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We report on ultrasonic measurements of the propagation operator in a strongly scattering mesoglass.
The backscattered field is shown to display a deterministic spatial coherence due to a remarkably large
memory effect induced by long recurrent trajectories. Investigation of the recurrent scattering contribution
directly yields the probability for a wave to come back close to its starting spot. The decay of this quantity
with time is shown to change dramatically near the Anderson localization transition. The singular value
decomposition of the propagation operator reveals the dominance of very intense recurrent scattering paths
near the mobility edge.
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In a disordered medium, a classical approach is to
consider the trajectory followed by a wave as a
Brownian random walk. After a few scattering events,
the spatiotemporal evolution of the mean intensity is
governed by the diffusion equation. The relevant param-
eters are the scattering mean free path ls, the transport mean
free path l�, and the Boltzmann diffusion coefficient DB.
However, this classical picture neglects interference effects
that may resist the influence of disorder. In particular,
constructive interference between reciprocal multiple scat-
tering (MS) paths enhances the probability for a wave to
come back close to its starting point as compared to
classical predictions: this phenomenon is known as weak
localization. Hence, interference can slow down and
eventually stop the diffusion process, giving rise to
Anderson localization (AL) [1–5]: instead of spreading
diffusely from the source, a wave packet remains localized
in its vicinity on a length scale given by the localization
length ξ. The transition at a mobility edge between diffuse
and localized behavior is predicted to exist only in three-
dimensional media and occurs when the scattering is
sufficiently strong, i.e., when kls ∼ 1 (with k the wave
number in the scattering medium) [2]. Several experiments
in optics have shown deviations from diffuse behavior in
three-dimensional strongly scattering samples [6–8].
However, the most direct proof of three-dimensional
classical wave localization was first established in acous-
tics, by observing the transverse confinement of energy in a
mesoglass consisting of an elastic network of aluminium
beads [9]. More recently, this transverse confinement
method [9] has also been used in optics [10].
In this Letter, we investigate some new mesoscopic

aspects of AL, taking advantage of ultrasonic technology.
More precisely, we adopt a matrix formalism which is
particularly appropriate since the ultrasonic wave field can

be controlled by an array of independent transducers acting
both as sources and receivers (Fig. 1). The Green’s
functions Kij, obtained by emitting a wave from an array
element i and recording the backscattered field at an
element j, constitute the propagation matrixK. This matrix
provides many fundamental insights into the medium under
investigation. One can, for instance, extract from K the
single- and multiple-scattering components [11–13], the
diffusive halo and the coherent backscattering cone [14], or
even determine the open scattering channels [15,16].
In this study, the propagation matrix is investigated in the

strongly scattering regime (kls ∼ 1). Surprisingly, the back-
scattered field displays a deterministic coherence along the
antidiagonals of K in a way similar to single scattering
[11], but at much longer times of flight. We argue that
recurrent scattering (RS) paths account for this long-range
coherence and establish the link with the memory effect

FIG. 1 (color online). Experimental setup. Examples of a
single scattering path (green dashed arrows), of a RS path
(red solid arrows) and of a conventional MS path (orange dotted
arrows) are drawn.
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[17,18]. By RS paths, we mean any scattering path that
begins and ends at positions separated by less than one
mean free path. A matrix method is then applied to extract
the RS contribution from the backscattered wave field. This
yields a quantitative measurement of the probability for a
wave to return to its starting spot. A slowing down of the
decay of this return probability with time is observed near
the localization transition, in qualitative agreement with
theory [4]. At the mobility edge, the measured decay is
actually slower than anticipated from the self-consistent
(SC) theory of localization [4]. This surprising behavior
coincides with the emergence of very intense RS paths that
dominate the singular value spectrum of K. These obser-
vations offer new insights into key aspects of three-
dimensional AL that have not been accessible to
experimental investigation previously.
Our random scattering sample is a mesoglass similar to

those used in a previous work [9]. It is made from 3.93 mm
mean diameter aluminium beads brazed together at a
volume fraction of approximately 55%. The cross section
(230 × 250 mm2) of the slab-shaped sample is much larger
than its thickness L ¼ 25 mm. Unlike the samples in
Ref. [9], there is a polydispersity of about 20% in the size
of the beads, and different brazing conditions resulted in
stronger elastic bonds between the beads, thereby modi-
fying the scattering properties of the sample. From mea-
surements at 0.9 MHz of the coherent pulse crossing the
sample [19], we estimate the longitudinal phase velocity
vp ≈ 2.8 mm=μs and the mean free path ls ≈ 1.3 mm [19].
This leads to a product of wave number k and mean free
path kls ≲ 3. Above 1 MHz, the coherent pulse becomes
too small to measure accurately in this thick sample,
consistent with even stronger scattering and smaller values
of kls. By performing transverse confinement measure-
ments [9], we find that the waves are localized between 1.2
and 1.25 MHz (mobility edges), with ξ < L in the middle
of this band.
The experimental setup (Fig. 1) uses N ¼ 64 elements of

a linear ultrasonic array in the 1–2 MHz frequency range.
The array pitch p is 0.5 mm. The array is immersed in
water, at a distance a ¼ 182 mm from the waterproofed
sample. N2 time-dependent responses are measured by
sending a pulse from element i and recording the scattered
wave field at element j (see Fig. 1), for all i and j. To
perform a time-frequency analysis, these signals are filtered
by a Gaussian envelope of standard deviation of 0.015MHz
centered around a given central frequency f. A set of
matrices Kðt; fÞ is obtained at each time-frequency pair.
This operation was repeated for 302 different realizations of
disorder by moving the array in a plane parallel to the
sample surface.
Figure 2(a) displays a typical example of the matrix K

obtained at frequency f ¼ 1.25 MHz and time t ¼ 185 μs
much exceeding the mean free time ls=vp ∼ 1 μs, deep in
the MS regime. Surprisingly, despite its overall random

appearance, the matrix K exhibits a clear coherence along
its antidiagonals. This result should be considered in the
context of previous studies [11,20] that dealt with much
weaker scattering (kls ∼ 100). In these media, the anti-
diagonal coherence was proven to be associated with the
single scattering contribution and insensitive to disorder. It
can also be understood as a manifestation of the well-
known memory effect. This phenomenon was discovered in
optics in the late eighties [17,18] and has recently received
renewed interest in the context of ultrasonic and optical
imaging [12,21–24]. When an incident plane wave is
rotated by an angle θ, the speckle image measured in
transmission or in backscattering in the far field of the
sample is shifted by the same angle θ (or −θ in reflection),
as long as θ does not exceed a certain threshold, namely the
angular correlation width Δθ. In the single scattering
regime, the memory effect actually spreads over the whole
angular spectrum (Δθ ¼ π=2) [17,18]. This accounts for
the fact that the signals Kij are coherent along the same
antidiagonal, as long as only single scattering takes place.
Indeed two pairs of array elements ði1; j1Þ and ði2; j2Þ on
the same antidiagonal obey i1 þ j1 ¼ i2 þ j2. Changing the
direction of emission amounts to changing i1 into i2.
Consequently, in reflection the resulting speckle will be
tilted so that the signal that was received in j1 will be
coherent with the new signal in j2 ¼ j1 − ði2 − i1Þ. When
MS takes place, the correlation width Δθ is greatly
restricted. Therefore the Kij’s are no longer expected to
exhibit this remarkable antidiagonal coherence, and are
expected to emerge as random and only short-range
correlated [11,20]. However, Fig. 2(a) clearly contradicts
this simple picture. It indicates that the matrix K corre-
sponding to the strongly MS regime shares the spatial
coherence of the matrix corresponding to the single
scattering regime, though at much longer times of flight.

FIG. 2 (color online). (a) Real part of the matrix K at time
t ¼ 185 μs and frequency f ¼ 1.25 MHz for a given realization
of disorder. (b) Real part of the RS contributionKR. (c) Real part
of the conventional MS contribution KM. (d) Spatial mean
intensity profiles at the same time and frequency.
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Another surprising result is shown by Fig. 2(d) which
displays the mean backscattered intensity as a function of
the distance between the source i and the receiver j at the
same time and frequency as in Fig. 2(a). In the MS regime
(vpt ≫ ls) and far from localization (kls ≫ 1), the intensity
backscattered at the source is expected to be twice as large
as the intensity far from the source: this is the coherent
backscattering phenomenon [25–28]. Although we do
indeed obtain this coherent backscattering peak, the
enhancement factor is clearly smaller than 2. We interpret
this as a sign of a large contribution from RS (red arrows in
Fig. 1). RS, just like single scattering, contributes to the
background intensity that is independent of the distance
between source and receiver. The interference between a
wave and its reciprocal counterpart is indeed always
constructive for these two contributions. A reduction of
the enhancement factor due to RS was previously observed
experimentally, but in a much lower proportion and not as a
function of time [29,30].
The very large RS contribution seen in our experiment

sheds new light on the long-range spatial coherence
observed in Fig. 2(a). In the strongly scattering regime,
the backscattered field can be decomposed into a sum of
two terms: (i) A RS contribution (red arrows in Fig. 1) that
displays the same statistical properties as the single
scattering one. This contribution accounts for the
deterministic coherence along the antidiagonals of K in
Fig. 2(a). (ii) A conventional MS contribution (orange
arrows in Fig. 1) for which the first and last scattering
events are separated by more than one mean free path. In
this case, the memory effect is restricted to the angular
width of the backscattering cone [31,32].
Previous studies have taken advantage of the memory

effect to separate single and multiple scattering [11–13].
Here, the previous method is significantly extended [33] to
enable K [Fig. 2(a)] to be separated into a RS component
KR [Fig. 2(b)] and a conventional MS component KM

[Fig. 2(c)]. Once the separation of these two contributions
is performed, one can compute the corresponding mean
backscattered intensity [Fig. 2(d)]. Whereas RS leads to a
flat intensity profile, the conventional MS intensity exhibits
a coherent backscattering cone. The recovery of an
enhancement factor close to two demonstrates that RS
was indeed responsible for reducing the enhancement
factor seen for the total intensity I [30] [Fig. 2(d)].
The RS intensity IR is directly related to the probability

PR for a wave to return to the spot at which it entered the
scattering sample. From a theoretical point of view, this
return probability is a key quantity in the description of the
renormalization of the diffusion constant in the SC theory
of localization [3,4]. Figure 3(a) shows the time evolution
of the RS ratio IR=I at f ¼ 1.2 MHz (critical regime), f ¼
1.225 MHz (localized regime), and f ¼ 1.8 MHz (diffuse
regime), with I the total backscattered intensity. After a
plateau close to 100% that lasts until t ¼ 50 μs due to

specular echoes from the sample surface (see green arrows
in Fig. 1), the RS ratio starts to decrease with time. This
ratio is highest at 1.225 MHz, and has a particularly slow
decay at f ¼ 1.2 MHz, with IR=I being still above 70% at
t ¼ 200 μs (i.e., after 450 scattering events) for both
frequencies. The large predominance of RS paths at
frequencies near 1.225 MHz strongly suggests it to be a
crucial element in any discussion of AL.
The decay of the RS intensity with time bears particular

signatures of AL. For times of flight smaller than twice the
Thouless time τD ¼ L2=DB ∼ 100 μs, the medium can be
considered as semi-infinite in a backscattering configura-
tion. In that case, a power law decay is expected for the
return probability at the surface of the sample: IRðtÞ should
decrease as 1=t5=2 in the diffuse regime [8] and, for
t > ξ2=DB, as 1=t2 in the localized regime [4,8]. At longer
times of flight (t > 2τD), the finite sample size should come
into play so that the decay becomes similar to that of time-
dependent transmission, i.e., exponential in the diffuse
regime [34,35] and nonexponential in the localized
regime [7,9].
Figure 3(b) displays the typical time dependence of IRðtÞ

in the 1–2 MHz frequency range. At all frequencies, IRðtÞ
can be described by a power law 1=tα between 85 and
200 μs. We recover the exponent α ¼ 5=2 at 1.8 MHz,
characteristic of the diffuse regime, and observe its shift to
2 at 1.225 MHz as expected in the localized regime.
Furthermore, we observe a strikingly slower decay at
f ¼ 1.2 MHz, which corresponds to a mobility edge and
where α reaches a value close to 1. Further theoretical work
on the Anderson transition in open media is needed to
account for this unexpected behavior. As the exponent α is
linked to the dimension of available space in which the
waves propagate, it might be related to previously observed
[36] and theoretically predicted [37–40] multifractal prop-
erties of the wave function. In the literature, transmission
measurements have also shown some deviations from SC
theory in the localized regime [41] due to long-lived

FIG. 3 (color online). (a) Time evolution of the RS ratio IR=I at
f ¼ 1.2 MHz (red circles), f ¼ 1.225 MHz (green diamonds),
and f ¼ 1.8 MHz (blue squares). (b) Time evolution of the RS
intensities IRðtÞ, normalized by their values at time t0 ¼ 90 μs, at
the same three frequencies, shown in a log-log scale. The
corresponding fits with a power law (continuous lines) yield
IRðtÞ ∝ t−2.55�0.13 at 1.8, IRðtÞ ∝ t−2.04�0.18 at 1.225 and IRðtÞ ∝
t−0.95�0.23 at 1.2 MHz.
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resonant modes [42]. Interestingly, as discussed below, the
discrepancy with SC theory in backscattering coincides
with the emergence of very intense RS paths close to the
mobility edge.
We now investigate the effect of RS on the statistical

properties of the random matrix K. First, we study the
statistical properties of the singular values of K and
compare them with the predictions of random matrix
theory (RMT). The singular value decomposition (SVD)
consists in writing K ¼ UΛV†, where U and V are unitary
matrices and Λ is a diagonal matrix whose nonzero
elements λi are called the singular values of K. They are
real, positive, and arranged in decreasing order. In the case
of random matrices whose antidiagonals are either constant
or strongly correlated (Hankel matrices), the statistical
distribution of singular values, particularly the strongest
ones, can be calculated and compared to experimental
measurements [11,20]. In the present situation, given the
substantial memory effect, one would expect the singular
values to follow Hankel-like distributions, as was observed
in previous work dealing with weaker scattering [11,20].
However, the present experimental results show that this is
clearly not the case for the first two singular values,
especially around 1.2 MHz. Figure 4(a) displays the
average of the three largest singular values, hλi¼1;2;3i, as
a function of frequency at a given time t ¼ 150 μs [43].
The hλii are compared to the theoretical values expected for
Hankel random matrices [20]. As we will now discuss, the
spectacular discrepancy between the first two singular
values and RMT predictions around 1.2 MHz is related
to the dominance of intense RS paths in the backscattered
wave field.
Singular vectors can be given a physical interpretation:

they are the invariants of the time reversal operatorKK†. In
a weakly scattering regime, there is a one-to-one corre-
spondence between single scattering paths and eigenvec-
tors of K associated with nonzero singular values [44,45]:
each singular vector of K corresponds to the wave front

that, if sent as such from the array, would focus onto the
corresponding scatterer. By contrast, in strongly scattering
media, the physical meaning of singular vectors and the
result of their back propagation will be different, and may
reveal unusual phenomena. Figure 4(b) shows the time
evolution of the numerical back propagation of V1 at the
sample surface for one realization of disorder. Once again,
we observe remarkable behavior around 1.2MHz:V1 back-
focuses on the same particular location at regular time
intervals (every 40 μs), as if it were associated with a
particular dynamic hot spot. The corresponding peaks are
of same duration as the incident pulse (∼10 μs). In the
strongly scattering regime, near the localization transition,
we argue that the largest singular values ofK are associated
with predominant RS paths, whose entry and exit points
appear as specific hot spots at the surface of the sample. For
the realization of disorder considered in Fig. 4(b), the
occurrence of the same hot spot every 40 μs could indicate
that it corresponds to successive round trips along a RS
path of no less than 90 scattering events. Note that the
emergence of dynamic hot spots has been observed in other
configurations of disorder with different regularly spaced
intervals of time ranging from 30 μs to 100 μs [33]. From a
practical point of view, the selective and independent
excitation of RS paths can open new perspectives for
manipulation of wave fields in complex media. In an
amplifying medium, for example, one could select the
scattering paths to be amplified and thus control the random
laser process [46].
In conclusion, we have shown how new information on

the dynamics of Anderson localization can be obtained
using the mesoscopic reflection matrix approach. The long-
range spatial coherence of the RS contribution has been
directly observed and its link with the memory effect has
been established. A sophisticated matrix manipulation
method has been further developed to separate this con-
tribution from the conventional MS background, enabling
RS to be examined experimentally on its own for the first
time. Thus we are able not only to demonstrate that the
contribution of RS to the total backscattered intensity is
strikingly large near the Anderson transition, but also to
investigate the dynamics of the return probability for waves
within the scattering medium. In particular, a dramatic
slowing down in the decay of the return probability has
been found near the mobility edge, with a power-law
exponent α that is smaller than expected, motivating new
theoretical work to understand this behavior quantitatively.
The emergence of very intense RS paths, which are
revealed by our analysis of the singular values of the
backscattering matrix, is another novel feature of our
results, and provides support for the idea that RS plays a
very important role near the mobility edge.
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FIG. 4 (color online). (a) Average of the first three singular
values hλii versus frequency at time t ¼ 150 μs. The experi-
mental results (circles) are compared to the RMT predictions
(lines). Error bars correspond to� the standard error in the mean.
(b) Back propagation of the first singular vector at the sample
surface computed at each time for one realization of disorder at
frequency f ¼ 1.2 MHz. x represents the coordinate along the
surface.
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