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Abstract

In this work we investigate the microwave induced ferromagnetic resonance
(FMR) measured through electrical detection and show that the line shape depends
strongly on the relative phase shift between electric and magnetic fields. Electrical
detection of FMR is based on the anisotropic magnetoresistance (AMR) of a fer-
romagnetic strip which results in a time varying resistance dependent on the angle
between the strip magnetization and current. Through the AMR effect the magne-
tization precession rectifies the microwave voltage, producing a non-zero time aver-
aged dc voltage which is measured through lock-in amplification. This photovoltage
has a Lorentz type line shape characteristic of resonance phenomena. However the
line shape can range from purely symmetric to purely dispersive depending on the
microwave frequency and sample structure, which is not accounted for in the con-
ventional line shape description. By introducing a phase shift between the rf electric
field, which drives a current in the strip, and the rf magnetic field which drives the
magnetization precession, the line shape is shown to change dependent on the direc-
tion of the driving magnetic field, and the magnitude of the phase shift. This model
is used to fit experimental data driven by various magnetic field components and en-
ables a separation of their relative magnitudes and phases. In this way the line shape
dependence on frequency and sample structure is accounted for due to a change in
the relative phase induced by changing boundary conditions.
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1 Introduction

1.1 Ferromagnetic Resonance

Ferromagnetic resonance was first discovered in the mid 20th century when ferro-
magnetic materials were found to strongly absorb microwave frequency electromag-
netic radiation [1]. These resonances in the Larmor frequency, which is the frequency
of magnetic moment precession in a magnetic field, had been predicted by Landau
and Lifshitz and were observed later by Griffiths as the shifted resonance peaks in
the electron paramagnetic resonance (EPR) of electroplated ferromagnetic films [2].
As explained by Kittel these ”anomalous” peaks, which lay outside of the normal
resonance fields were due to the demagnetization fields which effectively reduced the
magnetic field for a given Larmor frequency [3, 4].

As an experimental technique, FMR measurements began as macroscopic probes
to study large ferromagnetic samples with measurements performed, for example, us-
ing microwave resonance cavities [1]. These techniques quickly developed into local
ferromagnetic probes using local excitation and/or local detection and a variety of
FMR techniques have since been used. By allowing researchers to probe the mag-
netization precession that gives rise to FMR, this spectroscopic technique enables
the study of a materials underlying spin properties and as a result has become a
standard tool in the research of spin dynamics making it invaluable to the field of
spintronics. Recently the electrical detection of FMR has gained popularity amongst
the spintronics community proving to be a powerful and precise experimental tool [5].

The electrical FMR detection is based on the anisotropic magnetoresistance which
induces a time varying resistance due to the magnetization motion which becomes
resonant for certain external fields. This method enables the study of microstructured
ferromagnetic samples, further increasing its value in spintronics measurements. How-
ever electrical detection techniques require both amplitude and phase information to
properly characterize the line shape which carries important physical information
about the voltage production. The recent development of powerful phase resolved
techniques has further enabled phase measurements of the rectified voltage which
has opened the door to new studies of the FMR line shape [6]. Such research has
applications to a broad range of condensed matter research, including the spin Hall
effect.

1.2 Spin Hall Effect

The spin Hall effect has its origins in the spin flux generated by the current flow
in a conductor as was theoretically described in 1971 by D’yakonov and Perel [7, 8].
This spin flux produces a spin accumulation which is limited by the spin relaxation
time. The transverse voltage generated by such an effect was described by Hirsch
in 1999 [9] and was first experimentally observed in semiconductors in 2004 [10, 11].
The experimental generation of a spin Hall voltage has resulted in a flurry of activity
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in the condensed matter community and many groups are now studying the spin Hall
effect in both semiconductors and ferromagnets. The reason for this interest is the
ability to convert charge currents into spin currents and vice versa which has great
potential in the field of spin driven electronics, or spintronics, since less energy would
be required to drive spin currents than charge currents, and spin transport could be
enabled without ferromagnets.

Figure 1: (a) Normal Hall effect where a magnetic field deflects moving electrons
via the Lorentz force. Both spin up and spin down electrons are deflected the same
way. (b) Spin Hall effect where spin dependent scattering occurs due to the spin-orbit
interaction.

The spin Hall effect in a conductor is due to the spin dependent scattering of
charge carriers originating from the spin-orbit interaction, which causes spin-up and
spin-down electrons to flow in opposite directions resulting in a net spin accumulation
[12]. It is analogous to the Hall effect in that the scattering of charge carriers results
in the generation of a transverse voltage. However in the Hall effect an external
magnetic field is required which is unnecessary for the spin Hall effect. Also the Hall
effect will scatter both spin up and spin down carriers in the same direction whereas
the spin Hall effect will cause spin dependent scattering. If the conductor has equal
up and down spin densities, the equal and opposite Hall charge currents will cancel,
leaving only a pure spin current [13].

Alternative methods for driving pure spin currents have also been proposed, such
as spin pumping. As described by Tserkovnyak et. al. [14, 15] magnetization preces-
sion at a ferromagnetic-normal metal (F|N) interface can act as a spin pump which
transfers a spin current from the ferromagnet into the normal metal due to the spin
accumulation at the F|N interface. Such a spin current can be converted back into
a charge current through the inverse spin Hall effect via the spin-orbit interaction
which would again generate a spin Hall voltage. The effectiveness of either of these
spin-charge conversion can be characterized by the spin Hall angle γSH , which is the
ratio of spin Hall and charge conductivities.
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An accurate determination of γSH has broad applications to spintronics, since
the conversion between spin and charge currents determined by γSH is one key to
developing spintronic devices. For instance by converting the spin pumping current
into a charge current through the spin Hall effect, a spin battery could be enabled
which could be used to power electronic devices [16, 17, 18]. Such spin powered devices
are characterized by their low power consumption and small size and as such could
be the future of electronics. A popular technique used to determine γSH is through
the electrical detection of FMR. However experimentally determining γSH has proven
controversial. For example, work by Seki et. al. found a large spin Hall angle in
Au of γSH = 0.113 suggesting the giant spin Hall effect [19], however Mihajlovic et.
al. found an upper limit for γSH in Au under similar conditions to be 0.023 [20].
Similarly in Pt the spin Hall angle was found to be 0.08 and 0.0037 by Ando et.
al. [21] and Kimura et. al. [22] respectively. More recently Mosendz et. al. reported
values of γSH=0.0067 in Pt and γSH=0.0016 in Au using spin pumping and the inverse
spin Hall effect [12] while Liu et. al. reported γSH = 0.056 for bulk platinum [23].
In the later experiment a current in the Pt layer of a Py/Pt bilayer creates a spin
current through the spin Hall effect which drives FMR in the adjacent Py layer; a
reverse process to that used by Mosendz. A possible explanation given by Liu for the
variation from the Mosendz result is that the spin diffusion length used by Mosendz
was under estimated [23]. However, in such spin pumping experiments in addition to
the spin Hall voltage there may be other voltages such as a voltage produced by the
anisotropic magnetoresistance, and the proposed measurement schemes must account
for this [9, 24]. Typically both effects are considered and are distinguished based on
the symmetry or antisymmetry of the FMR lineshape [12]. However this symmetry
analysis requires knowledge of the line shape phase; an additional problem which has
not been properly addressed in the analysis of the FMR line shape.

1.3 The Relative Phase and Electrical Detection

The phase contribution to the electrically detected line shape has a component due
to the well known spin resonance phase Θ which describes the phase lag between the
response and the driving force. However there is also a phase contribution due to the
relative electromagnetic phase Φ between the electric and magnetic fields. When an
electromagnetic wave propagates through free space the electric and magnetic fields
are in phase and orthogonal to each other. However when an electromagnetic wave
travels though a dispersive medium where the wave vector and hence the index of
refraction is complex, the imaginary contribution can create a phase shift between
electric and magnetic fields. The most well known example is that of a plane elec-
tromagnetic wave moving in a conductor where Faraday’s law gives a simple relation
between electric and magnetic fields, ωµH = k × E. Therefore the complex part
of the wave vector k will induce a phase shift bewteen electric and magnetic fields.
Although the field will exponentially decay inside a conductor, it will still penetrate
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a distance on the order of the skin depth, and in a perfect conductor for frequencies
below ∼ 1017 Hz the conductivity (σ ∼ 107) which produces an imaginary dielectric
constant will result in a phase shift of π/4 between the electric and magnetic fields
[25, 26].

In a complex system, such as the series of waveguides, coaxial cables, bonding
wires and sample holder required for electrical FMR detection, the relative phase
cannot be calculated and even to create a simulation would be a highly nontrivial
problem. Nevertheless the relative phase problem is fundamental to the study of the
electrically detected FMR line shape and thanks to new phase resolved techniques,
such as spintronic Michelson interferometry [6], an experimental probe now exists to
examine such questions, which will be the focus of this work.

This work is organized as follows: In section 2 the theory of ferromagnetic res-
onance and the dynamic susceptibility, which is used to determine the electrically
detected FMR line shape are described. In section 3 the experimental setup is dis-
cussed and in section 4 the experimental results and determination of the relative
phase for different samples are presented. In section 5 the results and key findings
are summarized in the conclusion. Finally in the appendix a possible calculation of
the relative phase in a simple system is outlined, with possible concerns and questions
raised and the final calculation left as an open question.
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2 Theory

2.1 Ferromagnetic Resonance

The source of ferromagnetism is the spontaneous magnetic moment possessed
by certain materials below the Curie temperature, TC . This spin polarization arises
from the exchange interaction which makes it energetically favorable for the spins
of neighboring atoms to align [27, 28] resulting in a locally non-zero magnetization.
To excite FMR the magnetization is aligned with an externally applied dc magnetic
field, and an rf field is used to drive magnetization precession. While there are
different forms of damping which are introduced based on phenomenological grounds,
a description generally begins with the damping free Landau-Lifshitz equation

dM

dt
= −γ(M×Hi). (1)

Here γ is the electron gyromagnetic ratio and Hi includes all the magnetic fields seen
by the electron such as fields from the exchange interaction, dipole-dipole interaction,
anisotropy interaction and the externally applied field, which itself will contain a dc
and rf term [29]. Eq. 1 describes motion without damping and consequently repre-
sents precession without a spin torque. Based on phenomelogical grounds damping
was added in order to produce a torque which would force the magnetization inward
and reduce the cone angle of the precession. With damping the Landau-Lifshitz
equation becomes

dM

dt
= −γ(M×Hi)− λ

(
(Hi ·M)M

M2
−Hi

)
, (2)

where λ is the Landau-Lifshitz damping parameter with dimensions of frequency.
Using the so called BAC CAB rule we have

M× (M×Hi) = M(M ·Hi)−Hi(M ·M) = M(M ·Hi)−HiM
2, (3)

so that
(Hi ·M)M

M2
−Hi =

M× (M×Hi)

M2
. (4)

Thus we can rewrite the Landau-Lifshitz equation with damping as

dM

dt
= −γ(M×Hi)− λ

(
M× (M×Hi)

M2

)
. (5)

Let α be the Gilbert damping parameter defined as

α =
λ

γM
, (6)
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then we have
dM

dt
= −γ(M×Hi)−

αγ

M
(M× (M×Hi)) . (7)

If we then cross each side of Eq. 7 with M and use Eq. 3 with M ×M = 0 we have

γM× (M×Hi) = −M× dM

dt
+ αγM(M×Hi). (8)

Using the above result in Eq. 7 we find the form of the Landau-Lifshitz-Gilbert
equation commonly used

dM

dt
= −γ(M×Hi)(1 + α2) +

α

M

(
M× dM

dt

)
. (9)

The α2 term is small and is typically neglected at this point. For now we follow
through keeping this term to determine the dynamic susceptibility and will only set
α2 = 0 when determining the line shape of the susceptibility elements. From Eq. 9 we
can develop a picture of how the magnetic field acts on the magnetization. The first
term describes a torque applied to the magnetization by the magnetic field, similar
in form to the torque exerted by gravity on a precessing top [29, 30] as shown in Fig.
2.

The second term in the Landau-Lifshitz-Gilbert equation is perpendicular to

Figure 2: (a) Precession of the magnetization M due to the magnetic field Hi. (b)
Precession of a spinning top due to the torque from gravity.

both the magnetization and the torque and results in an inward force with tends to
reduce the angle at which the magnetization is precessing which is also illustrated in
Fig. 2. If we regroup Eq. 9 as

dM

dt
= −γ(M×

(
Hi(1 + α2)− α

γM

dM

dt

)
, (10)

we see that the damping can be introduced into our original Landau-Lifshitz equation
by the addition of a field which reduces the non damped field.



2.2 Dynamic Susceptibility 7

2.2 Dynamic Susceptibility

Solving the Landau-Lifshitz-Gilbert equation gives rise to the susceptibility tensor
which relates the rf field to the rf magnetization. To solve the LLG equation we
split both the magnetic field and the magnetization into dc and rf components. We
will take the dc field, and hence the dc magnetization, to be along the ẑ direction.
The rf response of the magnetization will to first order be perpendicular to ẑ so that
the magnitude of M will be constant. This fact was actually already used in the
definition of the Gilbert damping parameter in Eq. 6. Explicitly then to solve the
LLG equation we take Hi = H0i + hie

−iωt = (0, 0, H0i) + (hix, hiy, hiz)e
−iωt and

M = M0 + me−iωt = (0, 0, M0) + (mx, my, 0)e−iωt where H0i is the internal dc
magnetic field, hie

−iωt is the internal rf field, M0 is the dc magnetization, and me−iωt

is the rf magnetization. Using these forms of the field and magnetization in the LLG
equation yields

dM0

dt
− iωme−iωt = −γ

[
(M0 + me−iωt)× (H0i + hie

−iωt)
]

(1 + α2)

+
α

M

[
(M0 + me−iωt)×

(
M0

dt
− iωme−iωt

)]
. (11)

Now if we use the linear approximation so that terms higher than the first power
in hi and m are ignored and since dM0

dt
= 0 and M0× H0i = 0 (M0 is parallel to H0i)

this result simplifes to

m =
γ

iω
(1 + α2) [M0 × hi + m×H0i] +

α

M
M0 ×m. (12)

When the ferromagnetic strip is placed inside the externally applied magnetic field
the strip will become polarized, and the magnetic dipoles at the surface will create
an additional internal magnetic field that opposes the applied field. Thus the internal
fields will not be the same as the externally applied fields but can be related to the
external field through the demagnetization factors Nk, which depend on the sample
geometry and are taken to be uniform in a given direction. For the kth component
the fields are then given by

hik = hK −Nkmk,

H0ik = Hk −NkMk. (13)

Here Hk and hK are the externally applied dc and rf fields respectively where hK =
hke

iΦk could in general have a phase shift with respect to the rf current which will be
described later. For the dc field only the z component is non-zero, so we only need
to consider the case when k = z and we can drop the subscript on the external field
to give

Hi = H −NzM0. (14)
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The cross products in the LLG equation then become

M0 × hi = −hiyM0x̂+ hixM0ŷ = −(hY −NyMy)M0x̂+ (hX −NxMx)ŷ,

m×H0i = myH0ix̂−mxH0iŷ = my(H −NzM0)x̂−mx(H −NzM0)ŷ,

M0 ×mi = −myM0x̂+mxM0ŷ,

and the LLG equation is

iω

 mx

my

0

 = γ(1+α2)

M0

 −(hY −Nymy)
hX −Nxmx

0

+ (H −NzM0)

 my

−mx

0

+iωα
M0

M

 −my

mx

0



= γ(1+α2)M0

 −hY +Nymy

hX −Nxmx

0

+
[
γ(1 + α2)(H −NzM0)− iωα

] my

−mx

0

 .

In the last step we used M0

M
≈ 1 which is consistent with taking M to be constant

and ignoring higher order terms in m. Now we define

ωm = γ(1 + α2)M0,

ω0 = γ(1 + α2)(H −NzM0), (15)

so that the LLG solution becomes

iω

 mx

my

0

 = ωm

 −hY +Nymy

hX −Nxmx

0

 + ω0 − iωα

 my

−mx

0

 . (16)

This gives two equations

iωmx = −ωmhY + (ωmNy + ω0 − iαω)my,

iωmy = ωmhX − (ωmNx + ω0 − iαω)mx. (17)

Combining these two

(iω)2mx = −iωωmhY + (ωmNy + ω0 − iαω)iωmy

= −iωωmhY + (ωmNy + ω0 − iαω)(ωmhX − (ωmNx + ω0 − iαω)mx)

= −iωωmhY + ωm(ωmNy + ω0 − iαω)hX − [(ωmNy + ω0)(ωmNx + ω0)

− iαω(ω(Nx +Ny) + 2ω0)− α2ω2]mx.

Letting

ω2
r = (ωmNy + ω0)(ωmNx + ω0)

= γ2(1 + α2)(H +M0(Ny −Nz))(H +M0(Nx −Nz)), (18)
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we find

mx =
ωm(ωmNy + ω0 − iαω)hX − iωωmhY

ω2
r − (1 + α2)ω2 − iαω(2ω0 + ωm(Nx +Ny))

. (19)

Proceeding in the same manner of substitution one can easily find my to be given by

my =
iωωmhX + ωm(ωmNx + ω0 − iαω)hY

ω2
r − (1 + α2)ω2 − iαω(2ω0 + ωm(Nx +Ny))

. (20)

Eqs. 19 and 20 allow us to define the susceptibility tensor which relates the magne-
tization and magnetic field

m = χ̂h =

 χxx iχxy 0
−iχxy χyy 0

0 0 0

h, (21)

where

χxx =
ωm(ωmNy + ω0 − iαω)

ω2
r − (1 + α2)ω2 − iαω(2ω0 + ωm(Nx +Ny))

,

χxy =
−ωωm

ω2
r − (1 + α2)ω2 − iαω(2ω0 + ωm(Nx +Ny))

,

χyx = −χxy =
ωωm

ω2
r − (1 + α2)ω2 − iαω(2ω0 + ωm(Nx +Ny))

,

χyy =
ωm(ωmNx + ω0 − iαω)

ω2
r − (1 + α2)ω2 − iαω(2ω0 + ωm(Nx +Ny))

. (22)

To proceed further and split the solutions into their symmetric and antisymmetric
Lorentz contributions we will first ignore terms of order α2. ωm, ω0 and ωr then
become

ωm = γM0,

ω0 = γ(H −NzM0),

ω2
r = γ2(H +M0(Ny −Nz))(H +M0(Nx −Nz)), (23)
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and χ̂ simplifies slightly

χxx =
ωm(ωmNy + ω0 − iαω)

ω2
r − ω2 − iαω(2ω0 + ωm(Nx +Ny))

= ωm(ωmNy + ω0 − iαω)F,

χxy =
−ωωm

ω2
r − ω2 − iαω(2ω0 + ωm(Nx +Ny))

= −ωωmF,

χyx = −χxy =
ωωm

ω2
r − ω2 − iαω(2ω0 + ωm(Nx +Ny))

= ωωmF,

χyy =
ωm(ωmNx + ω0 − iαω)

ω2
r − ω2 − iαω(2ω0 + ωm(Nx +Ny))

= ωm(ωmNx + ω0 − iαω)F,

(24)

where

F =
1

ω2
r − ω2 − iαω(2ω0 + ωm(Nx +Ny))

. (25)

With the expressions in Eq. 24 we can see that the resonance condition is ω =
ωr. Since the resonance frequency depends on the demagnetization factors, ωr will
change depending on the static field configuration. This resonance condition allows
us to express a fixed frequency ω in terms of the resonance field Hr which will vary
depending on the value of ω,

ω2 = γ2(Hr +M0(Ny −Nz))(Hr +M0(Nx −Nz)). (26)

Using Eqs. 23 and 26 the components of χ̂ can be written in terms of their
symmetric and antisymmetric Lorentz line shapes by expressing F in terms of the
applied field H and the resonant field Hr. This is also the desired form of χ̂ since in
the experiments performed ω will be fixed while the field will be varied.

F =
1

ω2
r − ω2 − iαω(2ω0 + ωm(Nx +Ny))

=
ω2
r − ω2 + iαω(2ω0 + ωm(Nx +Ny))

(ω2
r − ω2)2 + α2ω2(2ω0 + ωm(Nx +Ny))2

=
1

γ2

(H +M0(Ny −Nz))(H +M0(Nx −Nz))− (Hr +M0(Ny −Nz))(Hr +M0(Nx −Nz))

+ i
αω

γ
(2(H −NzM0) +M0(Nx +Ny))

((H +M0(Ny −Nz))(H +M0(Nx −Nz))− (Hr +M0(Ny −Nz))(Hr +M0(Nx −Nz)))
2

+
α2ω2

γ2
(2(H −NzM0) +M0(Nx +Ny))

2

.

Since

(H +M0(Ny −Nz))(H +M0(Nx −Nz))− (Hr +M0(Ny −Nz))(Hr +M0(Nx −Nz)) =

[H +Hr +M0(Nx +Ny − 2Nz)][H −Hr],
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this becomes

F =
1

γ2

[H +Hr +M0(Nx +Ny − 2Nz)][H −Hr] + iαω
γ

(2(H −NzM0) +M0(Nx +Ny))

[H +Hr +M0(Nx +Ny − 2Nz)]2[H −Hr]2 + α2ω2

γ2
(2(H −NzM0) +M0(Nx +Ny))2

=
1

γαω[2(H −NzM0) +M0(Nx +Ny)]

[
∆H(H −Hr) + i∆H2

(H −Hr)2 + ∆H2

]
, (27)

where

∆H =
2(H −NzM0) +M0(Nx +Ny)

H +Hr +M0(Nx +Ny − 2Nz)

αω

γ
, (28)

is the line width of the resonance. Similar to ωr, since ∆H depends on the demagne-
tization factors, the line width will vary for different field configurations.

The expression for F contains an amplitude multiplied by two important line
shape contributions, one a symmetric Lorentz contribution and one an antisymmetric
dispersive contribution. By defining the Lorentz line shape L and the dispersive line
shape D,

L =
∆H2

(H −Hr)2 + ∆H2
,

D =
∆H(H −Hr)

(H −Hr)2 + ∆H2
, (29)

F can be written more compactly as

F =
D + iL

γαω[2(H −NzM0) +M0(Nx +Ny)]
. (30)

Since α is small the iαω term in Eq. 24 can be ignored and the susceptibility
elements simplify to the final desired form which can be written in terms of L and D,

(χxx, χxy, χyy) = (Axx, Axy, Ayy)(D + iL). (31)

Again as shown above χxy = −χyx and the real amplitudes, Axx, Axy and Ayy are
given by,

Axx =
γM0(M0Ny + (H −NzM0))

αω(2(H −NzM0) +M0(Nz +Ny))
,

Axy = − M0

α(2(H −NzM0) +M0(Nz +Ny))
,

Ayy =
γM0(M0Nx + (H −NzM0))

αω(2(H −NzM0) +M0(Nz +Ny))
.

(32)
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Figure 3: The Lorentz line shape is shown in green (light) and the dispersive line
shape in red (dark) using Hr = 60.1 mT and µ0∆H = 3.1 mT.

The susceptibility elements are complex valued functions of H and therefore also
have an associated phase known as the spin resonance phase Θ,

tan(Θ) =
Im(χxx)

Re(χxx)

=
∆H

H −Hr

,

which represents whether the driving force is in or out of phase with the magnetization
precession and changes from 180◦ (driving force out of phase with precession) to 0◦

(driving force in phase) around resonance, going through 90◦ at resonance. This
represents the universal feature of a resonance; the phase lags behind the driving
force.

Since Axx, Axy and Ayy are real, the spin resonance phase can also be associated
with the Lorentz and dispersive line shapes, L ∝ sin(Θ), D ∝ cos(Θ) so that tan(Θ) =
L/D. Therefore the spin resonance phase information is carried by the line shape
contributions L and D.
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2.2.1 In-Plane and Out-of-Plane Susceptibilities

In the case of a thin film microstructure where the sample thickness is much
less than the length and width, effectively resulting in a 2D plane, it is useful to
define two field configurations, namely in-plane and out-of-plane, which can be used
to experimentally excite FMR.

Figure 4: The two field configurations for a thin ferromagnetic film. Here H is the
externally applied dc magnetic field. (a) In-plane field with coordinate system. (b)
Out-of-plane field with coordinates.

In each case the form of the susceptibility can be determined from Eqs. 31 and
32 by using the appropriate demagnetization factors. For a thin film, the demag-
netization factor is 1 perpendicular to the film, and 0 within the film. This can be
understood by recalling that the demagnetization factors represent the field due to
surface dipoles so that the largest effects will be where the sample is thinnest. Thus in
the plane the thin film acts as an infinite plane when compared to the perpendicular
direction. This means for the in-plane case shown in Fig. 4(a) Nx = 0, Ny = 1, Nz = 0,
and for the perpendicularly applied field of Fig. 4(b) Nx = 0, Ny = 0, Nz = 1. The
amplitudes Axx, Axy, Ayy and ∆H then become,

Axx =
γM0(M0 +H)

αω(2H +M0)
,

Axy = − M0

α(2H +M0)
,

Ayy =
γM0H

αω(2H +M0)
,

∆H =

[
2H +M0

H +Hr +M0

]
αω

γ
, (33)

for the in-plane field and,
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Axx =
γM0(H −M0)

αω(2H +M0)
,

Axy = − M0

α(2H +M0)
,

Ayy =
γM0(H −M0)

αω(2H +M0)
,

∆H =

[
2(H −M0)

H +Hr − 2M0

]
αω

γ
, (34)

for the perpendicular field. These same results have also been obtained by solving
the Landau-Lifshitz equation without damping (Eq. 1) in a manner similar to the
way in which we solved the Landau-Lifshitz-Gilbert equation with damping, and then
introducing α by replacing ω0 with ω0−iαω [29] and applying the boundary conditions
of Maxwell’s equations at the thin film boundaries [31].

The choices made for the demagnetization factors also allow the resonance field to
be calculated for the in-plane and out-of-plane configurations. For the in-plane field

ω = γ
√
Hr(Hr +M0), (35)

and for the out-of-plane field

ω = γ(Hr −M0). (36)

2.3 Perpendicular Standing Spin Waves

Aside from ferromagnetic resonance which describes a uniform precession of spins
across the ferromagnetic material, there can also be inhomogeneous ferromagnetic
excitations with out of phase spin precession, known as spin waves. When such spin
waves are spatially confined standing spin waves are produced. In a ferromangetic thin
film, where the thickness is on the order of a few hundred nanometers and therefore
the wavelength of the spin waves is small, the perpendicular standing spin waves arise
due to the exchange interaction. This exchange interaction can be modeled by the
addition of an exchange term [32],

2Aγ

M2
0

(∇2M)×M, (37)

into the Landau-Lifshitz equation, where A is a material dependent exchange stiffness.
The resulting equation which describes the spin waves is then

dM

dt
= −γM×Hi +

2Aγ

M2
0

(∇2M)×M. (38)
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Here the damping coefficient α has been set to zero since it will not effect the follow
results. Damping may easily be included by the procedure described at the end of
the previous section.

The dynamic magnetization will now have a spatial dependence and can be written
as me−i(ωt+k·r). Again separating M and H into dc and rf components we have M =
M0+me−i(ωt+k·r) and Hi = H0i+hie

−i(ωt+k·r). Using dM
dt

= −iωme−i(ωt+k·r), ∇2M =
k2me−i(ωt+k·r), M0 ×H0i = 0, m×m = 0 and m× h = 0 (since both m and h are
small) so that M×Hi = M0 × he−i(ωt+k·r) + me−i(ωt+k·r) ×H0i we have,

m =
γ

iω
[m× (H0i +

2Ak2

M2
0

M0) + M0 × hi]. (39)

This has the same form as Eq. 12 with α = 0 if we replace H with H + Hex

where,

Hex =
2Ak2

M2
0

M0. (40)

Using this replacement in Eq. 35 and Eq. 36, the standing spin wave resonance
frequencies become

ω = γ
√

(H +Hex)(H +Hex +M0), (41)

for the in-plane field and
ω = γ(H +Hex −M0), (42)

for the perpendicular field. In both cases the resonance frequency increases, which
means that depending on the frequency range looked at, one may observe FMR
without observing the perpendicular standing spin wave resonance (SWR).

2.4 Spin Rectification

Originally ferromagnetic resonance experiments were performed on bulk magnetic
samples using resonance cavities where a sample would be placed in the cavity and the
microwave intensity would be measured as a function of the applied magnetic field [1].
At resonance a strong absorption occurs in the sample causing a sharp decrease in the
measured intensity, allowing a determination of the resonance field. This technique
works remarkably well for bulk materials, and even for ferromagnetic thin films, but
recently the improvement of fabrication techniques has enabled the production of thin
film microstructures with dimensions small enough (on the order of 10 - 100 µm) that
their effect on the intensity in the comparatively large cavity is negligible, requiring a
new method of FMR detection. Fortunately the improvements in thin film fabrication
have been complemented by the development of planar waveguide devices which allow
precise delivery of the microwave field enabling a solution to the FMR problem by
electrical detection. Such an electrical detection technique directly probes the sample
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properties by detecting a voltage generated via the spin rectification effect, which
produces a dc voltage through the non-linear coupling of rf electric and magnetic
fields. It is this so called photovoltage which replaces the intensity measurement and
whose line shape is of interest. While the line shape of the spin rectified voltage
differs depending on the strength of the applied dc magnetic field, the source of the
spin rectification effect is the generation of a dynamic resistance which in this work
is a result of the anisotropic magnetoresistance exhibited by ferromagnets.

2.4.1 Anisotropic Magnetoresistance

The anisotropic magnetoresistance effect is found in ferromagnets and results in
different resistivities parallel to and perpendicular to the magnetization. Typically the
resistivity parallel to the magnetization, ρ, is higher than the perpendicular resistivity,
ρ+ρAMR [28]. These different resistivities cause the resistance to depend on the angle
between the current and the magnetization, producing a dynamic resistance according
to

R(H) = R(0)−∆R sin2(θM), (43)

where θM is the angle between the magnetization and current and ∆R is the resistance
change due to the AMR effect. The resistance will depend on the static field H since
θM = θM(H).

Figure 5: Anisotropic magnetoresistance effect, where the largest resistance is ob-
served when the current and magnetization are parallel, and the smallest resistance
occurs when they are perpendicular.

2.4.2 General Spin Rectified Voltage

To see how a voltage can arise due to the AMR effect, consider first the general
case of a material under an applied field as described above, Hi = H0i + hie

−iωt. The
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resistance under this field can be expanded in a Taylor series,

R(Hi = H0i + hie
−iωt) ≈ R(H0i) + hie

−iωt · ∇R(H0i), (44)

where ∇R(H0i) is the gradient of R(Hi) evaluated at H0i. The source of the dynamic
resistance is for instance the anisotropic magnetoresistance. For a current I = I0e

−iωt

along the measurement direction a photovoltage will be generated

V = 〈Re(I) ·Re(R(H0i))〉
=
〈
Re(I0e

−iωt)Re(hie
−iωt · ∇R(H0i))

〉
. (45)

We see that whenever the resistance is a function of the applied field, and the field is
not an extremum of R(H0i) (that is ∇R(H0i) 6= 0) a photovoltage will in general be
produced. This general spin rectification can be used to explain the photovoltage at
low to zero magnetic fields due to magnetization rotation or magnetization switching
which has already been shown to have applications to microwave imaging [33, 34].

2.4.3 Spin Rectified Voltage Near Resonance

To examine the exact form of the FMR line shape near resonance we consider the
generalized Ohm’s law [35] which is followed by the spin rectified voltage production,

J = σE0 −
σ∆ρ

M2 (J ·M)M + σRHJ×M. (46)

The first term describes the normal Ohm’s law where the current J is linearly related
to the electric field E0 through the conductivity σ. The last two terms represent
non-linear corrections to Ohm’s law, where the second term describes anisotropic
magnetoresistance (AMR), and the third describes the anomalous Hall effect. ∆ρ is
the resistivity change corresponding to the AMR effect, and RH is the anomalous
Hall coefficient. Rewriting this equation as the sum of two fields we have

J = σ(E0 + E1),

E1 = −∆ρ

M2 (J ·M)M +RHJ×M. (47)

If E0 is an rf field it will time average to zero, but the higher order E1 will in
general have a non-zero time average resulting in the so called rectified voltage. The
applied field and the magnetization will be the same as in the determination of the
dynamic susceptibility where a static magnetic field, H applied along the ẑ direction,
is used to create a static magnetization, M0 also in the ẑ direction and an applied
microwave field hKe

−iωt = hke
−iωt+iΦk = htke

iΦk will be used to induce oscillations
about this equilibrium. Here Φk denotes the phase shift between the electric and
magnetic fields in the kth direction. The magnetization is M = M0 + me−iωt and as
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we have seen this oscillating magnetization can be related to the applied field through
the susceptibility tensor. To determine the photovoltage line shape we will use the
notation mt = Re(me−iωt) .

Using these magnetization and feld expressions in Eq. 47, we find the microwave
field as the time average of E1,

EMW = 〈E1〉 =
−∆ρ

M2

〈
(J ·M0) M0 + (J ·M0) mt +

(
J ·mt

)
M0 +

(
J ·mt

)
mt
〉

+RH

〈
J×M0 + J×mt

〉
=
−∆ρ

M2

〈(
J ·mt

)
M0 + (J ·M0) mt

〉
+RH

〈
J×mt

〉
. (48)

Eq. 48 gives the general microwave field expression from which the photovoltage and
its line shape can be determined.

2.4.4 In-Plane H Field

As discussed previously there are two field configurations, namely in-plane and
out-of-plane, which can be used to excite FMR. The line shape for each of these

Figure 6: The two field configurations for a thin ferromagnetic film. Here H is the
externally applied dc magnetic field, θH is the in-plane field angle and φH is the
perpendicular field angle.

configurations can be determined from Eq. 48. In the case of an in-plane field we
consider the two coordinate systems in Fig. 7. Here the dc field and resulting static
magnetization are denoted by H and M0 respectively. The z axis is along the field
direction while the z′ axis is along the current direction. The two coordinate systems
are related through the transformation, x̂

ŷ
ẑ

 =

 cos(θH) 0 − sin(θH)
0 1 0

sin(θH) 0 cos(θH)

 x̂′

ŷ

ẑ′

 . (49)

Since rotation matrices are unitary we know that the matrix taking (x̂, ŷ, ẑ) into
(x̂′, ŷ′, ẑ′) will simply be the transpose of the rotation matrix given in Eq. 49.
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Figure 7: Coordinate systems for in-plane magnetic field.

Using this field configuration we have mt = (mt
x, mt

y, 0) and due to the strip

geometry the current flows along the z′ direction and is given by J = jz′ cos(ωt)ẑ′.
Using these expressions in Eq. 48, and transforming mt to the primed coordinate
system the time averaged microwave electric field is given by

EMW = −∆ρ

M2

〈
−M0jz′ cos(ωt)mt

x sin(θH)
[
sin(θH)x̂′ + cos(θH)ẑ′

]〉
−∆ρ

M2

〈
M0jz′ cos(ωt) cos(θH)

[
mt
x cos(θH)x̂′ +mt

yŷ −mt
x sin(θH)ẑ′

]〉
+RH

〈
−jz′ cos(ωt)mt

yx̂
′ + jz′ cos(ωt)mt

x cos(θH)ŷ
〉
. (50)

To find the voltage in the ferromagnetic strip we then simply integrate the field along
the length of the strip.

V =

∫ L

0

EMW · dz′ ≈ LEMW · ẑ′

=
∆R

M

〈
Iz′ cos(ωt)mt

x

〉
sin(2θH). (51)

Here we have used Iz′ = Ajz′ and ∆R = ∆ρL
A

where A is the cross sectional area.
We see that along the strip the voltage generated is due to the AMR effect and

there is no voltage due to the Hall effect. However in the transverse direction there
is a voltage generated by both the AMR and Hall effect, which can be determined by
integrating Eq. 50 along the x′ direction.

We know that mt
x is related to the applied microwave field through the suscepti-

bility tensor (Eq. 21). If we write the tensor elements in terms of the spin resonance
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phase Θ we have mt
x = Re(|χxx|eiΘhx + i |χxy|eiΘhty). Using the coordinate rotation

once again yields  htx
hty
htz

 =

 htx′ cos(θH)− htz′ sin(θH)
hty

htx′ sin(θH) + htz′ cos(θH)

 , (52)

which gives

mt
x = Re

[
|χxx|hxe−i(ωt−Φx−Θ) + |χxy|hye−i(ωt−Φy−Θ−π

2
)
]

= Re
[
|χxx|hx′e−i(ωt−Φx′−Θ) cos(θH)− |χxx|hz′e−i(ωt−Φz′−Θ) sin(θH) + |χxy|hye−i(ωt−Φy−Θ−π

2
)
]

= |χxx|hx′ cos(θH)[cos(ωt) cos(Φx′ + Θ) + sin(ωt) sin(Φx′ + Θ)]

− |χxx|hz′ sin(θH)[cos(ωt) cos(Φz′ + Θ) + sin(ωt) sin(Φz′ + Θ)]

+ |χxy|hy
[
cos(ωt) cos(Φy + Θ +

π

2
) + sin(ωt) sin

(
Φy + Θ +

π

2

)]
. (53)

Combining Eq. 53 with the voltage expression in Eq. 51 and taking the time average
gives the photo voltage expression for an in-plane applied magnetic field,

V =
∆R

2M0

Iz′ sin(2θH) [|χxx|hx′ cos(θH) cos(Φx′ + Θ)− |χxx|hz′ cos(Φz′ + Θ) sin(θH)

+|χxy|hy cos
(

Φy + Θ +
π

2

)]
.(54)

We can then write

|χxx| cos(Φx′ + Θ) = |χxx|(cos Φx′ cos Θ− sin Φx′ sin Θ) = Re(χxx) cos Φx′ − Im(χxx) sin Φx′ ,

|χxx| cos(Φz′ + Θ) = Re(χxx) cos Φz′ − Im(χxx) sin Φz′ ,

|χxy| cos(Φy + Θ +
π

2
) = − sin(Φy + Θ) = −Re(χxy) sin Φy − Im(χxy) cos Φy. (55)

The real and imaginary parts of the susceptibility tensor elements can be determined
from Eq. 31 so that we obtain the voltage in terms of symmetric and antisymmetric
Lorentz contributions.

V =
∆R

2M0

Iz′ sin(2θH)

[
Axxhx′ cos θH

(
∆H(H −Hr)

(H −Hr)2 + ∆H2
cos Φx′ −

∆H2

(H −Hr)2 + ∆H2
sin Φx′

)
− Axxhz′ sin θH

(
∆H(H −Hr)

(H −Hr)2 + ∆H2
cos Φz′ −

∆H2

(H −Hr)2 + ∆H2
sin Φz′

)
−Axyhy

(
∆H(H −Hr)

(H −Hr)2 + ∆H2
sinΦy +

∆H2

(H −Hr)2 + ∆H2
cos Φy

)]
.

(56)

This voltage may be written as

V =
∆R

2M0

Iz′ [ALL+ ADD] , (57)
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where,

AL = −Axxhx′ cos(θH) sin(2θH) sin(Φx′)− Axyhy sin(2θH) cos(Φy) + Axxhz′ sin(θH) sin(2θH) sin(Φz′),

AD = Axxhx′ cos(θH) sin(2θH) cos(Φx′)− Axyhy sin(2θH) sin(Φy)− Axxhz′ sin(θH) sin(2θH) cos(Φz′),
(58)

and L and D are the Lorentz and dispersive line shapes respectively. This voltage
expression shows that at certain field angles, θH = nπ/2, n = 0, 1, 2, . . . , the voltage
will be 0.

Eqs. 57 and 58 suggest a way to separate the relative phase in the x′, y and z′

directions. One can fit the FMR using Eq. 57 to determine AL and AD. θH can then
be varied and AL and AD can be fit using Eq. 58. This allows a determination of
Φx′ ,Φy and Φz′ based on the θH dependence of AL and AD.

In the appropriate experimental conditions, the dominant contribution to the
driving microwave field will either be the hx′ field or the hy field and we may take hy
→ 0 and hz′ → 0 or hx′ → 0 and hz′ → 0 respectively. This will simplify the AL and
AD expressions. In the case that hx′ dominates we have,

Vx′ = −∆R

2M0

Iz′hx′ sin(2θH) cos(θH)Axx [L sin(Φx′)−D cos(Φx′)] . (59)

From this expression we can see that the line shape changes from purely symmetric
when Φx′ = 2n+1

2
π n = 0, 1, 2, . . . to purely antisymmetric when Φx′ = nπ n =

0, 1, 2, . . .
In the case when the hy field dominates the voltage expression becomes,

Vy = −∆R

2M0

Iz′hy sin(2θH)Axy [L cos(Φy) +D sin(Φy)] . (60)

In this case we see that the line shape changes from purely symmetric when Φy =
nπ n = 0, 1, 2, . . . to purely antisymmetric when Φx′ = 2n+1

2
π n = 0, 1, 2, . . . .

It is worth noting the features of Eq. 59 and Eq. 60 when Φk = 0. When
the precession is driven by the hx′ field, the photovoltage line shape is completely
antisymmetric when Φx′ is 0, whereas when the precession is driven by the hy field
the line shape is completely symmetric when Φy = 0. Aside from the symmetry
properties under changes in Φk, the two voltage expressions in Eq. 59 and Eq. 60
also show interesting symmetries in the field angle θH . Since a change in sign of the
static field, H→ -H corresponds to θH → θH+180◦, we see that Vx′(H) = −Vx′(−H),
so that Vx′ is odd with respect to H. On the other hand Vy(H) = Vy(−H) so that
Vy is even with respect to H. This symmetry can be used as an indication that FMR
is being driven by multiple H field components as the H and −H FMR peaks may
have different amplitudes and line shapes as a result of the different symmetries of
Vx′ and Vy.
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2.4.5 Out-of-Plane H Field

For an out-of-plane field we use the two coordinate systems shown in Fig. 8 where
the two coordinate systems are related by, x̂

ŷ
ẑ

 =

 cos(φH) 0 sin(φH)
0 1 0

− sin(φH) 0 cos(φH)

 x̂′

ŷ

ẑ′

 , (61)

which is simply the transpose of the in-plane rotation matrix.

Figure 8: Coordinate systems for out-of-plane magnetic field.

In this case M0 = (0, 0, M0), mt = (mt
x, mt

y, 0) and J = jx′ cos(ωt)x̂′. Using the
coordinate rotation

M0 = −M0 sin(φH)x′ +M0 cos(φH)z′,

mt = mt
x cos(φH)x′ +mt

yy
′ +mt

x sin(φH)z′,

J×mt = −jx′ cos(ωt)mt
x sin(φH)y′ + jx′ cos(ωt)z′,

so that

J ·M0 = −M0jx′ sin(φH) cos(ωt),

J ·mt = mt
xjx′ cos(ωt) cos(φH),

the microwave field is given by Eq. 48,

EMW =
∆ρ

M2

〈
(mt

xjx′ cos(φH) cos(ωt) [−M0 sin(φH)x′ +M0 cos(φH)z′]
〉

− ∆ρ

M2

〈
M0jx′ sin(φH) cos(ωt)

[
mt
x cos(φH)x′ +mt

y)y
′ +mt

x sin(φH)z′
]〉

+RH

〈
−jx′mt

x sin(φH) cos(ωt)y′ +mt
yjx′ cos(ωt)z′

〉
, (62)
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so that the photovoltage becomes,

V ′ =

∫ L

0

EMW · dx′ ≈ LEMW · x′ (63)

=
∆R

M
Ix′2 sin(φH) cos(φH)

〈
mt
x cos(ωt)

〉
. (64)

In analogy with Eq. 53 we have,

mt
x = Re

[
|χxx|hx′e−i(ωt−Φx′−Θ) cos(φH) + |χxx|hz′e−i(ωt−Φz′−Θ) sin(φH)− |χxy|hye−i(ωt−Φy−Θ−π

2
)
]

= |χxx|hx′ cos(φH)[cos(ωt) cos(Φx′ + Θ) + sin(ωt) sin(Φx′ + Θ)]

+ |χxx|hz′ sin(φH)[cos(ωt) cos(Φz′ + Θ) + sin(ωt) sin(Φz′ + Θ)]

− |χxy|hy[cos(ωt) cos(Φy + Θ +
π

2
) + sin(ωt) sin

(
Φy + Θ +

π

2

)
]. (65)

so that the photovoltage is

V ′ =
∆R

2M0

Iz′ sin(2φH)[|χxx|hx′ cos(φH) cos(Φx′ + Θ) + |χxx|hz′ cos(Φz′ + Θ) sin(φH)

−|χxy|hy cos
(

Φy + Θ +
π

2

)
].(66)

Again we can write,

|χxx| cos(Φx′ + Θ) = |χxx|(cos Φx′ cos Θ− sin Φx′ sin Θ) = Re(χxx) cos Φx′ − Im(χxx) sin Φx′ ,

|χxx| cos(Φz′ + Θ) = Re(χxx) cos Φz′ − Im(χxx) sin Φz′ ,

|χxy| cos(Φy + Θ +
π

2
) = − sin(Φy + Θ) = −Re(χxy) sin Φy − Im(χxy) cos Φy. (67)

Then proceeding as before we find

V ′ =
∆R

2M0

Iz′ [A′LL+ A′DD] , (68)

where

A′L = −Axxhx′ cos(φH) sin(2φH) sin(Φx′) + Axyhy sin(2φH) cos(Φy)− Axxhz′ sin(φH) sin(2φH) sin(Φz′),

A′D = Axxhx′ cos(φH) sin(2φH) cos(Φx′) + Axyhy sin(2φH) sin(Φy) + Axxhz′ sin(φH) sin(2φH) cos(Φz′).
(69)

For precession driven by hx′ the photovoltage becomes,

V ′x′ = −∆R

2M0

Iz′Axxhx′ cos(φH) sin(2φH) [sin(Φx′)L− cos(Φx′)D] , (70)

and for precession driven by hy,
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V ′y =
∆R

2M0

Iz′Axyhy sin(2φH) [cos(Φy)L+ sin(Φy)D] . (71)

These expressions are very similar to the in-plane field expressions and have the
same symmetry properties.

In this derivation we have used the dynamic susceptibility for the out-of-plane
configuration which requires Nx = Ny = 0 and Nz = 1. This of course is only true if
φH = 0 in which case the voltage is actually 0. This means that while the expression
in Eq. 66 is exact the expression in terms of L and D given in Eq. 68 is only true
for small φH where Nx ≈ Ny ≈ 0 and Nz ≈ 1. If we want this equation to be true in
general we would need to determine the demagnetization factors as a function of φH .

Eq. 57 and Eq. 68 are the key results and give the desired expressions which
describe the in-plane and out-of-plane FMR line shapes respectively. In both cases we
see that the symmetry of the line shape depends on the value of the relative phase Φk.
A feature common to both expressions is that at certain points of high symmetry there
will be no voltage production. For both the in-plane and perpendicular configurations
this occurs at θH , φH = nπ

2
, n = 0, 1, 2, . . . .
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3 Experimental Techniques

3.1 Primary Experimental Setup

The main components of the measurement setup are an Agilent E8257D microwave
generator which provides an rf field from 0.2 - 20 GHz, a Lakeshore EM 1375 elec-
tromagnet which produces the static magnetic field, and a Stanford Research SR830
DSP lock-in amplifier used to measure the dc voltage. The general set up is shown in
Fig. 9 and is used for the hx′ , hy and ”well controlled” sample experiments described
in the results section. The set up for both spintronic Michelson interferometry and
the single permalloy (Ni80Fe20, Py) strip differ slightly and will be described in the
next sections.

Figure 9: Experimental measurement set up.
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As shown in Fig. 9, the static field is measured by a Hall probe and digital Gauss
meter placed next to the sample in between the poles of the electromagnet. The
electromagnet used to align the static magnetization is water cooled and can produce
fields as high as 2 T depending on the air gap between the poles. However in this work
the fields were in general less than 0.2 T. The sample holder allows effective rotations
of the magnetic field angle θH , by more than 360◦ by rotating the waveguide and
sample about the horizontal axis. The sample can also be rotated by 90◦ to allow
both in-plane and perpendicular static fields, although we only consider the in-plane
case here.

3.2 Spintronic Michelson Interferometry

The difficulties associated with a direct measurement of the relative electromagnetic
phase have long prohibited experimentally probing Φ. However the novel technique
of spintronic Michelson interferometry allows such a measurement by transforming
the well known Michelson interferometry technique into a powerful phase resolved
spintronic probe [6]. This technique has the ability to coherently measure both the
electro and magneto dynamic processes at the same time, in the same ferromagnetic
sample, and it is this capability which can be used to probe Φ.

Figure 10: Classical Michelson Interferometer. (a) The two electric fields and their
phase shift Ψ which results in the interference pattern in (b).

As shown in Fig. 10, classical Michelson interfometry, which was developed from
the Michelson-Morley experiment [36] uses a path length difference between waves
to generate an interference pattern which can be used to determine the phase shift
Ψ between two electric fields. In contrast spintronic Michelson interferometry as
shown in Fig. 11 controls the relative electromagnetic phase between the electric and
magnetic fields in order to probe the material induced phase shift Φ between electric
and magnetic fields at the permalloy sensor. The microwave signal is separated into
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Figure 11: Spintronic Michelson Interferometer. (a) The photovoltage signal mea-
sured as a function of Φ which is produced by the coupling of the fields shown in
(b).

two paths by an rf power splitter. One path travels through a phase shifter and is
directly injected into the sensor, while the other path can either be injected into a
CPW or shone on the sensor from a horn antennae (in Fig. 11 the horn antennae
setup is shown). The magnetic field drives magnetization precession in the strip
while the directly injected electric field produces a current. These two fields couple to
produce a non-zero dc voltage via the spin rectification effect which can be detected
by the lock-in amplifier. By controlling the phase through the phase shifter inserted
in one path, Φ can effectively be controlled and a signal analogous to the one shown
in Fig. 11(a) can be measured. This allows the determination of Φ for the system. By
sweeping the externally applied magnetic field an FMR spectra can also be obtained
in the same system.

3.3 Lock-in Amplification

Since the voltages produced through the spin rectification effect based on
anisotropic magnetoresistance are quite small (∼ 100 nV - a few µV depending on
field strength and microwave power) due to the small resistance change ∆R, (<1%)
the small dc signal will be obscured by background noise and a special technique is
needed to extract the signal from the background. The technique commonly used
is lock-in amplification which can result in excellent sensitivity; ∼ 5 nV noise. By
modulating the input signal with a low frequency square wave set at some reference
frequency, the dc output from the Py strip will also be modulated at the same fre-
quency. However the noise will be unaffected. The lock-in amplifier then multiplies
this signal by a sine wave of frequency equal to the reference frequency and averages
over the signal using a low pass filter. Since sine waves of different frequencies are or-
thogonal, the noise will average to zero and only the signal at the reference frequency
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will remain. Thus the small dc signal can be measured with minimal background
noise. This process is schematically shown in Fig. 12 which shows the ideal case
of a pure dc signal out which could then be measured directly. However the actual
signal also includes noise of various frequencies and cannot be measured directly, so
the lock-in must be used to help remove the noise before it can measure the dc signal.

Figure 12: Schematic illustration showing the purpose of the lock-in amplifier. The
output dc signal also contains noise components at different frequencies which must
be filtered.
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4 Experimental Results

In this section we present experimental results from six different samples which
are used to demonstrate the combined effect that the field component used to drive
FMR and the relative phase have on the FMR line shape. We also show how to
determine the relative phase and separate the contributions from the different h
field components driving FMR. First we present data using spintronic Michelson
interferometry to show the effect of controlling the relative phase and how the line
shape changes with changing phase. We then show samples where hy, hx′ and an
arbitrary h field drive FMR and finally look at the FMR in two Py strips in a first
generation spin dynamo to show that even in well controlled samples, the relative
phase needs to be calibrated.

4.1 In-Plane Spintronic Michelson Interferometry

To illustrate the effect that a changing phase has on the FMR line shape, we
first show results from experiments recently featured in two papers highlighting the
spintronic Michelson interferometry technique [33, 34].

The experimental setup for the first experiment is shown in Fig. 13(a) where the
signal from a broadband microwave generator is split into two paths by a microwave
power splitter. Path A contains a WR90 waveguide and a horn antennae which shines
on the sensor; a first generation spin dynamo consisting of two Py strips between the
G and S strips of a G-S-G coplanar waveguide (CPW). Path B is directly connected
to one port of the G-S-G CPW through an ATM P1607 phase shifter. The effect of
the interference of path A and B can be seen in Fig. 13(c) at µ0H = 60 mT and
θH = 45◦.

The key point we wish to highlight is illustrated in Fig. 14. Here the FMR
line shape is observed for different Φx′ at ω/2π = 8 GHz and θH = 45◦. Since the
dominant driving field is the hx′ field the results are fit to Eq. 59 using µ0Hr = 69.2
mT and µ0∆H = 2.3 mT, which allows a determination of Φx′ . As Fig. 14 shows,
the line shape changes from almost purely symmetric at Φx′ = 90.0◦ to almost purely
dispersive at Φx′ = −5.2◦ and back to almost purely symmetric at Φx′ = −86.4◦.
This agrees with the symmetry properties expected for FMR driven by an hx′ field
according to Eq. 59. The phase increment of 13.6◦ corresponds to half a turn on the
ATM P1607 phase shifter.

A similar experiment has also been performed without a horn waveguide using
a second generation spin dynamo, where both signals are connected directly to the
sensor as shown in Fig. 15. The second generation spin dynamo consists of a Cu/Cr
CPW on top of a 300× 7× 0.1 µm Py microstrip with a 200 nm SiO2 layer between
the CPW and Py for insulation. Again the driving field is the hx′ field produced from
the CPW and the line shape shows the corresponding nearly dispersive line shape
at Φx′ ∼ 0◦ and nearly Lorentz line shape at Φx′ ∼ 90◦ as shown in Fig. 16, where
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Figure 13: (a) Measurement set up to perform spintronic Michelson interferometry
using horn antennae field. (b) FMR photovoltage line shape at ω/2π = 8 GHz when
paths A and B are connected separately and together. Signal from A + B is much
larger due to the coupling between the rf magnetization driven by the magnetic field
from A and the rf current driven by the electric field from B. From this line shape
one finds µ0Hr = 68.7 mT and µ0∆H = 2.3 mT. (c) Photovoltage signal showing a
sinusoidal oscillation with Φx′ only appears when both paths are on.

the data at ω/2π = 4.8 GHz and θH = 75◦ was fit to Eq. 59 using µ0Hr = 30.8
mT and µ0∆H = 3.1 mT. The steps in Φx′ are larger than the experiment using the
horn antennae since the change in frequency results in a half turn of the phase shifter
corresponding to a larger change in Φx′ .

Both of these cases demonstrate that by controlling the relative phase the line
shape of the FMR will change as described by Eq. 57. Now we turn to our systematic
study of the h field component and Φk contributions to the FMR line shape.
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Figure 14: (a) Phase resolved FMR spectra. Circles are experimental data and solid
lines are fits according to Eq. 59 using µ0Hr = 69.2 mT and µ0∆H = 2.3 mT. A
striking change in line shape is observed when Φx′ is changed.

Figure 15: Second generation spin dynamo in spintronic Michelson interferometer.
The microwave signal is coherently split into two paths which go to the CPW and
Py strip. Again the relative phase is controlled by inserting a phase shifter into one
path.
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Figure 16: Phase resolved FMR spectra. Circles are experimental data and solid lines
are fits according to Eq. 59 using µ0Hr = 30.8 mT and µ0∆H = 3.1 mT.

4.2 FMR Driven by hy Field

In order to use the hy field to drive FMR a first generation sample was used
where a Cu/Cr coplanar waveguide (CPW) was fabricated beside a Py microstrip
with dimension 300 µm × 20 µm × 50 nm on a semi-insulating SiO2/Si substrate as
shown schematically in Fig. 17(a). A microwave current is directly injected into the
CPW and flows in the z′ direction inducing a current in the Py strip also along the z′

axis. In this geometry the dominant rf magnetic field in the Py will be the Oersted
field in the −y direction produced according to Ampère’s Law. This field will induce
FMR precession with the same amplitude regardless of the static H orientation, that
is, since we are driving precession with the hy field, the voltage Vy will be symmetric
with respect to the static field H as described previously.

In this sample the AMR effect produces a resistance change of ∼ 0.4 % and
depends on the orientation of the magnetization according to Eq. 43. When H is
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Figure 17: (a) Schematic diagram of the first generation Py/CPW sample where the
Py strip is located beside the CPW. The dominate magnetic field in the Py is the
Oersted field in the −y direction due to the current in the CPW. (b) Micrograph
of the Py/CPW device. (c) Magnetoresistance at θH = 90◦. Resistance change due
to AMR is seen to be ∼ 0.4%. Arrows denote the anisotropic field, HA = 4.0 mT.
Open circles are experimental data and solid curve is the fitting result using R(0) =
112.66 Ω,∆R = 0.47 Ω, HA = 4.0 mT. (d) Electrically detected FMR at θH = 120◦

and ω/2π = 5 GHz showing an almost purely dispersive line shape (Φy ∼ 90◦). Fit
is according to Eq. (60) with µ0∆H = 3.6 mT, µ0Hr = 32.2 mT. (e) Oscillating Hr

dependence on the static field direction θH with amplitude 2HA. (f) Dependence of
FMR frequency on the resonant field Hr at θH = 45◦. Open circles are experimental
data and the solid line is the fit according to ω = γ

√
|Hr|(|Hr|+M0).

applied along the x′ axis, the in-plane hard axis, the magnetization M tends to align
toward the static field H and the angle θM is related to H and HA by sin(θM) = H/HA

for H < HA. This means that for H < HA, Eq. 43 becomes R(H) = R(0) −
∆R(H2/H2

A) as shown in Fig. 17(c) where the symbols are data and the solid curve
is a fit using R(0) = 112.66 Ω, ∆R = 0.47 Ω and HA = 4.0 mT. HA = Nx′M0 is the
in-plane shape anisotropy field with Nx′ = 0.004.

Fig. 17(d) shows that the line shape at θH = 120◦ is almost purely dispersive,
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indicating that Φy ∼ 90◦ according to Eq. (60). The θH dependence of Hr is shown
in Fig. 17(e) and can be well fit by the function

ω = γ
√

(|Hr|+HA cos(2θH))[|Hr|+M0 −HA(1 + sin2(θH)]

by taking the shape anisotropy field HA along the x′ axis into account. As expected
the amplitude of these oscillations is HA = 4.0 mT. The frequency dependence of
Hr is shown in Fig. 17(f) and is fit using ω = γ

√
|Hr|(|Hr|+M0) (Eq. 35) with

γ/2π = 29.0 µ0GHz/T and µ0M=1.0 T.
By systematically measuring the line shape as a function of the microwave fre-

quency, we observe the interesting results of Fig. 18. The FMR line shape is observed
to change from almost purely dispersive at ω/2π = 5 GHz to almost purely symmetric
at ω/2π = 5.56 GHz. As discussed before, the line shape may be effected by the h
orientation i.e. the different h vector components will effect the line shape differently,
and if changing the h orientation changes the dominant driving field, the line shape
may change. To rule out the possibility that the changes in the line shape in Fig. 18
were due to the h field orientation an experiment was performed to measure the line
shape at several θH for each ω. The results are shown on the right hand side of Fig. 18
which shows the sinusoidal curves for the Lorentz, AL, and dispersive AD, amplitudes
(dashed/blue and solid/red curves respectively) as a function of the static field angle
θH . At ω/2π = 5 GHz the amplitude of AD is approximately one order of magnitude
larger than AL, while at ω/2π = 5.56 GHz AD is nearly 2 orders of magnitude less
than AL, as shown in Fig. 19(a). As expected the Lorentz and dispersive amplitudes
are found to follow a sin(2θH) dependence on the field angle in agreement with Eq.
(60) indicating that the magnetization precession is indeed dominantly driven by the
hy field. Therefore the only factor causing the change in AL/AD is the relative phase
of the electric and magnetic fields. The reversal of line shape symmetry observed by
changing the frequency shows that in a microwave frequency range as narrow as 0.6
GHz, the relative phase Φy can change by 90◦ indicating a strong dependence of the
relative phase on the frequency for this sample.

This large change of Φy may be surprising but can be explained by the large
microwave wavelength compared to the sample size. Microwaves at ∼ 5 GHz have
wavelengths on the order of a few centimeters which is much larger than the sub-
millimeter sample dimensions. Consequently the microwave propagation depends
strongly on the boundary conditions of Maxwell’s equations which physically include
the bonding wire, chip carrier, as well as the sample holder and even the magnet. For
this reason the magnetic field is not necessarily in phase with the electric field as most
people believe and depending on the unique wave distribution in the Py sample, the
relative phase Φy can take on any value. This is similar to the microwave propagation
in a waveguide where the field distribution i.e. the waveguide modes, are known to
depend strongly on boundary conditions and frequency.

We emphasize here that although such a wave propagation problem has many vari-
ables making it too complex to simulate, one can expect that Φy should be smoothly
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Figure 18: Data shown for a first generation sample. FMR spectra for several fre-
quencies from 5.0 to 5.56 GHz with corresponding Lorentz and dispersive amplitudes
as a function of θH . Circles and squares indicate the Lorentz and dispersive ampli-
tudes of Eq. (60) respectively and show a sin(2θH) dependence as expected. Solid
and dashed curves are sin(2θH) functions.

changing with microwave frequency. This effect is demonstrated in Fig. 19, where the
line shape changes from pure dispersive at 5 GHz to pure Lorentz at 5.6 GHz with a
step size of 0.01 GHz. Interestingly, even in such a small frequency range Φy is not
monotonously varying with microwave frequency, therefore for a certain frequency
the phase has to be determined by such a θH dependent measurement.
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Figure 19: (a) The AD/AL ratio as a function of ω/2π showing the line shape change
from dispersive at 5 GHz (left inset) to Lorentz at 5.6 GHz (right inset) with a step
size of 0.01 GHz. (b) Φy dependence on ω/2π over same frequency interval showing
the same dependence as AD/AL.

4.3 FMR Driven by hx′ Field

In order to drive the FMR using the rf field in the x′ direction, hx′ , a second
generation sample was fabricated with the Py strip underneath the CPW as shown
in Fig. 20(a). In this case the 300 µm × 70 µm × 100 nm Py strip is underneath
the Cu/Cr coplanar waveguide which is fabricated on a SiO2/Si substrate. Again a
microwave current is directly injected into the CPW and induces a current in the z′

direction in the Py strip. The dominant rf field in the Py is still the Oersted field,
but due to the new geometry it is in the x′ direction. Due to the smaller width and
larger thickness, the demagnetization factor, Nx′ = 0.008 is twice that in the first
generation sample. This corresponds to HA = 8.0 mT as indicated by the broader
AMR curve in Fig. 20(c). This value is further confirmed by the amplitude of the Hr

vs θH plot shown in Fig. 20(e).
Fig. 20(f) shows the frequency dependence of Hr for FMR (circles/red) and for

the first perpendicular standing spin wave resonance (triangles/blue). The frequency
dependence of Hr follows Eq. 41 with γ/2π = 29.0 µ0GHz/T, µ0Hex = 30 mT and
µ0M0 = 1.0 T. Since k2 ∝ 1/d2, where d is the sample thickness, the exchange field,
Hex ∝ 1/d2 in accordance with Eq. 40. Therefore Hex is much larger in the first
generation sample compared to the second generation sample due to the difference in
thickness. This can explain why such a standing SWR does not appear in Fig. 17(f),
since a higher ω would be needed.

The frequency dependence of the line shape has also been observed for the second
generation sample and is shown for a single frequency ω = 8 GHz, in Fig. 21(b).
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Figure 20: (a) Schematic diagram of the second generation Py/CPW sample where
the Py strip is located underneath the CPW. In this case the dominate magnetic field
in the Py is the Oersted field in the x′ direction due to the field in the CPW. (b)
Micrograph of the Py/CPW device. (c) Magnetoresistance at θH = 90◦. AMR is
seen to be ∼ 0.5%. Arrows denote the anisotropic field, HA = 8.0 mT. Open circles
are experimental data and solid curve is the fitting result using R(0) = 121.53 Ω
and ∆R = 0.66 Ω. (d) Electrically detected FMR at θH = 130◦ and ω/2π = 8 GHz
showing a symmetric Lorentz line shape. Fit is according to Eq. (60) with ∆H = 6.0
mT , Hr = 76.5 mT and Φx′ = 90◦. (e) Oscillating Hr dependence on the static field
direction θH with amplitude 2HA. (f) Dependence of FMR frequency on the resonant
field Hr at θH = 45◦. Open circles show the FMR frequency dependence while the
open triangles are the standing SWR frequency dependence. The solid line is a fit to
ω = γ

√
|Hr|(|Hr|+M0).

The FMR has been observed to have any line shape between a symmetric Lorentz
line shape and an antisymmetric dispersive line shape, similar to the first generation
sample. While the relative phase shift and hence the line shape is expected to be
frequency dependent, the line shape is not expected to depend on the static field
direction θH when the FMR is driven by a single h component. This is confirmed in
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Fig. 21(a) which shows the line shape using a second generation sample for several
values of θH in 10◦ increments. The data can be fit well using Eq. (59) with a
constant Φx′ = 78◦ for all θH . This is evidence that the FMR is driven by a single h
component, in this case the hx′ field, and that Φx′ does not depend on θH .
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Figure 21: Data shown for a second generation sample. (a) FMR line shape at fixed
frequency, ω/2π = 8 GHz for several θH from 90◦ to 180◦ in steps of 10◦. Open circles
are experimental data and solid lines are fits using Eq. (59) with Φx′ = 78◦ fixed.
(b) AD and AL shown in squares and circles respectively as a function of θH . Fitting
curves are sin(2θH) cos(θH) functions. (c) ∆H for several values of θH showing an
oscillation with θH . (d) Non-linear dependence of line width ∆H on the cone angle.
Dashed line is the expected linear Gilbert damping whereas the data follows the
quadratic dependence shown by the solid line.

In Fig. 21(b) the θH dependence of AL and AD (solid/circles and dashed/squares
respectively) is shown. The circles and squares are experimental data while the solid
and dashed lines are fitting results using a sin(2θH) cos(θH) function according to Eq.
(59), showing that the h field contributions can be separated based on a θH measure-
ment and providing further evidence that the hx′ field is responsible for driving the
FMR in this sample. On the other hand one cannot use such a simple θH measure-
ment to distinguish the spin rectification effect and the spin-pumping effect in an hx′
dominant configuration since they both follow the same θH dependence [12].

There is a discrepancy between the solid curves and the experimental data from
45◦ - 135◦ where the experimental data is greater than the fitting curve and from 0◦ -
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45◦ and 145◦ - 180◦ where the curve is greater than the experimental data. This effect
can be explained by the non-linear damping, which has a quadratic dependence on the
precession cone angle, θ ∼ hx′ cos(θH)/∆H. The fact that ∆H shows a dependence
on θH can actually be seen in Fig. 21(a) where there seems to be an increase in ∆H
with increasing θH , which is confirmed by the fitting. Indeed ∆H shows a strong
dependence on θH which is illustrated in Fig. 21(c), and is enhanced by more than
100% from 4.0 mT at about 90◦ to 9.0 mT at about 180◦. At θH = 0◦, θ ∼ hx′/∆H
and the cone angle is its largest. As θH increases from 0◦ and moves toward 90◦, θ
decreases to 0◦ indicating a linear Gilbert damping. From Fig. 21(c) the cone angle
can be calculated as a function of ∆H which is plotted in Fig. 21(d). Here the
dashed line is a linear plot which would be expected in the linear damping regime.
However the line width follows a quadratic dependence on the cone angle as shown
with the solid line, indicating non-linear damping characterized by an increase of
∆H corresponding to an increase in the cone angle. Therefore for large cone angles
it is necessary to consider non-linear damping effects. This has implications to the
determination of the spin Hall angle, γSH . In a recent work of Mosendz [12] it was
found that θ was as high as 15◦ while ∆H was found to be constant while varying θH .
This may indicate an error in their analysis and since γSH depends on θ an inaccurate
estimation of the cone angle could result in an incorrect γSH .

4.4 Arbitrary h Vector

Next we consider the most general case which is described by Eq. (57) where all
components of h may contribute to the FMR line shape. The sample used here is a
single Py strip where both the electric field which drives the current and the magnetic
field which drives the magnetization precession are provided by a rectangular waveg-
uide with a horn antennae. The sample chip is mounted at the end of a rectangular
waveguide and the Py strip is directed along the short axis of the waveguide. In a
waveguide, the electromagnetic fields are well known and in general three components,
hx′ , hy and hz′ exist. Fig. 22(a) shows both the FMR and perpendicular standing
SWR at θH = 45◦. Indeed both the amplitude and the line shape are different for
the two FMR peaks located at H and −H, which indicates the existence of multiple
h field components due to the symmetry properties under θH → θH + 180◦ and Eq.
(57) and Eq. (58) are needed to separate the various h components.

This separation is done using the Lorentz and dispersive amplitudes determined
from a fit to the FMR which are plotted as a function of θH in Fig. 22(b) and (c)
for ω/2π = 12 and 11.2 GHz respectively. A fit using Eq. (58) for both the Lorentz
and dispersive amplitudes allows a separation of the contributions from each of the
hx′ , hy and hz′ fields based on the their different contributions to the θH dependence
of the line shape. The relative phase can simply be determined from the ratio of the
Lorentz to dispersive amplitude of a given θH dependent term.

The results of the fit are shown in Table 1 where γ/2π = 28.0 µ0GHz/T, µ0M0
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Figure 22: Data shown for a single Py strip with precession driven by horn antennae
field. The strip dimensions are 3 mm × 50 µm × 45 nm. (a) Spectra showing
distinct resonances due to FMR and perpendicular standing SWR at ω/2π = 12
GHz. (b) Separated Lorentz and dispersive line shapes (circles/red and squares/blue
respectively) as a function of θH from a fit to Eq. (57) at ω/2π = 12 GHz and (c)
ω/2π = 11.2 GHz.

Table 1: Angular separation of h field components for 12 and 11.2 GHz.
12 GHz 11.2 GHz

|hx′ | 1 1
|hy| 0.02 0.14
|hz′ | 0.19 0.37
Φx′ -23◦ 50◦

Φy 40◦ -30◦

Φz′ -33◦ 82◦

= 0.97 T and µ0Hr = 152 mT were used. The amplitudes of the different h field
components have been normalized with respect to the hx′ component. At both 11.2
and 12 GHz the hx′ field is much larger than hy or hz′ showing that the hx′ field
is primarily responsible for driving the magnetization precession which is expected
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based on the wave propagation in a horn antennae.
In changing from 11.2 to 12 GHz the relative phase for each component is seen

to change. Therefore even in the case of a complex line shape produced by multiple
h field components, a θH measurement allows the individual contributions to be
separated and the relative phase shifts are found to be non-zero.

4.5 A ”Well Controlled” Sample

Finally we will discuss the issue of a well controlled sample. A set of first generation
spin dynamos shown in the inset of Fig. 23(a) was fabricated with different Py
thickness d. Two Py strips, denoted by S1 and S2, are deposited, one in each center
of the G-S strips and the sample is kept symmetric with respect to the S strip. The
lateral dimensions are identical for all samples which is warranted by the lithography
and lift off techniques used. We will verify that even in such a sample which is ”well
controlled” during fabrication, the phase cannot be controlled.
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Figure 23: (a) FMR observed in a first generation spin dynamo. Inset shows the first
generation spin dynamo structure with two Py strips labeled S1 and S2. (b) FMR
for Py thickness d = 100 nm for both S1 and S2. In S1 Φy = −11◦, while in S2 the
line shape is slightly more asymmetric and Φy = 22◦. (c) For d = 60 nm the relative
phase is Φy = −29◦ for S1 and Φy = 27◦ for S2.

The current and rf magnetic field are induced in the Py via a current directly
injected into the CPW. The sample geometry is analogous to the first sample already
discussed and the dominant driving field will be in the y direction. The FMR shown
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in Fig. 23(a) for the sample with d = 100 nm at ω/2π = 5 GHz shows a symmetric
Lorentz line shape and furthermore the FMR for +H and −H are identical. A careful
fitting results in Φy = -11◦ being found. Interestingly the concurrent measurement for
another Py strip in the same chip has a different Φy = 22◦. We can further compare
the Φy for another sample with a different thickness, d = 60 nm. Here for S1, Φy =
-29◦ and for S2, Φy = 27◦. Similar to the d = 100 nm sample, the relative phase is
different for S1 and S2. Therefore it is not appropriate to consider a sample which is
well controlled during fabrication to also have a well controlled relative phase.
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5 Conclusions

The coupling between current and magnetization in a ferromagnetic microstrip
provides a powerful tool for the study of spin dynamics by enabling the electrical de-
tection of FMR. Due to the coherent nature of this coupling, the resulting dc voltage
depends strongly on the relative phase between the rf electric and magnetic fields
used to drive the current and magnetization respectively. Therefore not only does
electrical FMR detection provide a route to study the relative phase, but it also
necessitates calibrating the relative phase prior to performing electrically detected
FMR experiments. Regardless of the FMR driving field, and even in the general case
of multiple components driving FMR, the relative phase between the rf electric and
magnetic field is observed to be sample and frequency dependent and non-zero. This
non-zero phase results in both symmetric and antisymmetric Lorentz contributions
to the FMR line shape, making Φ an important parameter when performing experi-
ments based on characterizing the electrically detected FMR. The Φ dependence of
the line shape symmetry also changes based on which component of the rf h field is
responsible for driving the FMR precession meaning that the line shape itself can-
not be used to determine Φ directly. For instance a purely antisymmetric line shape
could correspond to Φx′ = 0◦ if the FMR is driven by hx′ , or to Φy = 90◦ if the
FMR is driven by hy. Therefore to properly measure the relative phase, the h field
components must be separated, making a θH measurement necessary. Using such a
measurement Φ has been observed to change from 0◦ to 90◦ in a narrow frequency
range (0.6 GHz) resulting in a change from an antisymmetric to symmetric line shape
demonstrating the large effect the relative phase has on the FMR line shape. Further-
more such changes cannot be well controlled even in a sample which is well controlled
during fabrication. Therefore in our opinion Φ cannot be predicted and should be
calibrated for each sample, at each frequency and for each measurement cycle. A
possible method for such a Φ calibration is the technique of spintronic Michelson in-
terferometry, which could be used to accurately separate the dispersive and Lorentz
line shapes in electrically detected FMR experiments in order to help resolve the γSH
controversy.
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Appendices

A Determining Φ in a Multilayer system

In this appendix we outline an approach to calculate the electric and magnetic
fields in a multilayer structure. Once both fields are calculated the phase can be
compared to determine the relative electromagnetic phase. Rather than performing
such a calculation with a waveguide field with all the sample parameters we consider
the case of a plane wave moving through the multilayer structure. There are some
unanswered questions regarding this calculation which are presented here.

To determine the relative electromagnetic phase we must consider the propagation
of electromagnetic waves in a dispersive medium, which introduces a phase shift
through an imaginary wave vector. The most common example is a conductor. Such
propagation can be characterized by three material parameters; the permittivity, ε,
permeability, µ and conductivity, σ. Maxwell’s equations admit a plane wave solution
with the wave vector given by k̄2 = ω2µ

(
ε+ iσ

ω

)
. This has the same form as the

wave vector for propagation in a non-conducting medium with ε→ ε̄ = ε+ iσ
ω

. This
replacement can also be used to determine the complex index of refraction, n = c

√
µε̄.

Consider a plane wave traveling in the z direction and polarized along the x axis
which can travel through m layers of different thickness, as shown in Fig. 24.

Figure 24: Plane wave propagating through multilayer structure.

As the wave propagates it will be reflected and transmitted at each interface so
that in each layer there is a right (Emr) and left (Eml) moving component. According
to the boundary conditions of Maxwell’s equations, the field and its derivative should
be continuous at each interface. In the mth layer the field and its derivative as a
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function of position are

Em(z) = Emre
ikmz + Emle

−ikmz,

Fm(z) =
dEm(z)

dz
= ikmEmre

ikmz − ikmEmle−ikmz. (72)

After traveling a distance d, we have Em(z+d) = Emre
ikmzeikmd+Emle

−ikmze−ikmd

and Fm(z + d) = ikmEmre
ikmzeikmd − ikmEmle−ikmze−ikmd. This allows us to define

a transfer matrix for the mth layer which propagates waves a distance d through the
mth layer,

(
Em(z + d)
Fm(z + d)

)
=

(
cos(kmd) 1

km
sin(kmd)

−km sin(kmd) cos(kmd)

)(
Em(z)
Fm(z)

)
= Cm

(
Em(z)
Fm(z)

)
.

(73)
If the wave travels through a distance zm through m layers and we take the 0 of

the z axis to be at the interface between the 0th and the 1st layers, we can then write
the field at the boundary of the mth layer as(

Em(zm)
Fm(zm)

)
=

m∏
i=1

Ci

(
E0(0)
F0(0)

)
=

(
M11 M12

M21 M22

)(
E0(0)
F0(0)

)
. (74)

The distance dn used to calculate the transfer matrix Cn will now be the thickness
of the nth layer. If we want to calculate the field at some point d into the last layer
rather than at the boundary of the last layer, the mth matrix Cm should use the
distance d rather than thickness of the layer.

The field at a distance zm can then be determined from the incoming field as

Em(zm) = M11E0(0) +M12F0(0),

Fm(zm) = M21E0(0) +M22F0(0). (75)

Since there is no left traveling wave in the mth layer we have,

Em(zm) = Emre
ikmzm ,

Fm(zm) = ikmEmre
ikmzm . (76)

Using Eq. 75 and Eq. 76, F0(0) can be written in terms of E0(0),

F0(0) =
(M21 − ikmM11)E0(0)

ikmM12 −M22

= βE0(0). (77)

Since F0(0) = ik0E0r − ik0E0l and E0(0) = E0r + E0l, the left traveling wave in the
0th layer, E0l, can be written in terms of the incoming wave, E0r as,
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E0l =
ik0(ikmM12 −M22)− (M21 − ikmM11)

ik0(ikmM12 −M22) + (M21 − ikmM11)
E0r = ηE0r. (78)

Therefore if the incoming electric field, E0r is specified, the total wave in the 0th layer
is, E0(0) = E0r(1 + η), and we can determine the electric field in the nth layer (n <
m),

En = N11E0(0) +N12βE0(0) = [E0r(1 + η)](N11 + βN12). (79)

where Nij are the matrix elements of
∏n

i=1 Ci.
If the material and thickness parameters of each layer are specified, and a plane

wave of known frequency is used, each transfer matrix can be calculated and Eq. 79
would yield a complex number for the electric field which could be turned into an
amplitude and phase. The next step is then to calculate the magnetic field in a given
layer, which is where various questions are raised.

Based on Faraday’s law the plane waves solutions for E and H are related by
Hm = km

µmω
k̂m × Em. If we have the electric field in the mth layer this would mean

that we should be able to calculate Hm using the wave vector km. However this
means that regardless of which layer we are in the phase difference will only depend
on the phase of km in that layer. This means that the phase would be a local property
and that the reflection and transmission of the layers does not play a role; no matter
how Em would be calculated, the phase shift would be the same as long as km was
the same. Also when the wave would go from a non-conducting to conducting layer,
the phase would jump to 45◦, and then go back to 0◦ when the wave goes back into
a non-conductor. Of course one test of such a calculation would be to look at the
limiting case of a perfect conductor where the phase shift should be 45◦, and if we use
this scheme to compute the phase shift in something like copper, the phase does come
out to be 45◦, but this is not a true test of the calculation, since we would obtain this
result independent of the other layers.

If instead we would calculate the incoming magnetic wave using Hm = km
µmω

k̂m×Em

based on a specified incoming electric wave, we could then propagate the magnetic
wave through in the same way as the electric wave. However this calculation would
be exactly the same as the electric field calculation, and the only phase shift would
be due to the wave vector in the first medium. Clearly this would not be correct since
the phase shift in an infinite conducting sheet would then come out to be zero if the
wave entered from air.

Neither of the above two methods seems reliable and a new way of calculating
the magnetic field is necessary. The purpose of this calculation was to show in a
simple case that the relative phase was non-zero, since many people believe it will
be inherently zero and as a result, the FMR line shape will only have a dispersive
or Lorentz line shape, but not both. Of course such a simple calculation cannot
be applied directly to a real setup where the waves will no longer be planar, the
boundary conditions become much more complex and the spatial distribution of fields
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is more complicated. Nevertheless it would be useful to show that in a thin multilayer
struction Φ 6= 0. Even if the phase would turn out to be only locally dependent on
the sample as the result from Faraday’s law would suggest, this would still prove the
point that the relative phase is non-zero in the multilayer structure, but further work
is needed to verify this.



REFERENCES 49

References

[1] N. Mo, C.E. Patton, Local ferromagnetic resonance measurement tech-
niques, Rev. Sci. Instrum. 79, 040901 (2008).

[2] J. H. E. Griffiths, Anomolous high-frequency resistance of ferromagnetic
metals, Nature. 158, 670 (1946).

[3] C. Kittel, Interpretation of anomalous Larmor frequencies in ferromag-
netic resonance experiments, Phys. Rev. 71, 270 (1947).

[4] C. Kittel, On the theory of ferromagnetic resonance absorption, Phys.
Rev. 73, 155 (1948).

[5] Y.S. Gui, N. Mecking, X. Zhou, Gwyn Williams, C.-M. Hu, Realization
of a room-temperature spin dynamo: the spin rectification effect, Phys.
Rev. Lett. 98, 107602 (2007).

[6] A. Wirthmann, Xiaolong Fan, Y.S. Gui, K. Martens, G. Williams, J.
Dietrich, G.E. Bridges, C.-M. Hu, Direct phase probing and mapping
via spintronic Michelson interferometry, Phys. Rev. Lett. 105, 017202
(2010).

[7] M.I. D’yakonov, V.I. Perel, Possibility of orienting electron spins with
current, Sov. Phys. JETP Lett. 13, 467 (1971).

[8] M.I. D’yakonov, V.I. Perel, Current-induced spin orientation of elec-
trons in semiconductors, Phys. Lett. A 35, 459 (1971).

[9] J. E. Hirsch, Spin Hall effect, Phys. Rev. Lett. 83, 1834 (1999).

[10] Y. Kato, R.C. Myers, A.C. Gossard, D.D. Awshalom Observation of
the spin Hall effect in semiconductors, Science. 306, 1910 (2004).

[11] J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Experimental ob-
servation of the spin Hall effect in a two-dimensional spin-orbit coupled
semiconductor system, Phys. Rev. Lett. 94, 047204 (2005).

[12] O. Mosendz, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader,
A. Hoffmann, Quantifying spin Hall angles from spin pumping: exper-
iments and theory, Phys. Rev. Lett. 104, 046601 (2010).

[13] J. Inoue, H. Ohno, Taking the Hall effect for a spin, Science. 309, 2004
(2005).



REFERENCES 50

[14] Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Spin pumping and mag-
netization dynamics in metallic multilayers, Phys. Rev. B. 66, 224403
(2002).

[15] Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Enhanced Gilbert damping
in thin ferromagnetic films, Phys. Rev. B. 88, 117601 (2002).

[16] X. Wang, G.E.W. Bauer, B.J. van Wees, A. Brataas, Y. Tserkovnyak,
Voltage generation by ferromagnetic resonance at a nonmagnet to fer-
romagnet contact, Phys. Rev. Lett. 97, 216602 (2006).

[17] A. Brataas, Y. Tserkovnyak, G.E.W. Bauer, B.I. Haperin, Spin bat-
tery operated by ferromagnetic resonance, Phys. Rev. B. 66, 060404(R)
(2002).

[18] L. Berger, Generation of dc voltages by a magnetic multilayer under-
going ferromagnetic resonance, Phys. Rev. B. 59, 11465 (1999).

[19] T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S.
Maekawa, J. Nitta, K. Takanashi, Giant spin Hall effect in perpen-
dicularly spin-polarized FePt/Au devices, Nature Mater. 7, 175 (2008).

[20] G. Mihajlovic, J.E. Pearson, M.A. Garcia, S.D. Bader, A. Hoffmann,
Negative nonlocal resistance in mesoscopic gold Hall bars: absence of
the giant spin Hall effect, Phys. Rev. Lett. 103, 166601 (2009).

[21] K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, E.
Saitoh, Electric manipulation of spin relaxation using the spin Hall
effect, Phys. Rev. Lett. 101, 036601 (2008).

[22] T. Kimura, Y. Otani, T. Sato, S. Takahashi, S. Maekawa, Room-
temperature reversible spin Hall effect, Phys. Rev. Lett. 98, 156601
(2007).

[23] L. Liu, T. Moriyama, D. C. Ralph, R. A. Buhrman, Spin-torque fer-
romagnetic resonance induced by the spin Hall effect, Phys. Rev. Lett.
106, 036601 (2011).

[24] S. Zhang, spin Hall effect in the presence of spin diffusion, Phys. Rev.
Lett. 85, 393 (2000).

[25] J. D. Jackson, Classical Electrodynamics, (Wiley, New York, 1998), 3th

ed.

[26] D. J. Griffiths. Introduction to Electrodynamics, (Prentice Hall, New
Jersy, 1999), 3th ed.



REFERENCES 51

[27] C. Kittel, Introduction to Solid State Physics, (John Wiley & Sons,
Inc., New York, 2004), 8th ed.

[28] N. Mecking, A comprehensive study of the AMR-induced microwave
photovoltage, photocurrent and photoresistance in permalloy mi-
crostrips, Ph.D. thesis, University of Hamburg.

[29] B. Lax, K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw
Hill, New York, 1962).

[30] R.W. Damon, Ferromagnetic Resonance at High Power in Magnetism,
a treatise on modern theory and materials, (Academic Press, 1963).

[31] N. Mecking, Y.S. Gui, C.-M. Hu, Microwave photovoltage and photore-
sistance effects in ferromagnetic microstrips, Phys. Rev. B. 76, 224430
(2007).

[32] Z. Zhi-Dong, Spin waves in thin films, superlattices and multilayers in
Handbook of think film materials: Nanomaterials and magnetic thin
films, Volume 5, (Academic Press, 2002).

[33] X. F. Zhu, M. Harder, A. Wirthmann, B. Zhang, W. Lu, Y. S. Gui, C.-
M. Hu, Dielectric measurements via a phase-resolved spintronic tech-
nique Phys. Rev. B. 83, 104407 (2011).

[34] X. F. Zhu, M. Harder, J. Tayler, A. Wirthmann, Bo Zhang, W. Lu, Y.
S. Gui, C.-M. Hu, Nonresonant spin rectification in the absence of an
external applied magnetic field, 83, 140402 (2011).

[35] H.J. Juretschke, Electromagnetic theory of dc effects in ferromagnetic
resonance, J. Appl. Phys. 31, 1401 (1960).

[36] A.A. Michelson, E.W. Morley On the relative motion of the earth and
the luminiferous ether, Am. J. Sci. 34, 333 (1887).

[37] O.S. Heavens, Optical Properties of Thin Solid Films, (Dover, New
York, 1965).

[38] M. Born, E. Wolf Principles of optics: electromagnetic theory of propa-
gation, interference and diffraction of light, (Oxford, New York, 1975).





PHYSICAL REVIEW B 84, 054423 (2011)

Analysis of the line shape of electrically detected ferromagnetic resonance

M. Harder,1 Z. X. Cao,1,2 Y. S. Gui,1 X. L. Fan,1,3 and C.-M. Hu1,*

1Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2
2National Lab for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Science,

Shanghai 200083, People’s Republic of China
3The Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University,

Lanzhou 730000, People’s Republic of China
(Received 9 May 2011; revised manuscript received 30 June 2011; published 8 August 2011)

This work reviews and examines two particular issues related with the new technique of electrical detection of
ferromagnetic resonance (FMR). This powerful technique has been broadly applied for studying magnetization
and spin dynamics over the past ten years. The first issue is the relation and distinction between different
mechanisms that give rise to a photovoltage via FMR in spintronic devices, and the second is the proper analysis
of the FMR line shape, which has become the “Achilles heel” in interpreting experimental results, especially for
either studying the spin pumping effect or quantifying spin Hall angles via the electrically detected FMR.
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I. INTRODUCTION

Electrical detection of ferromagnetic resonance (FMR)
in ferromagnets (FM) is a powerful new experimental tool
which has transformed the research on spin and magneti-
zation dynamics.1–32 Over the past ten years, this technique
has generated a great deal of interest in the communities
of magnetism, spintronics, and microwave technologies. It
has been broadly applied for studying diverse material
structures, ranging from ferromagnetic thin films such as
Py (permalloy, Ni80Fe20),3,6,11,13, CrO2,14 Fe3O4,14 single
crystal Fe,16 GaMnAs,17 and La1−xSrxMnO3,18 bilayer de-
vices such as Py/Pt,7,8,19,20,24,25 Py/Au,19,20 Py/GaAs,21 and
Y3Fe5O12/Pt,22,23 to a variety of magnetic tunneling junctions
(MTJ) based on magnetic multilayers.4,9,10,15 From a tech-
nical standpoint, its high sensitivity has made it possible to
quantitatively determine spin boundary conditions26 and to
directly measure nonlinear magnetization damping,27–29 the
quasiparticle mass for the domain wall,30 the phase diagram of
the spin-transfer driven dynamics2 and various kinds of para-
metric spin wave excitations.2,31,32 Its capability to probe the
interplay of spins, charges, and photons has been utilized for
studying spin rectification,11,12 spin pumping,7 spin torque,15

and spin Hall effects,19,24,25 which have led to the proposing
and realization of novel dynamic spintronic devices such
as the spin battery,7,33–36 spin diode,4,10,15 spin dynamo,11,12

and spin demodulator.37 Very recently, its ability to detect
coherent processes38–40 has enabled electrical probing of the
spin-resonance phase and the relative phase of electromagnetic
waves,38 which pave new ways for microwave sensing,41

nondestructive imaging,38 and dielectric spectroscopy.39 Such
a coherent capability is especially exciting as it resembles
the latest achievement in semiconductor spintronics, where
a new platform for coherent optical control of spin/charge
currents has been developed by using nonresonant quantum
interferences.42–44

From the physical standpoint, many different effects
may generate a time-independent dc voltage in magnetic
materials via the FMR. Reported mechanisms involve
spin rectification,11,12 spin pumping,7 spin torque,15 spin
diode,4,10,15 spin Hall,24 and inverse spin Hall effects.8,19,20,25

Two major issues stand out here. (1) A unified picture
clarifying the relations and distinctions between such di-
verse mechanisms has not been established, which leads
to increasing controversy and confusion in interpreting and
understanding experimental results. A stunning example of
this issue is found in the very recent studies of the spin
Hall effect via electrically detected FMR, where two similar
experiments19,24 performed on similar devices were interpreted
completely differently.45 (2) When more than one mechanism
simultaneously plays a role in the FMR generated dc voltage,
proper interpretation requires a quantitative analysis of the
FMR line shape. In our opinion, such a seemingly trivial issue
has become the “Achilles heel” of this powerful experimental
technique, especially in recent studies of spin pumping and the
spin Hall effect via electrically detected FMR. The purpose
of this article is to address these two critical issues with
a brief review of the key physics of this subject, followed
by systematically measured experimental data with detailed
theoretical analysis.

This paper is split into three main sections. First we
provide a brief review of different mechanisms which may
generate the photovoltage via the FMR. Then we use the
dynamic susceptibility obtained from a solution of the Landau-
Lifshitz-Gilbert equation to derive analytical formulas for
analyzing the line shape and the symmetry properties of
the photovoltage generated through spin rectification. Finally
we present experimental results measured from different
samples, at different frequencies, and in different experimental
configurations, showing that the FMR line shape is determined
by the relative phase of microwaves which is sample and
frequency dependent.

II. A BRIEF REVIEW OF ELECTRICAL DETECTION
OF FMR

Under microwave excitation at angular frequency ω, the
rf electric (e) and magnetic (h) fields inside a ferromagnetic
material can be described as e = e0e

−iωt and h = h0e
−i(ωt−"),

respectively. Note that in general, due to the inevitable losses
of microwaves propagating inside the ferromagnetic material,
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FIG. 1. (Color online) Dynamic response of magnetic structures
under microwave irradiation: (a) Single thin film layer where the
spin rectification is due to the magnetic field torque as shown in
(e). (b) Magnetic bilayer device which has two rf currents j and js
with different spin polarizations. Therefore spin rectification is due to
both magnetic field and spin torques. (c) Magnetic tunneling junction
with both j and js . (d) Coordinate system for single ferromagnetic
microstrips measured in this work under an in-plane applied static
magnetic field H. The z′ axis is fixed along the strip and the direction
of current flow, while the z axis is rotated to follow the direction of H.
(e) Components of magnetic field torque. (f) Spin torque in magnetic
tunneling junction.

there is a phase difference " between the dynamic e and h
fields. Such a relative phase is determined by the frequency-
dependent wave impedance of the materials.46 As shown in
Fig. 1, the rf e field drives a rf current j = σe, while the rf h
field exerts a field torque on the magnetization and drives it
to precess around its equilibrium direction [Fig. 1(e)]. Such a
magnetization precession is described by the nonequilibrium
magnetization m = χ̂h. Here σ and χ̂ are the high-frequency
conductivity and Polder tensor, respectively. Note that due
to the resonance nature of the precession, m lags h by a
spin resonance phase %. However, despite the phase of "
and %, the dynamic j and m keep the coherence of their
respective driving fields, so that the product of any combination
of their components may generate a time-independent signal
proportional to 〈Re(j̃ ) · Re(m̃)〉, where 〈 〉 denotes the time
average. The amplitude of such a signal depends on the phase
difference of j and m, which can be easily understood from the
trigonometric relation 〈cos(ωt) · cos(ωt − ")〉 = cos(")/2.
This is the spin rectification11 as we highlight in Table I.
For transport measurements on magnetic structures under
microwave irradiation, various magnetoresistance effects such
as anisotropic magnetoresistance (AMR), giant magnetoresis-
tance (GMR), and tunneling magnetoresistance (TMR) make

nonlinear corrections to Ohm’s law via their corresponding
magnetoresistance terms,12 which typically lead to the product
of j and m. Such h-field torque induced spin rectifications are
listed in Table I by the terms labeled V h

SR. The earliest report
on the measurement of V h

SR dates to Juretschke’s pioneering
paper47 published in 1960, although the power sensitivity
achieved at that time was too small to be practically used
(it was about 3 orders of magnitude smaller than that found
in Ref. 11). The general feature of V h

SR is that its amplitude
depends on both the relative phase " and the spin resonance
phase %, which leads to a characteristic phase signature of the
FMR line shape.38,39

Similar to the effect of the rf h field torque, a spin
torque induced by a spin polarized current may also drive
magnetization precession. For example, in a bilayer [Fig. 1(b)]
made of a ferromagnetic layer and a nonmagnetic layer with
spin-orbit coupling,24 in addition to the rf current j flowing in
the ferromagnetic layer, the rf e field also induces a rf charge
current flowing in the nonmagnetic layer. Via the spin Hall
effect in such a nonmagnetic layer with spin-orbit coupling,
the rf charge current can be converted into a spin current
js , which may flow into the ferromagnetic layer and then
drive the magnetization precession via the spin torque. Such
a spin torque induced nonequilibrium magnetization can be
described by m = χ̂j js , where the spin-torque susceptibility
tensor χ̂j introduces a spin resonance phase ϑ that is different
from % in χ̂ . Following a similar consideration for the h-field
induced spin rectification, a photovoltage depending on the
spin torque may be generated in the ferromagnetic layer. This is
the physical origin of the spin torque induced spin rectification
effect,24 which is listed in Table I by the term labeled V s

SR. In
MTJ [Fig. 1(c)], the spin polarized current js can be directly
generated in the ferromagnetic layer where the magnetization
is pinned along a different direction than that of the free layer.
It tunnels into the free layer and drives the magnetization
precession via the spin torque [Fig. 1(f)]. The spin torque
induced spin rectification signal in MTJ has been measured in
spin diodes,4,10,15 which is also listed in Table I by the term
labeled V s

SR.
Over the past few years, systematic studies on spin recti-

fications induced by the h-field torque (V h
SR) and spin torque

(V s
SR) have been performed, respectively, at the University of

Manitoba11,12,16,17,26–28,38,39,41 and Cornell University.2,9,15,24,50

It has been found that due to the coherent nature of spin
rectification, both V h

SR and V s
SR depend on the phase difference

between j and m. However, only the field torque spin
rectification (V h

SR) can be controlled by the relative phase " of
the microwaves.38

In addition to such coherent spin rectification effects, it
is known that at the interface between a ferromagnetic and
a nonmagnetic layer, microwave excitation may generate a
spin polarized current flowing across the interface via the
spin pumping effect.33 This effect has been observed in a few
striking experiments by measuring either transmission electron
spin resonance48 or enhanced magnetization damping.49 It
involves FMR, exchange coupling, and nonequilibrium spin
diffusion. An intuitive physical picture of spin pumping was
given by the classical paper of Silsbee et al.48 published in
1979, which used a phenomenological model to highlight
the key mechanism of dynamic exchange coupling between
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the precessing magnetization and the spin polarized current.
Such a dynamic coupling significantly “amplifies” the effect
of the rf h field in generating nonequilibrium spins, which
diffuse across the ferromagnetic (FM) /normal metal (NM)
interface to form the spin polarized current. Microscopically,
spin pumping is a consequence of spin dependent reflectivity
and transmission parameters of NM electrons at the FM/NM
interface. Spin mixing conductance is the main parameter
driving spin pumping, which was rigorously derived by
Tserkovnyak et al.33 Theoretical derivation is not trivial but the
picture behind it is very clear and using magnetoelectronics
Kirchhoff’s laws33 one can easily apply such a derivation
to different dynamical configurations. It has been proposed
that the spin current generated via spin pumping may also
induce a photovoltage, either across the interface in a spin
battery,7,34–36 or within the nonmagnetic layer via the inverse
spin Hall effect.8,19,20,25 Recent experiments performed on
magnetic bilayers24 have suggested that spin-pumping induced
dc voltage (the term VSP in Table I) is about two orders of mag-
nitude smaller than spin torque induced spin rectification (the
term labeled V s

SR). In contrast to phase sensitive coherent spin
rectification effects, the proposed spin-pumping photovoltage
is based on incoherent spin diffusion and FMR absorption.
Hence, the anticipated FMR line shape of VSP is symmetric
and phase independent.

From the above discussion, it is clear that the line
shape analysis plays the essential role in distinguishing
the microwave photovoltage generated by different mecha-
nisms. This issue has been partially addressed by a number
of theoretical50,51 and experimental works4,10,15 studying
nanostructured MTJs where the photovoltage is dominated
by the spin torque induced spin rectification. Enlightened by
these works and also based on our own previous studies,12,38

we discuss in the following the critical issue of FMR line
shape analysis in microstructured devices, where the field and
spin torque induced spin rectification may have comparable
strength. Our theoretical consideration and experimental data
demonstrate the pivotal role of the relative phase ", which
was often underestimated in previous studies. Via systematic
studies with different device structures, measurement con-
figurations and frequency ranges, we find that " has to be
calibrated at different microwave frequencies for each device
independently. Hence our results are in strong contradiction
with the recent experiment performed on microstructured
magnetic bilayers for quantifying the spin Hall angles,

where " was set to zero for all devices at all microwave
frequencies19,20 based on the results of line shape analysis
performed on reference samples.52

III. FMR LINE SHAPE

A. The characteristic signature

From Table I the role of the phase in the FMR line
shape symmetry can be understood by considering the spin
rectified voltage V ∝ 〈Re(j̃ ) · Re(m̃)〉. For spin rectification
induced by the field torque, depending on the experimen-
tal configuration, at least one matrix component χ of the
Polder tensor χ̂ will drive the FMR; whether an on or
off-diagonal component is responsible for the magnetization
precession depends on the measurement configuration. Since
m = χ̂h, Re(m̃) ∝ Re(χ ) cos(ωt − ") + Im(χ ) sin(ωt − ").
Therefore after time averaging a time independent dc voltage
is found V (") ∝ [Re(χ ) cos(") − Im(χ ) sin(")]. It is well
known that for diagonal matrix elements, Re(χ ) has a
dispersive line shape while Im(χ ) has a symmetric line shape.
However, since the on- and off-diagonal susceptibilities differ
by a phase of 90◦, if the FMR is driven by an off-diagonal
susceptibility, the roles are reversed and Re(χ ) has a symmetric
line shape while Im(χ ) has a dispersive line shape.

Based on the simple argument leading to the above V (")
expression, one can see that the line shape symmetry has a
characteristic dependence on the relative phase " between
electric and magnetic fields. Thus when measuring FMR
based on the field torque induced spin rectification effect,
it is important to consider the relative phase, whereas for
a spin pumping measurement which measures |m|2, or for
a spin torque induced spin rectification which involves |j|2,
the relative phase does not influence the experiment. In the
next two sections, a detailed analysis is given by solving the
Landau-Lifshitz-Gilbert equation, which leads to analytical
formulas describing the symmetric and dispersive line shapes
for different measurement configurations.

B. The dynamic susceptibility

The Landau-Lifshitz-Gilbert equation provides a phe-
nomenological description of ferromagnetic dynamics based

TABLE I. Relation and distinctions between different mechanisms for microwave photovoltages induced by FMR. (For simplicity we
consider only one matrix element of χ̂ and χ̂j which is responsible for the spin rectification. j̃ and m̃ denote a corresponding component of the
time-dependent current and magnetization, respectively.)

rf driving ẽ = e0e
−iωt j̃ = j0e

−iωt h̃ = h0e
−i(ωt−") j̃s = jSe

−iωt

Effect Ohm’s law Spin Hall Field torque Spin torque Spin rectificationa,b Spin pumpingc

dc voltage V ∼ 〈Re(j̃ ) · Re(m̃)〉 V ∼ |h̃|2
Thin film j̃ = σ ẽ m̃ = χei%h̃ V = V h

SR · (e0h0)
Bilayer j̃ = σ ẽ j̃s m̃ = χei%h̃ + χje

iϑ j̃s V = V h
SR · (e0h0) + V s

SR · (j0jS) + VSP · h2
0

MTJ j̃ ,j̃s m̃ = χei%h̃ + χje
iϑ j̃s V = V h

SR · (e0h0) + V s
SR · (j0jS)

aV h
SR: Photovoltage caused by h-field torque induced spin rectification (including the so-called AMR photovoltage).6,11–13,47

bV s
SR: Photovoltage caused by spin torque induced spin rectification (also known as the spin diode effect).4,10,15,24

cVSP: Photovoltage caused by spin pumping.7,8,19,20,25
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on a torque provided by the internal magnetic field Hi which
acts on the magnetization M, causing it to precess53

dM
dt

= −γ (M × Hi) + α

M

(
M × dM

dt

)
. (1)

Here γ is the effective electron gyromagnetic ratio and
α is the Gilbert damping parameter which can be used to
determine the FMR linewidth )H in the linear regime,
according to )H ∼ αω/γ . For the case of microwave induced
ferromagnetic resonance Eq. (1) can be solved by splitting the
internal field into dc and rf components and taking the applied
dc field H along the z axis. We can relate the internal field Hi =
H0i + hie

−iωt to the applied field through the demagnetization
factors Nk , H0iz = H − NzM0, hik = hke

i"k − Nkmk , where
"k is the relative phase shift between the electric and magnetic
fields in the kth direction and M0 is the dc magnetization also
along the z axis. With the magnetization separated into dc and
rf contributions M = M0 + me−iωt , the solution of Eq. (1)
yields the dynamic susceptibility tensor χ̂ which relates the
magnetization m to the externally applied rf field h,

m = χ̂h =




χxx iχxy 0

−iχxy χyy 0
0 0 0



 h

=




|χxx | |χxy |ei π

2 0
|χxy |e−i π

2 |χyy | 0
0 0 0



 hei%, (2)

where % = arctan[)H/(H − Hr )] is the spin resonance
phase38 which describes the phase shift between the response
and the driving force in terms of the linewidth )H and the
resonance field Hr which are constant for a fixed frequency.
% will change from 180◦ (driving force out of phase) to 0◦

(driving force in phase) around the resonance position, in a
range on the order of )H , passing through 90◦ at resonance.
This represents the universal feature of a resonance; the phase
of the dynamic response always lags behind the driving force.54

To emphasize the resonant feature of the susceptibility
tensor elements we define the symmetric Lorentz line shape
L, and the dispersive line shape D as

L = )H 2

(H − Hr )2 + )H 2
,

(3)
D = )H (H − Hr )

(H − Hr )2 + )H 2
.

Clearly the spin resonance phase can also be written in terms
of L and D as % = arctan[)H/(H − Hr )] = arctan(L/D) so
that L ∝ sin(%) and D ∝ cos(%). Therefore L and D carry
the resonant information of the susceptibility tensor.

Using L and D allows the elements of χ̂ to be written as
(χxx,χxy,χyy) = (D + iL)(Axx,Axy,Ayy). Axx,Axy and Ayy

are real amplitudes which are related to the sample properties

Axx = γM0[M0Ny + (H − NzM0)]
αω[2(H − NzM0) + M0(Nz + Ny)]

,

Axy = − M0

α[2(H − NzM0) + M0(Nz + Ny)]
, (4)

Ayy = γM0[M0Nx + (H − NzM0)]
αω[2(H − NzM0) + M0(Nz + Ny)]

.

Since these amplitudes are real all components of χ̂ include
both a dispersive and a Lorentz line shape determined solely
from the D + iL term. However, in a transmission experiment
performed using a resonance cavity |m|2 ∝ L2 + D2 = L is
measured. This product removes the phase dependence carried
by L and D and leaves only the Lorentz line shape. For the
same reason, the microwave photovoltage induced by spin
pumping (the VSP term in Table I) has a symmetric line shape.

The susceptibility for the two cases of in-plane and
perpendicularly applied dc magnetic fields can easily be
found from Eq. (4) by using the appropriate demagnetization
factors. When the lateral dimensions are much larger than the
thickness, Nx = Nz = 0 and Ny = 1 for an in-plane field and
Nx = Ny = 0 and Nz = 1 for a field applied at a small angle
from the perpendicular. In this paper we focus on the in-plane
case. The line shape analysis for the perpendicular case can be
found in Ref. 38. In both cases the form of the susceptibility
χ ∝ D + iL describes the ferromagnetic resonance line shape
where each element of χ̂ is the sum of an antisymmetric and
symmetric Lorentz line shape. As we describe in the next
section, via the V h

SR term of the spin rectification effect, the
symmetry properties of the dynamic susceptibility influence
the symmetry of the electrically detected FMR which can be
controlled by tuning the relative electromagnetic phase ".

C. Spin rectification induced by the field torque

The field-torque spin rectification effect results in the
production of a dc voltage from the nonlinear coupling of
rf electric and magnetic fields. For example, it may follow
from the generalized Ohm’s law47,55

J = σE0 − σ)ρ

M2 (J · M)M + σRH J × M, (5)

where σ is the conductivity, )ρ is the resistivity change due
to AMR, and RH is the extraordinary Hall coefficient.

As shown in Fig. 2, we use two coordinate systems to
describe a long narrow strip under the rotating in-plane
magnetic field H. The sample coordinate system (̂x′,̂y,̂z′) is
fixed with the sample length along the z′ direction and the
sample width in the x ′ direction. The measurement coordinate
system (̂x,̂y,̂z) rotates with the H direction which is along the
ẑ axis. We define θH as the angle between the direction of
the strip and the in-plane applied static magnetic field i.e.,
between the z′ and z directions). In both coordinate systems,
the ŷ axis is along the normal of the sample plane. In the
case of a sample length much larger than the width, the rf
current j̃ = jz′e−iωt flows along the strip direction z′. In this
geometry the field due to the Hall effect will only be in the
transverse direction and will not generate a voltage along the
strip. Taking the time average of the electric field integrated
along the z′ direction, the photovoltage is found as11,12

V = )R

M0
〈Re(j̃ ) · Re(m̃x)〉 sin(2θH ), (6)

where )R is the resistance change due to the AMR effect and
the sin(2θH ) term is a result of the AMR effect which couples
J and M.

The susceptibility tensor given by Eqs. (2) and (4) can be
used to write m̃x in terms of the rf h field. Since M0 and H are
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FIG. 2. (Color online) Left panel (a) Coordinate system for an
in-plane dc H field applied along the z axis at an angle θH with
respect to the z′ axis, with a rf h field along the x ′ axis. (b) The
calculated photovoltage (PV) spectrum at θH = 45◦ and (c) the
calculated amplitude of the PV spectrum at FMR as a function of
θH according to Eq. (9). Right panel (d)–(f) are the same as (a)–(c),
respectively, but with a rf h field along the y axis, and calculations
are according to Eq. (10). In both cases, " is assumed to be zero for
simplicity.

both along the z axis, only the components of h perpendicular
to z will contribute to m. However, since the rf current flows
in the z′ direction, to calculate the rectified voltage, m̃x must
be transformed into the (x ′,y,z′) coordinate system by using
the rotation (̂x,̂y,̂z) = [cos(θH )̂x′ − sin(θH )̂z′ ,̂y, sin(θH )̂x′ +
cos(θH )̂z′], which introduces an additional θH dependence
into the photovoltage. We find that the photovoltage can be
written in terms of the symmetric and antisymmetric Lorentz
line shapes L and D as

V = )R

2M0
jz′ (ALL + ADD), (7)

where

AL = sin(2θH )[−Axxhx ′ cos(θH ) sin("x ′ )

−Axyhy cos("y) + Axxhz′ sin(θH ) sin("z′)],

AD = sin(2θH )[Axxhx ′ cos(θH ) cos("x ′)

−Axyhy sin("y) − Axxhz′ sin(θH ) cos("z′)], (8)

and "x ′ ,"y , and "z′ are the relative phases between electric
and magnetic fields in the x ′,y, and z′ directions, respectively.

The amplitudes of the Lorentz and dispersive line shape
contributions show a complex dependence on the relative
phases for the x ′,y, and z′ directions and in general both
line shapes will be present. However, depending on the
experimental conditions, this dependence may be simplified.
For instance, when hx ′ is the dominate driving field as shown

in Fig. 2(a), we may take hy = hz′ ≈ 0 and "x ′ = ", which
results in

V = − )R

2M0
jz′Axxhx ′ cos(θH ) sin(2θH )

×[L sin(") − D cos(")]. (9)

From Eq. (9) we see that the photovoltage line shape
changes from purely symmetric to purely antisymmetric in
90◦ intervals of ", being purely antisymmetric when " = n ×
180◦ and purely symmetric when " = (2n + 1) × 90◦,n = 0,
± 1, ± 2 . . . .

As shown in Figs. 2(b) and 2(c), the photovoltage in
Eq. (9) also shows symmetries depending on the static field
direction θH . Since H → −H corresponds to θH → θH +
180◦, V (H ) = −V (−H ). Furthermore, at θH = n × 90◦,n =
0, ± 1, ± 2, . . . the voltage will be zero.

Similarly when hy dominates as shown in Fig. 2(d), we take
hx ′ = hz′ ≈ 0 and "y = " which results in a voltage

V = − )R

2M0
jz′Axyhy sin(2θH )

×[L cos(") + D sin(")]. (10)

The symmetry properties are now such that the line shape is
purely symmetric when " = n × 180◦ and purely antisym-
metric when " = (2n + 1) × 90◦,n = 0, ± 1, ± 2 . . . . Also
the photovoltage determined by Eq. (10) is now symmetric
with respect to H under θH → θH + 180◦ so that V (H ) =
V (−H ) as shown in Fig. 2(e). Therefore, experimentally the
different symmetry of the FMR at H and −H can be used as
an indication of which component of the h field is dominant.

Both Eqs. (9) and (10) demonstrate that a change in
the relative electromagnetic phase is expected to result in a
change in the line shape of the electrically detected FMR.
It is worth noting that when the relative phase " = 0, the
line shape is purely antisymmetric for FMR driven by hx ′

and purely symmetric for FMR driven by hy as illustrated in
Figs. 2(b) and 2(e), respectively. In the general case when m̃x

is driven by multiple h components, Eq. (7) must be used in
combination with angular (θH ) dependent measurements in
order to distinguish different contributions.

We also note that the above theoretical line shape analysis in
the in-plane magnetic field case is consistent with our previous
line shape study38 in the perpendicular field case. In Ref. 38 we
have established spintronic Michelson interferometry which
enabled the demonstration of external control of the relative
phase ". By applying such a novel technique, the measured
response of the photovoltage line shape38,39 was found to
change its symmetry and polarity in 90◦ and 180◦ cycles of ",
respectively, in excellent agreement with our line shape theory.

D. The physics of !

It is clear therefore that for field torque induced spin
rectification, the relative phase " between the microwave
electric and magnetic fields plays the pivotal role in the FMR
line shape. Note that " is a material and frequency dependent
property which is related to the losses in the system.46,57,58

When a plane electromagnetic wave propagates through free
space the electric and magnetic fields are in phase and orthog-
onal to each other.56 However when the same electromagnetic
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wave travels through a dispersive medium where the wave
vector is complex, the imaginary contribution can create a
phase shift between electric and magnetic fields. The most
well known example is that of a plane electromagnetic wave
moving in a conductor46 where Faraday’s law gives a simple
relation between electric and magnetic fields ωµh = k × e.
Therefore the complex part of the wave vector k will induce
a phase shift between electric and magnetic fields. Although
the field will exponentially decay inside a conductor, it will
still penetrate a distance on the order of the skin depth, and
in a perfect conductor the conductivity, which produces an
imaginary dielectric constant, will result in a phase shift of
45◦ between the electric and magnetic fields.46

In a complex system such as an experimental set up
involving waveguides, coaxial cables, bonding wires, and
a sample holder, which are required for electrical FMR
detection, one cannot simply argue that Faraday’s law itself is
sufficient to explain the phase difference between the magnetic
and electric field components. One needs to solve Maxwell’s
equations in their entirety by including full electromagnetic
wave propagation with the relevant boundary conditions. The
presence of electrical leads for measurement of dc voltage
makes this problem very difficult. Nevertheless losses in the
system which can be characterized in a variety of ways, such
as through the wave impedance,57,58 will lead to a phase shift
between electric and magnetic fields which will influence the
FMR line shape.

Although the physics of " is in principle contained in
Maxwell’s equations, due to the lack of technical tools for
simultaneously and coherently probing both e and h fields, the
effect of the relative phase had often been ignored until the
recent development of spintronic Michelson interferometry.38

In the following we provide systematically measured data
showing the influence of the relative phase " on the line shape
of FMR which is driven by different h field components.

IV. EXPERIMENTAL LINE SHAPE MEASUREMENTS

A. h y dominant FMR

In order to use the hy field to drive FMR a first generation
spin dynamo was used where a Cu/Cr coplanar waveguide
(CPW) was fabricated beside a Py microstrip with dimension
300 µm × 20 µm × 50 nm on a SiO2/Si substrate as shown
in Fig. 3(a). A microwave current is directly injected into the
CPW and flows in the z′ direction inducing a current in the
Py strip also along the z′ axis. In this geometry the dominant
rf h field in the Py will be the Oersted field in the y direction
produced according to Ampère’s law. This field will induce
FMR precession with the same cone angle independent of the
in-plane orientation of the static field H.

The AMR resistance depends on the orientation of the
magnetization relative to the current and follows the relation
R(H ) = R(0) − )R sin2(θM ), where θM (not shown) is the
angle between the magnetization and the current direction.
For Py the AMR effect, which is responsible for the spin
rectification, is observed to produce a resistance change of
)R/R(0) ∼ 0.4%. When H is applied along the x ′ axis, that
is, the in-plane hard axis, the magnetization M tends to align
toward the static field H and the angle θM is determined

by sin(θM ) = H/HA for H < HA, where HA = Nx ′M0 is the
in-plane shape anisotropy field. The measured data (symbols)
shown in Fig. 3(c) is fit (solid curve) according to R(H ) =
R(0) − )R sin2(θM ) with R(0) = 112.66-, )R = 0.47-,
µ0HA = 4.0 mT, and Nx ′ = 0.004.

Figure 3(d) shows that the line shape at θH = 120◦

and ω/2π = 5 GHz is almost purely dispersive, in-
dicating that at this frequency " ∼ 90◦ according to
Eq. (10). The θH dependence of Hr is shown in
Fig. 3(e) and can be well fit by the function ω =
γ
√

[|Hr | + HA cos(2θH )][|Hr | + M0 − HA(1 + sin2(θH )] by

FIG. 3. (Color online) (a) Cross-sectional view of a schematic
diagram showing the first generation spin dynamo where the Py
strip is located beside the CPW. The dominate magnetic field in
the Py is the Oersted field (indicated by circulating red arrows)
in the y direction due to the current in the CPW. (b) Top view
micrograph of the device showing the microwave current flowing
in the shorted CPW and the direction of microwave h field on the
Py strip. S and G denote the signal and ground line of the CPW,
respectively. The Py microstrip is connected by two electrical leads
in triangular shapes. (c) Magnetoresistance at θH = 90◦. AMR is seen
to be ∼0.4%. Arrows denote the anisotropic field µ0HA = 4.0 mT.
Open circles are experimental data and solid curve is the fitting result
using R(0) = 112.66-,)R = 0.47-,HA = 4.0 mT. (d) Electrically
detected FMR at θH = 120◦ and ω/2π = 5 GHz showing an
almost purely dispersive line shape (" + 90◦). Fit is according to
Eq. (10) with µ0)H = 3.6 mT, µ0Hr = 32.2 mT. (e) Oscillating Hr

dependence on the static field direction θH with amplitude 2HA. (f)
Dependence of FMR frequency on the resonant field Hr at θH = 45◦.
Open circles are experimental data and the solid line is the fit
according to ω = γ

√
|Hr |(|Hr | + M0).
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taking the shape anisotropy field HA along the x ′ axis
into account.59 As expected, the amplitude of these oscil-
lations is µ0HA = 4.0 mT. The frequency dependence of
Hr at θH = 45◦ is shown in Fig. 3(f) and is fit using
ω = γ

√
|Hr |(|Hr | + M0) with γ /2π = 29.0µ0 GHz/T and

µ0M0 = 1.0 T.
By systematically measuring the line shape as a function

of the microwave frequency, we observe the interesting results
of Fig. 4. The FMR line shape is observed to change from
almost purely dispersive at ω/2π = 5 GHz to almost purely
symmetric at ω/2π = 5.56 GHz. As discussed before, the line
shape may be affected by the h orientation, that is, different
h vector components will affect the line shape differently.
Hence, if changing the microwave frequency changes the

FIG. 4. (Color online) Data shown for a first generation spin
dynamo. FMR spectra at θH = 120◦ for several frequencies from 5.0
to 5.56 GHz with corresponding Lorentz and dispersive amplitudes
as a function of θH . Circles and squares indicate the Lorentz and
dispersive amplitudes of Eq. (10), respectively, and show a sin(2θH )
dependence as expected. Solid and dashed curves are sin(2θH )
functions.

dominant driving field, the line shape may change. To rule
out such a possibility an angular dependent experiment was
performed to measure the line shape at different θH for each
frequency ω. The results are plotted on the right panel of
Fig. 4 which shows the sinusoidal curves for the Lorentz
AL and dispersive AD amplitudes (dashed and solid curves,
respectively) as a function of the static field angle θH . Both
the Lorentz and dispersive amplitudes are found to follow
a sin(2θH ) dependence on the field angle in agreement with
Eq. (10) indicating that the magnetization precession is indeed
dominantly driven by the hy field. Therefore the line shape
change indicates that the relative phase " is frequency
dependent. As shown in Fig. 5(a), at ω/2π = 5 GHz the
amplitude of AD is approximately one order of magnitude
larger than AL, while at ω/2π = 5.56 GHz AD is one order of
magnitude less than AL. Such a large change in AL/AD shows
that in a microwave frequency range as narrow as 0.6 GHz,
the relative phase " can change by 90◦. Figure 5(b) shows
" determined by using Eq. (10), which smoothly changes
with microwave frequency except for a feature near 5.18 GHz,
which is possibly caused by a resonant waveguide mode at this
frequency.

Such a large change of " within a very narrow range
of microwave frequency indicates the complexity of wave
physics. Note that microwaves at ∼5 GHz have wavelengths
on the order of a few centimeters which are much larger
than the submillimeter sample dimensions. Consequently, the
microwave propagation depends strongly on the boundary
conditions of Maxwell’s equations which physically include
the bonding wire, chip carrier, as well as the sample holder.
This is similar to the microwave propagation in a waveguide
where the field distribution, that is, the waveguide modes,
are known to depend strongly on boundary conditions and
frequency.60 Despite the complex wave properties, the key
message of our results is clear and consistent with the
consideration of the physics of the relative phase: it shows

FIG. 5. (Color online) (a) The AD/AL ratio as a function of ω/2π
showing the line shape change from dispersive at 5 GHz (left inset)
to Lorentz at 5.6 GHz (right inset) with a step size of 0.01 GHz. (b)
" dependence on ω/2π over same frequency interval showing the
same dependence as AD/AL.
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that in order to properly analyze the FMR line shape, " has to
be determined for each frequency independently.

B. hx′ dominant FMR

In order to drive the FMR using the rf field in the x ′

direction, hx ′ , a second generation spin dynamo, was fabricated
with the Py strip underneath the CPW as shown in Fig. 6. In
this case the 300 µm × 7 µm × 100 nm Py strip is underneath

FIG. 6. (Color online) (a) Cross-sectional view of a schematic
diagram showing the second generation spin dynamo where the
Py strip is located underneath the CPW. In this case the dominant
magnetic field in the Py is the Oersted field (indicated by circulating
red arrows) in the x ′ direction due to the field in the CPW.
(b) Top view micrograph of the Py microstrip underneath the shorted
CPW (S and G denote the signal and ground line of the CPW,
respectively). The Py microstrip is connected by two electrical leads
in triangular shapes. (c) Magnetoresistance at θH = 90◦. AMR is seen
to be ∼0.5%. Arrows denote the anisotropic field µ0HA = 8.0 mT.
Open circles are experimental data and solid curve is the fitting result
using R(0) = 121.53- and )R = 0.66-. (d) Electrically detected
FMR at θH = 120◦ and ω/2π = 8 GHz showing a nearly symmetric
Lorentz line shape. Fit is according to Eq. (10) with µ0)H = 6.0 mT,
µ0Hr = 76.5 mT, and " = −102◦. (e) Oscillating Hr dependence on
the static field direction θH with amplitude 2HA. (f) Dependence of
FMR frequency on the resonant field Hr at θH = 45◦. Solid circles
show the FMR frequency dependence while the solid triangles are
the standing SWR frequency dependence. The solid line is a fit to
ω = γ

√
|Hr |(|Hr | + M0).

the Cu/Cr coplanar waveguide which is fabricated on a SiO2/Si
substrate. Again a microwave current is directly injected into
the CPW and induces a current in the z′ direction in the Py
strip. The dominant rf field in the Py is still the Oersted field,
but due to the new geometry it is in the x ′ direction.

Due to the smaller width and larger thickness, the demagne-
tization factor Nx ′ = 0.008 is twice that in the first generation
sample. This corresponds to µ0HA = 8.0 mT as indicated by
the broader AMR curve in Fig. 6(c). This value is further
confirmed by the Hr vs θH plot shown in Fig. 6(e). Figure 6(f)
shows the frequency dependence of Hr for FMR (circles) and
for the first perpendicular standing spin wave resonance (SWR)
(triangles) measured at θH = 45◦. The frequency dependence
of Hr follows ω = γ

√
(|Hr | + Hex)(|Hr | + M0 + Hex) where

Hex is the exchange field. In Fig. 6(f) the standing SWR
is fit using γ /2π = 29.0µ0 GHz/T, µ0Hex = 30 mT, and
µ0M0 = 1.0 T.

Similar to the results presented in the previous section, the
line shape of FMR measured on the second generation sample
is also found to be frequency dependent (not shown). Hence,
" is found to be nonzero in the general case. For example, at
ω/2π = 8 GHz, the line shape is found to be nearly symmetric,
as shown in Fig. 6(d) for the FMR measured at θH = 120◦,
which indicates " is close to −90◦ at this frequency. Note
that our result is in direct contrast with the recent study of
Refs. 19 and 20, where experiments were measured in the
same configuration and where it was suggested that " = 0◦

for all samples at all frequencies.
While the line shape and hence the relative phase is found

to be frequency dependent, " is expected to be independent
of the static field direction θH . This is confirmed in Fig. 7(a)
which shows the line shape measured at several values of θH

in 10◦ increments. The data can be fit well using Eq. (9) with
a constant " = −102◦ for all θH . It confirms that the FMR is
driven by a single h component, in this case the hx ′ field, and
that " does not depend on θH . In Fig. 7(b) the θH dependence
of AL and AD (solid/circles and dashed/squares, respectively)
is shown. The circles and squares are experimental data
while the solid and dashed lines are fitting results using a
sin(2θH ) cos(θH ) function according to Eq. (9). It provides
further proof that the hx ′ field is responsible for driving the
FMR in this sample.

While the results from both the first and second genera-
tion spin dynamos show consistently that " is sample and
frequency dependent, the second generation spin dynamos
exhibit special features in comparison with the first generation
spin dynamos: the reduced separation between the Py strip
and CPW enhances the hx ′ field so that the linewidth )H is
enhanced by nonlinear magnetization damping,27,28,61 which
depends on the cone angle θ of the precession via the relation
θ ∼ hx ′ cos(θH )/)H (θ ). As shown in Fig. 7(c), )H is found
to oscillate between 4.0 and 9.0 mT as θH changes. At
θH = 0◦, θ ∼ hx ′/)H and the cone angle is at its largest
(about 4◦). As θH increases from 0◦ and moves toward 90◦, θ
decreases so that the nonlinear damping contribution to )H
decreases. Using the cone angle calculated from Fig. 7(c), we
plot in Fig. 7(d) )H (θ ) as a function of the cone angle. It
shows that )H has a quadratic dependence on the precession
cone angle, which is in agreement with our previous study
in the perpendicular H-field configuration.27,28 We note that
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FIG. 7. (Color online) Data shown for a second generation spin
dynamo. (a) FMR line shape at fixed frequency, ω/2π = 8 GHz
for several θH from 90◦ to 180◦ in steps of 10◦. Open circles are
experimental data and solid lines are fits using Eq. (9) with " =
−102◦ fixed. (b) AD and AL shown in squares and circles respectively
as a function of θH . Fitting curves are sin(2θH ) cos(θH ) functions. (c)
)H for several values of θH showing an oscillation with θH . (d)
Nonlinear dependence of linewidth )H on the cone angle. Dashed
line is the expected linear Gilbert damping whereas the data follows
the quadratic dependence shown by the solid line.

for cone angles above only a few degrees, the nonlinear
damping already dominates the contribution to )H . Hence,
angular-dependent oscillations in the FMR linewidth provide
a convenient way for verifying whether nonlinear effects may
influence the electrically detected FMR.

C. Arbitrary h vector

Next we consider the most general case which is described
by Eq. (7) where all components of h may contribute to
the FMR line shape. The sample used here is a single Py
strip where a waveguide with a horn antennae provided both
the electric and magnetic driving fields. The sample chip is
mounted near the center, at the end of a rectangular waveguide
and the Py strip is directed along the short axis of the
waveguide.

In a waveguide, the electromagnetic fields are well known
and in general three components, hx ′ ,hy , and hz′ exist.60

Figure 8(a) shows both the FMR and perpendicular standing
SWR measured at θH = 45◦. Indeed both the amplitude and
the line shape are different for the two FMR peaks located
at H and −H , which indicates the existence of multiple h
field components and Eqs. (7) and (8) are needed to separate
them.

FIG. 8. (Color online) Data shown for a single Py strip with
precession driven by horn antennae field. The strip dimensions are
3 mm × 50 µm × 45 nm. (a) Spectra showing distinct resonances
due to FMR and SWR at ω/2π = 12 GHz. (b) Separated Lorentz and
dispersive line shapes (circles and squares, respectively) as a function
of θH from a fit to Eq. (7) at ω/2π = 12 GHz and (c) ω/2π = 11.2
GHz.

This separation is done using the Lorentz and dispersive
amplitudes determined from a fit to the FMR which are plotted
as a function of θH in Figs. 8(b) and 8(c) for ω/2π = 12 and
11.2 GHz, respectively. A fit using Eq. (8) allows a separation
of the contributions from each of the hx ′ ,hy , and hz′ fields based
on the their different contributions to the θH dependence of the
line shape.

The results of the fit have been tabulated in Table II where
γ /2π = 28.0µ0 GHz/T, µ0M0 = 0.97 T and µ0Hr = 152 mT
were used. The amplitudes of the different h field components
have been normalized with respect to the hx ′ component. At
both 11.2 and 12 GHz the hx ′ field is much larger than hy or

TABLE II. Angular separation of h field components for 12 and
11.2 GHz.

12 GHz 11.2 GHz

|hx′ | 1 1
|hy | 0.02 ± 0.10 0.14 ± 0.07
|hz′ | 0.19 ± 0.06 0.37 ± 0.10
"x′ −23 ± 2◦ 50 ± 2◦

"y 40 ± 24◦ −30 ± 18◦

"z′ −33 ± 7◦ 82 ± 5◦
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hz′ , which is expected based on the wave propagation in a horn
antennae.

We note that in this case with the device as long as 3 mm,
the phase angle might change with position along the length
of the device to an extent where a spread of angles should
be taken into consideration. Nevertheless, even by using the
crudest approximation to fit the data as if there is a single phase
angle between each pair of e and h components, the relative
phase for each component is seen to change significantly from
11.2 to 12 GHz. Therefore even in the case of a complex line
shape produced by multiple h field components, by separating
the individual contributions of the rf magnetic field via angular
dependence measurements, the relative phase " of each field
component is found to be frequency dependent.

D. Additional influences on !

In addition to the frequency and sample dependencies, the
relative phase"may also depend on the lead configuration and
wiring conditions of a particular device, as we have mentioned
in Sec. IV A. Here we address such additional influences by
using the first generation spin dynamos11 shown in the inset of
Fig. 9(a). Two spin dynamos with the same lateral dimensions
but different Py thickness d are studied. Each spin dynamo
involves two identical Py strips denoted by S1 and S2, one in
each center of the G-S strips of the CPW, which are placed
symmetrically with respect to the S strip. The current and rf
h field are induced in the Py via a microwave current directly
injected into the CPW. Similar to the sample discussed in
Sec. IV A, hy is the dominant field which drives the FMR.

FIG. 9. (Color online) (a) FMR observed in a first generation spin
dynamo. Inset shows the device structure with two Py strips labeled
S1 and S2. (b) FMR for Py thickness d = 100 nm for both S1 and
S2. In S1 " = −11◦, while in S2 the line shape is slightly more
asymmetric and " = 22◦. (c) For d = 60 nm the relative phase is
" = −29◦ for S1 and " = 27◦ for S2.

As shown in Fig. 9(a), FMR measured at ω/2π = 5 GHz
on the sample S1 with d = 100 nm shows a nearly symmetric
Lorentz line shape and a field symmetry of V (H ) = V (−H ).
From the FMR line shape fitting, " = −11◦ is found. Inter-
estingly, as shown in Fig. 9(b), the FMR of the sample S2 of
the same spin dynamo measured under the same experimental
conditions shows a different line shape from which a different
" = 22◦ is found. We can further compare " measured on
the other spin dynamo with a different Py thickness of d = 60
nm, also at ω/2π = 5 GHz. Here for S1, " = −29◦ while
for S2, " = 27◦. Again, the relative phase is found to be
different for S1 and S2. These results demonstrate that due
to additional influences such as different lead configuration
and wiring conditions, even for samples with the same lateral
dimensions " in each device is not necessarily the same.
It demonstrates clearly that the relative phase " cannot be
simply determined by analyzing the FMR line shape measured
on a reference device. We note that our previous experiment
performed using spintronic interferometry38 also manifested
similar sensitivity of the relative phase to the lead configuration
and wiring conditions of a particular device.

E. Closing remarks

The experimental data presented above demonstrate the
importance of the difference in the phase between the magnetic
and electric field components and the role of the orientation
of the rf magnetic field with respect to the film surface.
Interpretation of the data depends on such a phase difference
", which is found to be sample and frequency dependent
and nonzero in general. This nonzero phase results in both
symmetric and antisymmetric Lorentz line shapes in the FMR
detected via field-torque induced spin rectification. The "
dependence of the line shape symmetry changes based on
which component of the rf h field is responsible for driving
the FMR precession. For instance a purely antisymmetric line
shape could correspond to " = 0◦ if the FMR is driven by
hx ′ , or to " = 90◦ if the FMR is driven by hy , therefore the
line shape itself cannot be used to determine " directly. To
separate the h field components an angular (θH ) dependent
measurement is necessary, which allows both h as well as
the phase to be determined. Using such a measurement "
has been observed to change from 0◦ to 90◦ in a narrow
frequency range (0.6 GHz) resulting in a change from an
antisymmetric to symmetric line shape demonstrating the
large effect the relative phase has on the FMR line shape.
Furthermore, " is not identical even in samples with the
same geometric size. Therefore in our opinion, it is not a
reliable approach to determine the pivotal relative phase "
from different reference samples, as was adopted in some of the
most recent studies.19,20,24 Instead, to quantitatively interpret
the measured microwave photovoltage induced by FMR, "
should be calibrated for each sample, at each frequency, and
for each measurement cycle.

V. Summary

We have provided a brief review of the rapidly growing
literature on electrical detection of spin dynamics in micro-
and nanodevices. We have focused on the important issue of
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the relation and distinction between different mechanisms that
give rise to the rf photovoltage via FMR in spintronic devices.
Such a photovoltage has in general two different types of
origins: spin pumping (VSP) and spin rectification (VSR), where
the spin rectification may be induced by either rf h field or
spin torque, which give rise to the photovoltages V h

SR and V s
SR,

respectively.
We have shown that in order to distinguish different

mechanisms which enable the electrical detection of FMR via
microwave photovoltages, it is essential to properly analyze
the FMR line shape. While spin pumping is an incoherent
and interfacial effect which always gives rise to a symmetric
FMR line shape in VSP, spin rectification is not restricted at
the interface and is caused by coherent coupling between rf
current and magnetization. Hence, the FMR line shape of VSR
is intriguingly phase dependent and may have both symmetric
and antisymmetric components. We have found theoretically
that for rf h-field torque induced spin rectification, the FMR
line shape of V h

SR depends strongly on the relative phase "
between the rf e and h fields used to drive the current and
magnetization, respectively. Analytical formulas have been
established to analyze the FMR line shape of V h

SR, and our
approach based on the dynamic susceptibility can be further
generalized to analyze the FMR line shape of spin torque
induced photovoltage V s

SR.
Based on a systematic study of the measured photovoltage,

the FMR line shape of V h
SR is observed to depend strongly on

the microwave frequency, driving field configuration, sample
structure, and even wiring conditions. Therefore we have
presented strong evidence that within the standard microwave
circuit geometries used to build spintronic devices, it is
common for nonzero relative phase" to exist at the spin device
location. This could cause a skew in the field-swept FMR line
shape which, when this phase angle is unknown, can lead to
unintentional quantitative errors when extracting individual
mechanistic contributions to the photovoltage by fitting the
line shapes. Our results imply that for electrically detected
FMR which involves both spin Hall and spin rectification
effects, the pivotal relative phase must be either directly
calibrated or precisely controlled in order to properly analyze
the FMR line shape and quantify the spin Hall angle. For
such studies, we strongly suggest not to use the unreliable
approach of determining" from reference samples, but instead
recommend applying spintronic Michelson interferometry38

which enables external control of the relative phase.
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