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This document provides a detailed description of how the experiments were performed and a
summary of the theoretical results that were used to fit the data in the main text of the paper.
Both the experimental procedure that was followed to conduct the ultrasonic measurements and
the type of samples that were used are described. For the theory, we compute the short-, long- and
infinite-range correlation functions of intensity under assumption of weak disorder k`� 1, where k
is the wave number and ` is the mean free path due to disorder.

EXPERIMENTAL DETAILS

Samples

The samples investigated are disordered networks of
aluminum beads, weakly brazed together to form disc-
shaped slabs (see Fig. S1). The beads used are monodis-
perse and 4.11 ± 0.03 mm in diameter, and the samples
have a volume fraction of approximately 55%, consis-
tent with random loose packing. The beads were weakly
bonded together by precisely controlling the flux, al-
loy concentration, and temperature during brazing, such
that the spherical bead structure of the individual beads
remained intact, with only small necks elastically con-
necting the beads. The samples were thoroughly cleaned
to remove any surface contaminants from the beads that
could lead to spurious dissipation in the ultrasonic exper-
iments. The front and back surfaces of the samples were
lightly polished to ensure that the opposite faces of the
slabs were flat and parallel. The slabs were 120 mm in di-
ameter, much larger than the sample thicknesses, in order
that the slabs be sufficiently wide to avoid edge effects.
Anderson localization has been observed in these samples
for thicknesses L ranging from 8.3 to 23.5 mm [S1]. While
correlation measurements were also performed for several
sample thicknesses, the results shown in this paper are
all for L = 14.5 mm, which was a representative data set
for which the most complete results were obtained.

These samples exhibit very strongly scattering of ultra-
sound in the frequency range of the experiments, as we
have determined by measuring the weak coherent signal
that propagates ballistically through the sample [S1, S2].
Representative results of these measurements are shown
in Table S1. At all frequencies, the scattering mean free
path `s is considerably smaller than both the diameter of
a single bead and the measured wavelength λ inside the
samples, with the product of wave vector and mean free
path k`s being of order unity.

FIG. S1. Photograph of one of the samples. Note the small
“necks” connecting the beads, whose spherical shape is pre-
served. The lightly polished top surface is also visible.

TABLE S1. Experimentally determined parameters. The
phase velocity, scattering mean free path, wavelength, and
scattering strength are determined from ballistic measure-
ments. The focal spot size was measured by scanning the
hydrophone detector in the source plane.

Frequency 0.6 MHz 1.0 MHz 1.4 MHz 2.4 MHz

Ballistically measured parameters

`s (mm) 1.0 0.7 0.8 0.6

vp (mm/µs) 2.7 2.8 2.8 5.0

λ (mm) 4.5 2.8 2.0 2.1

k`s 1.4 1.7 2.5 1.8

Focal spot size

FWHM (mm) 1.5 1.2 0.93 0.91

Measurement procedures

The experiments were performed in a water tank to
capitalize on the flexibility of ultrasonic immersion trans-
ducer technology for controlling source and detector po-
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FIG. S2. Schematic diagram showing experimental setup.

sitions. A focused ultrasonic pulse was incident on the
sample, and the transmitted waves were measured in the
near field on the opposite side using a miniature hy-
drophone detector. A schematic representation of the
experimental configuration is shown in Fig. S2.

Because we are interested in measuring ultrasonic
transport through the solid elastic network of aluminum
beads, the samples were mounted into acrylic holders and
sealed with thin plastic walls to prevent water from enter-
ing the pore space surrounding the beads; hence, within
the pores, only air (for the measurements at 2.4 MHz) or
vacuum (for the lower frequency measurements between
0.5 and 1.5 MHz) was present. To ensure good acoustic
coupling between the front and back sample surfaces and
the flat waterproofing walls, the walls were coated with
a very thin layer of an ultrasonic couplant.

The ultrasonic pulse was generated by focusing im-
mersion transducers, which have front surfaces that are
curved to act as a lens. The central frequencies of the
transducers were either 1.0 or 2.25 MHz. The transduc-
ers were designed to have a focal length of approximately
30 cm, and a conical screen with a small aperture was
placed at the focus to remove any side lobes or other
beam artifacts. This large focal distance was selected to
enable the multiply scattered, transmitted signals to be
recorded before the arrival of any spurious echoes that
had reverberated back and forth between the transducer
and sample. Note also that this large focal distance en-
sured that the source was temporally decoupled from the
sample, since the time interval between the emission of
the pulse at the transducer and its arrival at the sam-
ple surface is very much longer than the incident pulse
width. Thus, the pulse incident on the sample surface
was a constant amplitude pressure pulse, with magni-
tude and bandwidth that was independent of the LDOS
at the focal spot. This type of source has the advantage
of simplicity for investigating the effect of LDOS fluctua-
tions at the input surface on the intensity correlations of
the transmitted signals, although its nature is quite dif-
ferent to sources in optics that have been used to inves-

tigate LDOS fluctuations themselves via the strong cou-
pling that exists in the photonic environment around the
sources and scatterers [S3]. In our experiments, for each
source/detector location, the pulse was repeated several
thousand times at a repetition rate of several hundred
Hertz (slow enough to ensure that all signals due to the
previous pulse had died completely away), so that the
recorded signals could be averaged to improve the signal-
to-noise ratio.

The conical screen was wrapped in Teflon tape to
make it acoustically opaque. The cone shape was cho-
sen so that edges of the focused beam could be effec-
tively blocked when the aperture was placed close to
the sample, while at the same time preventing signifi-
cant stray sound being reflected back towards the sample
from the screen. The pressure field at the source plane
(about 1 mm from the aperture) was mapped using the
hydrophone detector, so that the spatial extent of the
source spot on the sample surface could be determined.
The recorded signals were Fourier transformed and the
intensity maps at each frequency were fit to a Gaussian
in order to determine the source size. The results of these
measurements are shown in Table S1. Note that the fo-
cal spot size at each frequency is significantly less than
the wavelength inside the sample, and comparable to one
wavelength in water.

The hydrophone used in these experiments is a sub-
wavelength phase-sensitive detector with an active ele-
ment diameter of 400 µm. The hydrophone has a needle-
like shape, which serves to minimize reflections back to
the sample. In our experiments, the hydrophone was
placed approximately 1 mm from the sample surface (less
than one wavelength in water), and thereby records the
near-field transmission with good spatial resolution.

The intensity correlations of the transmitted ultrasonic
waves were determined by first taking the Fourier trans-
form of the recorded pressure fields p(r, t) and squar-
ing the magnitude of the Fourier transforms to obtain
signals that are proportional to the ultrasonic intensity
at each frequency. Two types of experiments were per-
formed in order to isolate the contributions to the in-
tensity correlations of fluctuations in the local density of
states at the source positions. The first set of experi-
ments was designed to directly measure the C0 correla-
tions due to these LDOS fluctuations at the source. In
these experiments, the transmitted signals were recorded
at 13 detector positions for each source location. In or-
der to get good statistics, the sample was scanned to
have the source focused on over 3000 independent loca-
tions. For each pair of detector positions, the correlations
were calculated for all source locations, and the results
of the correlations for similar values of ∆r were binned
and averaged together. In the second set of experiments,
which were designed to suppress these C0 correlations,
over 3000 detector positions were used for a single source
location. Correlations were calculated for every possible
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pair of detector positions, and results for similar values
of ∆r were again binned. This experiment was repeated
for seven independent source locations, and the results of
each of these experiments were averaged together.

THEORY FOR SPATIAL CORRELATIONS

Definitions

We consider the spatial correlation function of inten-
sity fluctuations δI(r, ω) = I(r, ω)− 〈I(r, ω)〉:

Cω(r, r′) =
〈δI(r, ω)δI(r′, ω)〉
〈I(r, ω)〉〈I(r′, ω)〉

. (S1)

To lighten the notation, we will omit the subscript ‘ω’
from here on, keeping in mind that all measurements
are performed for waves at the same frequency ω. Typ-
ically, C(r, r′) is a decaying function of ∆r = |r − r′|
with C(r, r′ = r) = 〈δI(r)2〉/〈I(r)〉2 being the normal-
ized variance of intensity, and C(r, r′) = 0 in the absence
of intensity correlations. It is convenient to split C(r, r′)
in several parts: C = C1 + C2 + C3 + C0, each of Ci
originating from different physical processes [S4, S5].

Short-range correlation C1

In the bulk of a disordered medium and far from
boundaries, the short-range contribution to C is [S4, S6]

Cbulk
1 (r, r′) =

(
sin k∆r

k∆r

)2

exp(−∆r/`), (S2)

where k = 2π/λ, ` is the scattering mean free path. At
the surface of a disordered sample, the spatial correlation
C1 is modified due to the anisotropic angular distribution
of intensity [S7]:

Csurface
1 (r, r′) =

{
1

∆ + 1
2

[
∆

sin k∆r

k∆r
+
J1(k∆r)

k∆r

]}2

× exp(−∆r/`) = h(k∆r, k`), (S3)

where ∆ = z0/`
∗ with z0 the extrapolation length en-

tering the boundary conditions for the average intensity,
and we defined the function h(k∆r, k`) that will be used
in the following. This result is largely independent of the
spatial extent of the source (plane wave, beam of finite
size or point source) and has been tested experimentally
[S8].

The C1 intensity correlation is equal to the square of
the field correlation function, which we can measure di-
rectly since our detector records the transmitted pressure
field. Our least-squares fits of the square root of Eq. (S3)
to our experimental field correlation data yield values of
the parameters k and ` that are consistent with those ob-
tained from ballistic measurements [S2]. This indicates

that Eq. (S3), with k and ` taken from ballistic measure-
ments, gives a good description of our experimental re-
sults, which were obtained from measurements performed
just outside the sample, within one wavelength of its sur-
face. Thus, Eq. (S3) gives a reliable characterization of
our experimental data for the C1 contribution to the in-
tensity correlation, supporting our use of this expression
in our analysis of the total correlation Cω(r, r′).

A more comprehensive study of the C1 correlation
would involve taking into account near-field effects in a
way similar to a recent analysis published for electro-
magnetic waves [S9]. In any case, the precise form of C1

does not play an important role in our analysis, which
is mainly focused on the long-range correlations that are
described next. We thus postpone a detailed analysis of
C1 to a future publication.

Long-range correlation C2

In contrast to C1, the long-range contribution C2 de-
pends on the spatial extent of the source. It is not easy
to calculate for an arbitrary source. In addition, we have
to make an assumption of weak disorder (k` � 1) to
compute the diagrams corresponding to C2.

Transmission of a plane wave through a slab.
We assume that a slab of thickness L � ` and trans-
verse extent W � L is illuminated by a plane wave. The
spatial correlation of intensity is calculated at the oppo-
site side of the slab, as a function of transverse distance
∆r = |r− r′| � `∗ [S10, S11]:

Cplane wave
2 (∆r) =

3

2(k`∗)2

`∗

L

[
L

∆r
+ F

(
∆r

L

)]
'

{
3

2(k`∗)2
`∗

∆r , ∆r � L,

∝ e−π∆r/L, ∆r > L,
(S4)

where

F (x) =
1

2

∫ ∞
0

dqJ0(qx)

(
sinh 2q − 2q

sinh2 q
− 2

)
, (S5)

and `∗ is the transport mean free path.

Equation (S4) applies for ∆r � `∗, where it exhibits
the interesting slow decay, which is why this correla-
tion function is often referred to as “long-range”. How-
ever, the physical processes giving rise to this behav-
ior are at work for ∆r . `∗ as well. For ∆r = 0, for
example, they contribute to the variance of the inten-
sity fluctuations 〈δI(r)2〉/〈I(r)〉2. Physically, we expect
C2(∆r = 0) ' C2(∆r = `∗), but Eq. (S4) diverges for
∆r → 0. This divergence is an artifact of approxima-
tions made during the derivation of Eq. (S4). A more
precise shape of C2(∆r) at small ∆r . `∗ can be ob-
tained by paying more attention to large q and avoiding
the limit q`∗ � 1 which is tacitly taken in the derivation
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of Eq. (S4). We then obtain a longer but more accurate
expression for C2:

Cplane wave
2 (∆r) =

3

2(k`∗)2
F2

(
∆r

L
,
`∗

L

)
, (S6)

where

F2(x, y) =
y

2

∫ ∞
0

du
J0(ux)

(uy sinhu)2

{
sinh2(uy)

× [sinh[2u(1− y)]− 2u(1− y)]

+ sinh2[u(1− y)] [sinh(2uy)− 2uy]
}

'


1− y, x = 0,

y/x, y � x� 1,

∝ e−πx, x > 1.

(S7)

A comparison of Eqs. (S4) and (S6) is shown in Fig. S3.
The latter equation, in contrast to Eq. (S4), allows us to
obtain the value of C2 for ∆r = 0:

Cplane wave
2 (∆r = 0) =

3

2(k`∗)2

(
1− `∗

L

)
. (S8)
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FIG. S3. Comparison of Eqs. (S4) (shown by circles) and
(S6) (shown by the solid red line) for the long-range correla-
tion function of intensity fluctuations. The dashed line shows
`∗/∆r.

Point source in the infinite medium. Even if
this geometry seems simple, the calculation of C2 ap-
pears quite involved. If we define the center of mass
R = 1

2 (r1 + r2) and the difference ∆r = r1 − r2 coordi-
nates, we can obtain simple results for ∆r ⊥ R:

Cpoint source
2 (∆r) ' ± 3

2(k`∗)2

`∗

∆r
, (S9)

with the ‘+’ sign for ∆r � R and the ‘−’ sign for ∆r �
R.

Transmission of a tightly focused beam through
a slab. This situation is realized in our experiments and

is somewhat intermediate with respect to the two previ-
ous cases (the sample is a slab, but the source is point-
like). Because the results for the plane wave incident on
a slab (S6) and the point source in the infinite medium
(S9) coincide for `∗ < ∆r < L, we expect that the same
result will also hold for the tightly focused beam. We
will therefore use:

Cfocused beam
2 (∆r) ' 3

2(k`∗)2
F2

(
∆r

L
,
`∗

L

)
,

∆r < L. (S10)

For ∆r > L, we expect Cfocused beam
2 (∆r) to be different

from both Eqs. (S6) and (S9), but because its magnitude
is already small at such large distances, it will not play
a significant role in the fits to the experimental data.

Short-range part of C2. The calculation leading to
Eqs. (S6), (S9) and (S10) also yields short-range terms
that are rarely mentioned but exist. The full expression
for C2 including both long- and short-range contributions
is

Cfull
2 (∆r) ' 3

2(k`∗)2

[
F2

(
0,
`∗

L

)
h(k∆r, k`)

+ F2

(
∆r

L
,
`∗

L

)]
. (S11)

Long-range correlation C3

The calculation of the spatial C3 correlation function
for a beam focused on the surface of a 3D disordered slab
is a complicated task that we did not succeed in accom-
plishing. However, the structure of the result may be
anticipated from the diagrams involved in the calcula-
tion [S4]: we expect short- and long-range terms similar
to C2. The magnitude of C3 is expected to be of order
1/(k`∗)4. Hence, an approximate expression for C3 may
be written as

C3(∆r) ' const

(k`∗)4

[
F2

(
0,
`∗

L

)
h(k∆r, k`)

+ F2

(
∆r

L
,
`∗

L

)]
. (S12)

Infinite-range correlation C0

Similarly to C2 and C3, C0 correlation also contains the
‘interesting’, infinite-range part and the ‘trivial’, short-
range one. The full expression is found by summing the
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FIG. S4. Diagrams contributing to C0 correlation function.
r0 is the source position. The diagram (a) is the original
long-range one [S5]; it is independent of ∆r = |r − r′|. The
diagram (b) is short-range. It was calculated in Ref. [S12].
The diagrams (c) and (d) are both short-range and were not
considered previously. A complex conjugate diagram should
be added to each of the diagrams.

diagrams of Fig. S4:

C
(a)
0 (∆r) = C

(in)
0 , (S13)

C
(b)
0 (∆r) = C

(out)
0

fb(k∆r, k`)

fb(0, k`)
, (S14)

C
(c)
0 (∆r) = C

(in)
0 h(k∆r, k`), (S15)

C
(d)
0 (∆r) = C

(out)
0

fd(k∆r, k`)

fd(0, k`)
, (S16)

where C
(in)
0 is the genuine, infinite-range correlation that

survives at large ∆r [S5]. It results from the scattering
near the source and is related to the variance of the lo-
cal density of states at r0 [S13]. In contrast, the terms

(S14) and (S16), which are proportional to C
(out)
0 , result

from the scattering near the detection points r1 and r2.
They are appreciable only at small ∆r = |r1−r2|. For the

white-noise uncorrelated disorder, C
(in)
0 = C

(out)
0 = π/k`.

In our experiment, the disorder is correlated and the sym-
metry between the ‘point-like’ excitation and the ‘point-
like’ detection may be broken because neither is actually
point-like and the effective sizes of the excitation and de-

tection areas may differ, so that C
(in)
0 6= C

(out)
0 6= π/k`.

Moreover, these parameters are not universal and will
depend on the microscopic structure of the disordered

sample [S14]. We use C
(in)
0 and C

(out)
0 as free fit param-

eters when comparing theory to the experimental data.

The functions fb(k∆r, k`) and fd(k∆r, k`) are rapidly
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FIG. S5. Functions fb and fd describing the short-range part
of C0 correlation function.

decaying functions of k∆r:

fb(k∆r, k`) =
1

2πk∆r
Re

{
i

∫ ∞
0

dx
sinx

x
e−(i+1/k`)x

×
(

Ei[−(k∆r + x)/k`]

− Ei[(2i− 1/k`)(k∆r + x)]

+ Ei[(2i− 1/k`)|k∆r − x|]

− Ei[−|k∆r − x|/k`]
)}

, (S17)

fd(k∆r, k`) =
1

πk∆r

∫ ∞
0

dx
sin2 x

x
e−x/k`

×
[
Ei

(
−k∆r + x

k`

)
− Ei

(
−|k∆r − x|

k`

)]
. (S18)

The behavior of these functions is illustrated in Fig. S5.

Full expression for the correlation function

Adding up Eqs. (S3), (S11), (S12) and (S13)–(S16)
we end up with an expression that can be used to fit
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experimental data:

C(∆r) =
[
1 +A+ C

(in)
0

]
h(k∆r, k`)

+ A× F2 (∆r/L, `∗/L)

F2 (0, `∗/L)
+ C

(in)
0

+ C
(out)
0

[
fb(k∆r, k`)

fb(0, k`)
+
fd(k∆r, k`)

fd(0, k`)

]
, (S19)

where A = [3/2(k`∗)2 + const/(k`∗)4]F2 (0, `∗/L). A,

C
(in)
0 and C

(out)
0 are the unknown fit parameters.

Role of the finite beam waist

In our experiments, the beam of ultrasound is focused
to a small spot of size w < λ on the sample surface,
whereas theoretical results to which we compare our mea-
surements are obtained for either an incident plane wave
(C1, C2 and C3) or a point source (C1, C2, C3 and C0).
For the long-range correlations C2 and C3, this leads to
the need of adjusting the parameter A to account empir-
ically for the finite beam width when the comparison to
experiments is made. Since A decreases as w increases
[S11], our measurements underestimate the magnitude of
the C2 and C3 correlations that would be measured for
a true point-like source of waves. For the infinite-range
C0 correlation, having a source of finite size is known to

reduce the magnitude of C
(in)
0 [S14], which is not exactly

equal to the variance of LDOS anymore and will depend
on w as well. Therefore, our measurements of C0 underes-
timate the actual LDOS fluctuations, which are expected
to be even stronger. However, the analysis presented in
the main text of the paper does not rely on the magnitude
of the correlations measured experimentally, but investi-
gates their dependence on the distance between measure-
ment points [Figs. 1 and 2(a)], the frequency difference
[Fig. 2(b)], or the central frequency (Fig. 3). As a conse-
quence, our conclusions remain valid independent of the
beam waist w. A more detailed, quantitative comparison
between theory and experiment would require calculat-
ing the dependence of C2, C3 and C0 on w, so that the
number of free parameters would be reduced in the fits
presented in Figs. 1 and 2. However, such an analysis is
beyond the scope of the present work and is not required
to arrive at the conclusions that we make in the main
text of the Letter.

Accounting for the size of the detector

In the experiment, the acoustic field is measured
very close to the sample surface with a disk-shaped hy-
drophone of radius b = 0.2 mm. In order to take into
account the size of the hydrophone, we assume that the
measured quantity is not the intensity I(r) at a point r

but the intensity averaged over a disk of radius b centered
at r:

I(r) =
1

πb2

∫
b(r)

I(r′)d2r′, (S20)

where b(r) denotes a disk of radius b centered at r. The
correlation function of I(r) can be then obtained from
the correlation of I(r) by a double spatial integration:

CI(∆r = r1 − r2) =
1

(πb2)2

∫
b(r1)

d2r′1

∫
b(r2)

d2r′2

× CI(∆r′ = r′1 − r′2). (S21)

THEORY FOR FREQUENCY CORRELATIONS

Definitions

The frequency correlation function of intensity fluctu-
ations δI(r, ω) = I(r, ω)− 〈I(r, ω)〉 is defined as

Cω(r,Ω) =
〈δI(r, ω + 1

2Ω) δI(r, ω − 1
2Ω)〉

〈I(r, ω)〉2
, (S22)

where we assume that the average intensity is indepen-
dent of frequency in the frequency band under consider-
ation: 〈I(r, ω + 1

2Ω)〉 = 〈I(r, ω − 1
2Ω)〉 = 〈I(r, ω)〉. Once

again, we will omit the subscript ‘ω’ of C from here on.
The behavior of C(r,Ω) with Ω is similar to the behav-
ior of the spatial correlation function C(∆r) with ∆r: it
decays and has both short- and long-range parts.

Short-range correlation C1

The short-range part of C can be easily calculated in
transmission of a plane wave through a slab of thickness
L [S4, S8]:

C1(Ω) =

∣∣∣∣ L`∗ × sinh2(α`∗)

α`∗ sinhαL

∣∣∣∣2 , (S23)

where αL = π
√
iΩ/ΩTh, ΩTh = π2D/L2 is the Thou-

less frequency, D is the diffusion coefficient of the wave,
and we neglected corrections due to boundary conditions,
assuming L� `∗, z0.

For a point source at the origin in the infinite medium
we have

C1(R,Ω) = |exp (−αR)|2 , (S24)

with similar definitions αR = π
√
iΩ/ΩTh, ΩTh =

π2D/R2.
Both correlation functions (S23) and (S24) oscillate

and decay roughly exponentially with
√

Ω/ΩTh, so that
no correlation is left for Ω � ΩTh. We will adopt Eq.
(S23) in the following.



7

Long-range correlation C2

Transmission of a plane wave through a slab.
From a calculation following Refs. [S11, S15] we found
the following result:

Cplane wave
2 (Ω) =

3

2(k`∗)2
F2

(
αL,

`∗

L

)
, (S25)

where

F2

(
αL,

`∗

L

)
=

1

2

L

`∗

∞∫
0

du u f

(
u

L
, αL,

`∗

L

)
, (S26)

f

(
q, αL,

`∗

L

)
=

4

L

 `∗∫
0

dz

(
sinh qz sinh q`∗

q sinh qL

×
∣∣∣∣ ∂∂z sinhαz sinhα(L− `∗)

α`∗ sinhαL

∣∣∣∣)2

+

L−`∗∫
`∗

dz

(
sinh qz sinh q`∗

q sinh qL

×
∣∣∣∣ ∂∂z sinhα`∗ sinhα(L− `∗)

α`∗ sinhαL

∣∣∣∣)2

+

L∫
L−`∗

dz

(
sinh q(L− `∗) sinh q(L− z)

q sinh qL

×
∣∣∣∣ ∂∂z sinhα`∗ sinhα(L− `∗)

α`∗ sinhαL

∣∣∣∣)2
]
.(S27)

Integrations in this equation can be carried out analyt-
ically, resulting in a long expression that we do not re-
produce here. Then the integral in Eq. (S26) can be
calculated numerically.

In the limit of a thick slab L � `∗, Eq. (S25) yields
a function that depends mainly on Ω/ΩTh as far as
Ω/ΩTh . 1, see Fig. S6 (top). In the limit of large
Ω/ΩTh →∞ we find

Cplane wave
2 (Ω) ∝ Cplane wave

2 (0)× `∗

L

√
ΩTh

Ω
, (S28)

as illustrated in Fig. S6 (bottom).

Point source in the infinite medium. Here we
need to introduce a spatial cut-off ∼ `∗ to avoid the path
crossing (Hikami box) being closer than `∗ to the detec-
tor. The results then should be understood as depending
on the precise value of this cutoff:

Cpoint source
2 (Ω) ' 3

4(k`∗)2
F2

(
αR,

`∗

R

)
, (S29)
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FIG. S6. Frequency correlation of intensity fluctuations C2

in transmission of a plane wave through a disordered slab for
small (top) and large (bottom) values of Ω.

where

F2

(
αR,

`∗

R

)
= 2

`∗

R


1−`∗/R∫

0

dx
exp[−2Re(αR)x]

(1− x2)2

+

∞∫
1+`∗/R

dx
exp[−2Re(αR)x]

(1− x2)2

 . (S30)

In the limit of R � `∗ that is of interest for us here, we
have

F2

(
0,
`∗

R

)
= 1, (S31)

F2

(
αR,

`∗

R

)
=
`∗

R
× 1

Re(αR)
, Ω� ΩTh (S32)

The behavior of C2 at small and large Ω is illustrated in
Fig. S7.

Transmission of a tightly focused beam through
a slab. We assume that the C2 correlation function for a
beam focused on the surface of a disordered slab is similar
to the one for the plane wave, except for the magnitude
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FIG. S7. Frequency correlation of intensity fluctuations C2

at a distance R from a point source in the infinite medium for
small (top) and large (bottom) values of Ω.

of C2 [S15]:

Cfocused beam
2 (Ω) ' const

(k`∗)2
F2

(
αL,

`∗

L

)
, (S33)

with F2(αL, `∗/L) defined by Eq. (S26).

Infinite-range correlation C0

The frequency dependence of the C0 correlation func-
tion is obtained by calculating the diagrams of Fig. S8.
We obtain:

C
(a)
0 (Ω) = C

(in)
0 , (S34)

C
(b)
0 (Ω) = C

(out)
0 , (S35)

C
(c)
0 (Ω) = C

(in)
0 C1(Ω), (S36)

C
(d)
0 (Ω) = C

(out)
0 C1(Ω). (S37)

Full expression for the correlation function

Adding up all the contributions and assuming (as in
the case of spatial correlations) that the behavior of C3

FIG. S8. Diagrams contributing to C0 correlation function.
r0 is the source position; ω1,2 = ω ± 1

2
Ω. The diagrams (a)

and (b) are independent of Ω = ω1 − ω2 as far as |Ω| � ω1,2.
A complex conjugate diagram should be added to each of the
diagrams.

as a function of frequency is similar to that of C2, we fi-
nally find the full expression for the frequency correlation
function:

C(Ω) =
[
1 + C

(in)
0 + C

(out)
0

]
C1(Ω)

+ 2A× F2(αL, `∗/L)

F2(0, `∗/L)
+ C

(in)
0 + C

(out)
0 , (S38)

where A ∼ 1/(k`∗)2. Note that the constants A and

C
(in,out)
0 here should be the same as in Eq. (S19) for the

spatial correlation.
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