region of ω2, for both numerical and
analytical calculations. Recent works [26,39] shed light on
this apparent contradiction. In fact, when losses are taken into
account, left-handed behavior can be observed even without
satisfying the double negativity criterion. A more accurate
criterion to assess for the opening of the negative band at ω2

is [35]:

2πnda2 > (δ + 2k0a)
(
δ + k3

0ad2/6
)

(6)

which amounts here to a minimum concentration of nmin �
0.12 mm−3 that is easier to satisfy than (5). Here again, the
criterion convincingly matches the numerically computed data
at ω2 for different concentrations [see Fig. 4(b)].

To conclude, we have demonstrated how to create a 3D
disordered double negative metamaterial composed solely of
monopolar resonators. Our approach provides a pathway to
achieving double negativity in a disordered metamaterial,
since it is commonly believed that individual monopolar
and dipolar resonators are both needed in acoustic systems.
Because the scattering process is relatively easy to describe
mathematically when only monopolar resonators are involved,
we are able to provide convincing analytic support for our
numerical calculations, which are based on the MST. In
particular, we show that multiple scattering between two
neighboring resonators can introduce a dipolar resonance
and thus locally affect the dynamic density of the material.
By designing a disordered medium with pair-wise spatial
correlations between the monopolar resonators, we ensure the
effectiveness of this pair-wise coupling, which then affects
the global properties of the entire material. We have also
established the criteria that must be satisfied for negative
refraction to occur in this pair-correlated material, both for
the ideal case where dissipation can be neglected and in the
more realistic situation when losses are taken into account.
Experimentally, the case of a bubbly gel could thus be
explored in the future, using motorized injection to control
the precise positioning of the bubbles [40]. It is interesting to

FIG. 4. (a) Dispersion curves along the z direction for a random
(blue open symbols) and for a pair-correlated disordered sample (red
solid symbols) of air bubbles in a yield stress fluid. Dashed and
solid lines refer to analytical predictions. The horizontal dotted lines
indicate frequencies ω0, ω1, and ω2. Parameters: a = 100 μm, d =
250 μm, n = 2.38 mm−3. (b) Numerical (symbols) and analytical
(solid line) evolution of the real part of the reduced wave vector with
scatterer concentration at frequency ω2. The horizontal dashed line
represents the prediction of Eq. (6).

note that in the perfectly ordered case of a two-dimensional
crystal of Helmholtz resonators, an analogous subwavelength
coupling leading to negative refraction has recently been
demonstrated [41]. More generally, our study illustrates a
powerful feature of locally resonant metamaterials for which
deeply subwavelength modifications (e.g., in local structure)
can induce major changes in behavior. Another remarkable
example is the case of “hyperuniform materials,” which can
be both dense and transparent due to the microscopic-scale
ordering of the particles [42], and it is reasonable to expect that
many other, equally striking, examples are still to be explored.
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l’Armement (DGA) for financial support to M.L. J.H.P. would
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