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1 Introduction

Ferromagnetic resonance (FMR) was first discovered in the early 20th century when

certain ferromagnetic films were found to strongly absorb microwave frequency elec-

tromagnetic radiation [1]. This spectroscopic technique allows researchers to probe

the spin properties (both locally and macroscopically) of a material and has become

a standard tool in the research of spin dynamics making it invaluable to the field of

spintronics. Recently the electrical detection of FMR has gained popularity amongst

the spintronics community and has proven to be a powerful experimental tool [2].

However to properly characterize the electrically detected ferromagnetic resonance

both the FMR voltage and FMR line shape must be determined. The later requires

knowledge of the relative electromagnetic phase Φ, which has proven difficult to mea-

sure since the introduction of Maxwell’s theory. This lack of experimental experience

with Φ has led to misconceptions regarding its importance in FMR experiments,

which have recently begun to surface in the literature [7]. Not only is the relative

electromagnetic phase vital to properly performing FMR experiments, but Φ also

provides a coherent link between electrodynamics and magnetodynamics and as such

has a broad physical relevance, motivating a clear understanding. However, in order

to measure this relative phase one must probe both the electric and magnetic pro-

cesses at the same time in the same device, and until recently this was not possible.

However with the advent of spintronic Michelson interferometry this ability has been

realized. By combining this novel experimental technique with a clear theoretical

understanding we propose to systematically demonstrate the Φ dependence of the

FMR line shape and to provide a foundation with which to properly understand the

influence of the relative electromagnetic phase.
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2 Motivation - Spin Hall Effect

Driving the clear understanding of the FMR line shape is the important role

FMR spectroscopy has come to play in the rapidly developing field of spintronics, in

particular in the study of the spin Hall effect (SHE). The spin Hall effect, theoretically

described in 1971 by D’yakonov and Perel [23, 24], but only observed in 2004 [25, 26]

has garnered great interest amongst the condensed matter community due to its

ability to convert charge currents into spin currents and vice versa, suggesting great

potential in the field of spintronics. The SHE in a conductor is due to the spin

dependent scattering of charge carriers originating from the spin-orbit interaction,

which causes spin-up and spin-down electrons to flow in opposite directions resulting

in a net spin accumulation [7]. If the conductor has equal up and down spin densities,

the equal and opposite Hall charge currents will cancel, leaving only a pure spin

current [8]. Alternatively spin pumping can drive pure spin currents. As described

by Tserkovnyak et. al. [9, 10] magnetization precession at a ferromagnetic-normal

metal (F|N) interface can act as a spin pump which transfers a spin current from the

ferromagnet into the normal metal. Such a spin current can be converted back into a

charge current through the inverse spin Hall effect via the spin-orbit interaction and

the effectiveness of this spin-charge conversion can be characterized by the spin Hall

angle γ, which is the ratio of spin Hall and charge conductivities.

An accurate determination of γ has broad applications to spintronics, since the

conversion between spin and charge currents determined by γ is the key to developing

spin driven electronic, or spintronic devices. By converting the spin pumping current

into a charge current through the SHE a spin battery could be enabled and could

be used to power electronic devices [11, 12, 13]. Such spin powered devices are

characterized by their low power consumption and small size and as such are the

future of electronics. However experimentally determining γ has proven controversial.

For example, work by Seki et. al. found a large spin Hall angle in Au of γ = 0.113

suggesting the giant SHE [14] , however Mihajlovic et. al. found an upper limit for γ
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in Au under similar conditions to be 0.023 [15]. Similarly in Pt the spin Hall angle was

found to be 0.08 and 0.0037 by Ando et. al. [16] and Kimura et. al. [17] respectively.

Clearly this indicates a lack of understanding in characterizing the SHE, which is

largely due to limitations in measurement methodology. In particular, in such spin

pumping experiments there exist other voltages, such as a voltage produced by the

anisotropic magnetoresistance (AMR), in addition to the spin Hall voltage and the

proposed measurement schemes must account for this [18, 19]. The discrepancies

in the measured spin Hall angles are likely due to improperly distinguishing these

different voltage producing effects.

In configurations where the AMR and SHE dominate, the voltages are typically

distinguished based on the symmetry or antisymmetry of the FMR lineshape [7].

However since the AMR voltage depends on the relative electromagnetic phase, while

the spin Hall voltage does not, proper characterization of the line shape symmetry

depends on the value of Φ, which from basic electromagnetism is known to be ma-

terial and frequency dependent and will thus be different for each apparatus. This

suggests that the spin Hall angle cannot be properly determined from the FMR line

shape without characterizing the relative electromagnetic phase first. In some recent

experiments both effects have been included in the data analysis [7], however the

AMR effect has been added only as a convenient way of explaining the observed anti-

symmetric line shape component of the FMR (since the SHE is predicted to produce

a purely symmetric line shape) and the general AMR effect which produces both a

symmetric and antisymmetric line shape has been ignored. Thus a clear picture of the

Φ influence on spintronic measurements is still lacking and is necessary to confidently

determine γ. Through the proposed work such a picture will be painted in three steps:

by showing through a model calculation that there is a relative phase shift in a thin

film multilayer system, by theoretically describing the FMR line shape and showing

its phase dependence and experimentally by measuring Φ for various samples through

the use of electrically detected FMR and spintronic Michelson interferometry.
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3 Theory

3.1 Ferromagnetic Resonance

The source of ferromagnetism is the spontaneous magnetic moment possessed

by certain materials below the Curie temperature, TC . This spin polarization arises

from the exchange interaction which makes it energetically favorable for the spins of

neighboring atoms to align [3, 4] resulting in a locally non-zero magnetic moment per

volume, or magnetization. The application of an external dc magnetic field can be

used to enhance this effect and globally align the magnetization of a sample with the

field direction and by applying an additional rf field the magnetization can be driven

to precess around this equilibrium position. This precession is phenomenologically

described by the semi classical Landau Lifshitz Gilbert (LLG) equation,

dM

dt
= −γ(M×Heff )−

αGγ

|M|
[M× (M×Heff )] (1)

where the last term in Eq. 1 is the phenomenological Gilbert damping term with

αG being the Gilbert damping parameter and γ is the electron gyromagnetic ratio.

Here M is the net sample magnetization, defined as the magnetic moment per unit

volume, and Heff includes all the magnetic fields seen by the electron such as fields

from the exchange interaction, dipole-dipole interaction, anisotropy interaction and

the externally applied field, which itself will contain a dc and rf term [5]. The Landau

Lifshitz Gilbert equation attributes the cause of the magnetization motion to a torque

applied by the magnetic field in analogy with the torque exerted by gravity on a

precessing top [5, 6] as shown in Fig. 1.

To solve the LLG equation we define M = M0 + me−iωt and Heff = Hin
0 + hine−iωt

where M0 is the dc magnetization (resulting mainly from the dc applied magnetic

field), me−iωt is the rf magnetization (driven mainly be the applied microwave field),

Hin
0 is the internal dc magnetic field and hine−iωt is the internal rf field. These

internal fields are related to the externally applied field H = H0 + he−iωt through

the boundary conditions of Maxwell’s equations. Since the damping is small terms

5



Figure 1: a) Precession of the magnetization M due to the magnetic field H. b)

Precession of a spinning top due to the torque from gravity.

higher than first order in αG can be ignored and using the linear approximation terms

higher than the first power in hin and m are ignored. By using these approximations

along with the boundary conditions of Maxwell’s equations the solution of the LLG

equation yields the Polder susceptibility tensor, χ̂ which relates m and h [22]

m = χ̂h (2)

χ̂ =


χxx iχxy 0

−iχxy χyy 0

0 0 0

 (3)

The elements of χ̂ are given by

χxx =
ωrωM + ω2

M

ωr(ωr + ωM)− ω2
χxy =

ωωM
ωr(ωr + ωM)− ω2

χyy =
ωrωM

ωr(ωr + ωM)− ω2
(4)

with ω0 = γH0, ωr = ω0− iαGω and ωM=γM0. This solution becomes resonant in the

microwave frequency range, resulting in the effect known as ferromagnetic resonance.
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3.2 Spin Rectification

Originally ferromagnetic resonance experiments were performed on bulk magnetic

samples using resonance cavities where a sample would be placed in the cavity and the

microwave intensity would be measured as a function of the applied magnetic field [1].

At resonance a strong absorption occurs in the sample causing a sharp decrease in the

measured intensity, allowing a determination of the resonance field. This technique

works remarkably well for bulk materials, and even for ferromagnetic thin films, but

recently the improvement of fabrication techniques has enabled the production of thin

film microstructures with dimensions small enough (on the order of 10 - 100 µm) that

their effect on the intensity in the comparatively large cavity is negligible, requiring a

new method of FMR detection. Fortunately the improvements in thin film fabrication

have been complemented by the development of planar waveguide devices which allow

precise delivery of the microwave field enabling a solution to the FMR problem by

electrical detection. Such an electrical detection technique directly probes the sample

properties by detecting a voltage generated via the spin rectification effect, which

produces a dc voltage through the non linear coupling of rf electric and magnetic

fields. It is this so called photovoltage which replaces the intensity measurement and

whose line shape is of interest. This voltage production follows the generalized Ohm’s

law

J = σE0 −
σ∆ρ

M2 (J ·M)M + σRHJ×M (5)

Here the first term describes the normal Ohm’s law where the current J is linearly

related to the electric field E0 through the conductivity σ. The last two terms repre-

sent non linear corrections to Ohm’s law, where the second term describes anisotropic

magnetoresistance (AMR), and the third describes the anomalous Hall effect. ∆ρ is

the resistivity change corresponding to the AMR effect, and RH is the anomalous

Hall coefficient.

7



Figure 2: Anisotropic magnetoresistance effect, where the largest resistance is ob-

served when the current and magnetization are parallel, and the smallest resistance

occurs when they are perpendicular

Rewriting this equation as the sum of two fields we have

J = σ(E0 + E1)

E1 = −∆ρ

M2 (J ·M)M +RHJ×M (6)

If E0 is an rf field it will time average to zero, but the higher order E1 will in

general have a non zero time average resulting in the so called rectified voltage. A

static magnetic field, H0 is used to create a static magnetization, M0 and an applied

microwave field ht = (htx, hty, htz) = (hxe
−i(ωt+Φx), hye

−i(ωt+Φy), hze
−i(ωt+Φz)) will be

used to induce oscillations about this equilibrium. Here Φj denotes the phase shift

between the electric and magnetic fields in the jth direction. To first order the applied

magnetic field will result in a time dependent magnetization which is perpendicular

to the static field direction, mt = Re(m̃t), where m̃t is the magnetization which

comes from solving the Landau Lifshitz Gilbert equation. This results in a total

magnetization M = M0 + mt. Note that m is time dependent through its relation

(through the LLG equation) to the time dependent microwave magnetic field, and

as a result mt is also time dependent although we do not explicitly include this

dependence.
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Using the magnetization and feld expressions in Eq. 6, we find the microwave

field as the time average of E1

EMW = 〈E1〉 =
−∆ρ

M2
0

〈(
J ·mt

)
M0 + (J ·M0) mt

〉
+RH

〈
J×mt

〉
(7)

Eq. 7 gives the general microwave field expression from which the photovoltage and

its line shape can be determined.

3.2.1 In Plane H Field

In the case of a thin film microstructure where the sample thickness is much

less than the length and width, effectively resulting in a 2D plane, it is useful to

define two field configurations, namely in plane and out of plane, which we will use

to excite FMR in our experiments. The line shape for each of these configurations

Figure 3: The two field configurations for a thin ferromagnetic film. Here H0 is the

externally applied dc magnetic field, φH is the in plane field angle and θH is the

perpendicular field angle.

can be determined from Eq. 7. In the case of an in plane field we consider the two

coordinate systems in Fig. 4. Here the dc field and resulting static magnetization are

denoted by H0 and M0 respectively. The z axis is along the field direction while the

z′ axis is along the current direction. The two coordinate systems are related through

the transformation
x̂

ŷ

ẑ

 =


cos(φH) 0 −sin(φH)

0 1 0

sin(φH) 0 cos(φH)




x̂′

ŷ′

ẑ′

 (8)
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Figure 4: Coordinate systems for in plane magnetic field.

Using this field configuration we have mt = (mt
x, mt

y, 0) and due to the strip

geometry the current flows along the z′ direction and is given by J = j′zcos(ωt)ẑ′.

Using these expressions in Eq. 7, and transforming mt to the primed coordinate

system the time averaged microwave electric field is given by

EMW = −∆ρ

M2
0

〈
−M0jz′cos(ωt)m

t
xsin(φH)

[
sin(φH)x̂′ + cos(φH)ẑ′

]〉
−∆ρ

M2
0

〈
M0jz′cos(ωt)cos(φH)

[
mt
xcos(φH)x̂′ +mt

yŷ
′ −mt

xsin(φH)ẑ′
]〉

+RH

〈
−jz′cos(ωt)mt

yx̂
′ + jz′cos(ωt)m

t
xcos(φH)ŷ′

〉
(9)

To find the voltage in the ferromagnetic strip we then simply integrate the field along

the length of the strip.

V =

∫ L

0

EMW · dz′ = LEMW · ẑ′

V =
∆R

M0

〈
Iz′cos(ωt)m

t
x

〉
sin(2φH) (10)

Here we have used Iz′ = Ajz′ and ∆R = ∆ρL
A

where A is the cross sectional area.

Now returning to the solution of the LLG equation (Eq. 3), we know that mt
x is
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related to the applied microwave field, mt
x = Re(|χxx|e−iΘhtx + i |χxy|e−iΘhty). Where

Θ is the spin resonance phase which changes from 180◦ (driving force out of phase

with precession) to 0◦ (driving force in phase) around resonance, going through 90◦ at

resonance. Combining this relationship with the microwave magnetic field expression

and Eq. 10 the in plane voltage is given by

V =
∆R

M0

Iz′sin(2φH) [|χxx|hx′cos(φH)cos(Φx′ + Θ)− |χxx|hz′cos(Φz′ + Θ)sin(θH)

−|χxy|hy′sin(Φy′ + Θ)](11)

In the appropriate experimental conditions, the dominant contribution to the

driving microwave field is the hx′ field and we may take hy′ → 0 and hz′ → 0 which

leaves

V =
∆R

M0

Iz′sin(2φH)|χxx|hx′cos(φH)cos(Φx′ + Θ) (12)

3.2.2 Out of Plane H Field

For an out of plane field we use the two coordinate systems shown in Fig. 5 where

the two coordinate systems are related by
x̂

ŷ

ẑ

 =


1 0 0

0 cos(φH) −sin(φH)

0 sin(φH) cos(φH)




x̂′

ŷ′

ẑ′

 (13)

In this case M0 = (0, M0, 0) and mt = (mt
x, 0, mt

z) and again J = jz′cos(ωt)ẑ′.

Following through with the same approach as the in plane case using Eq. 7 the

voltage is given by

V = −∆R

M0

Iz′sin(2θH) [|χxy|hx′sin(θH)sin(Φx′ + Θ)− |χyy|hy′sin(θH)cos(Φy′ + Θ)](14)

Here the dominant contribution will be due to hx′ and taking hy′ → 0 the voltage

expression becomes

V = −∆R

M0

Iz′sin(2θH)|χxy|hx′sin(θH)sin(Φx′ + Θ) (15)
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Figure 5: Coordinate systems for out of plane magnetic field.

Eq. 12 and Eq. 15 give the expressions we will use to fit the in plane and out

of plane FMR line shapes respectively. We see that in the in plane configuration

the photovoltage is due to mt
x driven by htx′cos(φH) whereas in the perpendicular

configuration the photovoltage is due to mt
z driven by htx′ . A feature common to

both expressions is that at certain points of high symmetry there will be no voltage

production. For both the in plane and perpendicular configurations this occurs at

φH , θH = n π
2

n = 0, 1, 2, ... . When exciting FMR we will have to avoid these points.

4 Experimental Method

4.1 Spintronic Michelson Interferometry

As mentioned previously the difficulties associated with the direct measurement

of the relative electromagnetic phase have long prohibited experimentally probing

Φ. However the novel technique of spintronic Michelson interferometry allows such

a measurement by transforming the well known Michelson interferometry technique

into a powerful phase resolved spintronic probe. This technique has the ability to
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coherently measure both the electro and magneto dynamic processes at the same

time, in the same ferromagnetic sample, and it is this capability which can be used

to probe the relative electromagnetic phase Φ.

Figure 6: Classical Michelson Interferometer. a) The two electric fields and their

phase shift Ψ which results in the interference pattern in b).

Figure 7: Spintronic Michelson Interferometer. a) The photovoltage signal measured

as a function of Φ which is produced by the coupling of the fields shown in b). [20]

As shown in Fig. 6, classical Michelson interfometry, which was developed from

the Michelson-Morley experiment [28] uses a path length difference between waves

to generate an interference pattern which can be used to determine the phase shift

Ψ between two electric fields. In contrast spintronic Michelson interferometry as
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shown in Fig. 7 controls the relative electromagnetic phase between the electric and

magnetic fields in order to probe the material induced phase shift Φ between electric

and magnetic fields at the permalloy (Ni80Fe20, Py) sensor. An Agilent E8257D

microwave generator is used to provide a 0.2 - 20 GHz signal which is separated

into two paths by an rf power splitter. One path travels through a phase shifter

and is directly injected into the permalloy microstrip sensor, while the other path

is shone on the sensor from a horn antennae. The magnetic field from the horn

drives magnetization precession in the strip while the directly injected electric field

produces a current. These two fields couple to produce a non zero dc voltage via the

spin rectification effect which is detected by a Stanford Research SR830 DSP lock-in

amplifier. By controlling the phase through the phase shifter inserted in one path, Φ

can effectively be controlled and a signal analogous to the one shown in Fig. 7 a) can

be measured. This allows the determination of Φ for the system. By sweeping the

externally applied magnetic field (not shown in Fig. 7) an FMR spectra can also be

obtained in the same system.

4.2 Lock-in Amplification

Since the voltages produced through the spin rectification effect based on AMR

are quite small (a few µV) the dc signal will be obscured by background noise and a

special technique is needed to extract the signal from the background. The technique

which will be used is known as lock-in amplification. By modulating the input signal

with a low frequency square wave set at some reference frequency, the dc output

from the Py strip will also be modulated at the same frequency. However the noise

will be unaffected. The lock-in amplifier then multiplies this signal by a sine wave

of frequency equal to the reference frequency and averages over the signal using a

low pass filter. Since sine waves of different frequencies are orthogonal, the noise will

average to zero and only the signal at the reference frequency will remain. Thus the

small dc signal can be measured with minimal background noise
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5 Proposed Work

The goal of this work is to clearly demonstrate that the line shape of the electrically

detected FMR depends on the phase Φ, ranging from purely symmetric when Φ =

(2n + 1)π
2

to purely antisymmetric when Φ = nπ, n = 0, 1, 2, ... and to demonstrate

that the value of Φ does vary from one apparatus to another, showing the importance

of phase characterization in FMR measurements. This will be done in three parts:

• Calculation of Φ in a simple thin film multilayer system for a plane wave incident

normal to the surface of the thin layer

• Derivation of the FMR line shape beginning with the Landau Lifshitz equation

for both in plane and out of plane field configurations showing the symmetric

and antisymmetric dependence on Φ

• Fitting of experimental data to the determined line shape to demonstrate that

Φ will change with experimental conditions

5.1 Φ in a Multilayer System

The first objective is to demonstrate that in a thin film multilayer system (such

as those used in spin Hall effect experiments) there should in fact be a phase shift

between the electric and magnetic fields. To do this we will consider the three systems

shown in Fig. 8 a). The three structures will differ by the addition of a Pt layer and a

tunneling MgO layer. In order to determine the phase shift Φ we will consider a plane

wave incident from air perpendicular on the sample. The electric and magnetic waves

in each layer must be calculated as the superposition of all reflected and transmitted

waves from each of the other layers, which can be done by treating the wave in each

layer as the sum of two waves, one moving in the positive direction and one in the

negative direction. At each interface the boundary conditions of Maxwell’s equations

must be applied and using a transfer matrix method with the Fresnel coefficients
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[27, 29], both the positive and negative moving waves can be determined. Using this

method we will determine the relative phase in the permalloy layer. Since the phase

Figure 8: a) Three multilayer systems where Φ will be calculated in the Py layer. b)

An illustration of the formalism of the matrix method using Fresnel coefficients.

shift will be induced by the imaginary part of the complex refractive index, we would

expect that in the permalloy layer there is a phase shift between electric and magnetic

fields, and that the addition of a platinum layer would increase the phase shift. The

effect of adding a tunneling layer between the Py and Pt is somewhat less intuitive,

and we will calculate Φ in this system for different thicknesses of the MgO layer to

examine its effect.

The calculation of these waves in various layers is fairly straight forward if the

material parameters of each layer are known, however it is a lengthy calculation

involving numerous matrices and to compute Φ in the permalloy layer we will use

Maple to do all calculations. This will also make the changing of material parameters,

layer thicknesses and frequency of the field much easier. We will also perform simple
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tests to see that the calculations make sense, such as setting all layers to have the

same conductivity and using the well known formula for the phase shift in a uniform

conductor of infinite extent to see that our calculations agree. From this step we

will demonstrate that even in the simple case of a normally incident plane wave, the

relative phase shift will be non zero and must be considered.

5.2 Line Shape for In Plane and Out of Plane Fields

Once we have demonstrated that Φ is in general nonzero, we then wish to show

that the symmetry properties of the line shape depend on the relative electromagnetic

phase. In order to do this we will begin with the Landau Lifshitz equation which will

first be solved without damping to arrive at the Polder susceptibility tensor. This will

relate the magnetization to the internal magnetic field, which will not be the same as

the externally applied field. To relate the two we will use the boundary conditions of

Maxwell’s equations. We will then introduce damping phenomenologically to arrive at

the Landau Lifshitz Gilbert equation and will show how the Polder tensor is modified

with the addition of damping. The FMR line shape is determined from the generalized

Ohm’s law, and using our result for the damping modified Polder tensor we will find

expressions for the photovoltage line shape for both the in plane and out of plane

field configurations. Here it will be important to clearly demonstrate how the line

shape can change with the phase Φ and to do so we will write the line shape in terms

of its symmetric and antisymmetric Lorentz contributions. This means we will have

to convert the Polder tensor from being expressed in terms of frequencies to being

expressed in terms of magnetic fields and will explicitly use the real and imaginary

parts of the susceptibility tensor elements rather than writing the expression in terms

of the spin resonance phase, where the line shape dependence on Φ is hidden in the

magnitude of the tensor elements. From this work we will see that since the relative

phase is in general non zero, the AMR induced photovoltage will in general not be

solely symmetric or antisymmetric.
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5.3 Experimental Determination of Φ

Finally we want to show experimentally that Φ is indeed nonzero by fitting the

measured line shape for different samples to the predicted line shape and determining

the relative electromagnetic phase. To do this we will use the photovoltage line shape

which we have derived to fit FMR spectra that have been collected over the past 4

years. This data was collected using the lock-in amplification technique described in

section 4. Since we wish to illustrate the line shape dependence on Φ we will fit FMR

data from different sample structures collected at different frequencies to see that Φ

varies based on the sample preparation and experimental conditions. Specifically the

data analyzed will be from spintronic sensors where the length of the Py strip varies

from 200 µm - 2 mm, the width is 5 µm and the thickness is 100 nm. We will vary

the frequency in 1 GHz steps from 2 to 10 GHz which will shift the resonant position

and, as we will demonstrate, will also change the relative electromagnetic phase. For a

fixed sample at fixed frequency we will also change the relative phase using spintronic

Michelson interferometry and show that if the only parameter changed is Φ the line

shape will still change. Such an analysis will be carried out for both in plane and out

of plane configurations. In this way we will be able to show that we cannot assume

that Φ is 0 in an arbitrary sample at an arbitrary frequency, but rather Φ must be

determined experimentally.

5.4 Research Timeline

• December 27 - January 14

– Determine the in plane and out of plane photovoltage expressions in terms

of the symmetric and antisymmetric Lorentz line shape

– Complete the theory portion of the thesis where these expressions are

derived beginning with the Landau Lifshitz equation.

• January 14 - January 28:
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– Develop Maple script to calculate Φ in the permalloy layer of the three

model systems based on the matrix method using Fresnel coefficients

– Check calculation method in limiting case of infinite conductor to verify

that the method is working

– Examine the dependence of the relative phase on the addition of a Pt layer

and a tunneling MgO layer of different thicknesses

• January 28 - February 18

– Analyze data using Igor and determine Φ in various samples by fitting

FMR line shape

– Organize data to best emphasize how the symmetry properties of the FMR

line shape depend on Φ

– Begin work on paper for Physical Review B

• February 18 - February 28:

– Prepare midterm presentation, begin work on final thesis and continue

work on paper

• March:

– Complete paper by early March

– Work on written thesis and presentation, to be completed by the end of

March

• April:

– Submission of final thesis and defense
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6 Significance

The goal of this research project is to demonstrate that the symmetry of the elec-

trically detected ferromagnetic resonance line shape depends strongly on the relative

electromagnetic phase Φ. This should radically change the way FMR experiments are

viewed and performed since currently the effect of the relative phase is not considered

seriously in most experiments. Even in spin Hall effect experiments where the AMR

effect is acknowledged as contributing to the line shape, it has only been added as a

convenient way of explaining the observed antisymmetric line shape and has not been

included in its full generality. By demonstrating that in a multilayer system Φ is in

general non zero, that the symmetry of the FMR line shape depends on this relative

phase and that experimentally Φ varies between apparatus we will unambiguously

demonstrate that to properly characterize the FMR line shape one must account for

the relative electromagnetic phase. Thus our systematic demonstration of the ef-

fects of the relative phase will have an important impact on the condensed matter

community. This work should be the first step in laying the foundation for a clear

understanding of the electrically detected FMR line shape which will help resolve the

controversy surrounding the experimentally measured values of the spin Hall angle.

Once this first step has been established future work will involve determining how this

understanding can be translated into an understanding of the spin Hall effect and how

the AMR and spin Hall voltages can be experimentally distinguished in multilayer

systems.
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