3D visualization of astronomy data using immersive displays

Gilles Ferrand
Research Associate
University of Manitoba
Dept. of Physics and Astronomy
A collaboration Astronomy – Computer Science

A short-term pilot project, funded locally by:

• Faculty of Science: Interdisciplinary/New Directions Research Collaboration Initiation Grants

• University Collaborative Research Program (UCRP)

Jayanne English
Physics and Astronomy
radio astronomer

Pourang Irani
Computer Science
Human-Computer Interaction Lab

Gilles Ferrand
Physics and Astronomy
numericist
Our testbed galaxy: NGC 3198

- r.a. = 10h 19m 54.99s
- dec. = +45° 32′ 58.88″
- (constellation: Ursa Major)
- redshift = 0.00227
- distance = 31 Mly = 9.5 Mpc
- type: SB(rs)c

[Images of the galaxy in infrared (Spitzer), near IR/optical (SDSS), and ultraviolet (GALEX) bands]
Radio data cubes of galaxies

We can probe galactic motion using Doppler shift of the HI 21 cm spectral line

The resulting 3D **data cube** has 2 spatial dimensions and 1 velocity dimension
A typical radio-astronomer desktop (Karma)

NGC 3198 HI moment 0 data from the THINGS survey
Even with automated analysis systems, direct inspection of the data remains critical to ensure proper operations and to foster discovery [Hassan and Fluke 2011, PASA, 28, 150-170]

Our brain works in 3D and we have 3D displays, why not use them to visualize our 3D data?…

The interface between the machine and the human brain is the bottleneck in the interpretation of complex astronomical data [Norris 1994, ASPCS, 61, 51]

Visualization tools have to be more user-friendly, is Virtual Reality the key?

Still an active field of research – “The equivalent expertise that exists for classical interfaces such as mouse and keyboard is, however, still missing” [Punzo et al 2015, A&C, 12, 86-99]
What do we mean by 3D visualization?

The world as represented in the visual arts tradition

The world as we actually perceive it

2D
- slices/projections
- on any personal computer

flat 3D
- perspective
- and shading

stereo 3D
- stereoscopy
- (fixed viewpoint)

virtual reality
- stereoscopy + motion parallax
- on advanced displays: dual projectors, tracking cameras
3D displays for Virtual Reality

fish tanks

- a CAVE by Visbox

headsets

- the “Rift” by Oculus (Facebook)
- the “Vive” by HTC / Valve
The CAVE on U of M campus at HCI lab
Virtual Reality with the Unity engine

<table>
<thead>
<tr>
<th>Display Devices</th>
<th>Navigation/Interaction Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAVE display</td>
<td>CAVE display</td>
</tr>
<tr>
<td>Visbox</td>
<td>Visbox</td>
</tr>
<tr>
<td>Stereo glasses</td>
<td>Stereo glasses</td>
</tr>
<tr>
<td>Flystick wand</td>
<td>Flystick wand</td>
</tr>
</tbody>
</table>

- Specialized software provided with the hardware
- Middleware for interfacing with VR systems

- 3D models of objects, with textures
- Camera(s)
- Lightning
- Unity, a popular cross-platform visual development environment for 3D (gaming) applications
- C# scripts defining behaviours of objects
Loading the astronomical data

standard for data storage: **FITS** = Flexible Image Transport System

- header
- (stacks of) images/tables = arrays of numbers

loaded as a 3D **texture**
= look-up table

- has to be defined in code, can be saved as an asset
- no floating-point format

property of a shader assigned to a material attached to an object
Volume rendering: ray casting in a cube of scalar data

Data cube loaded as a 3D texture and sampled along each line-of-sight (on the GPU, using custom shaders)

Multi-pass algorithm:
- XNA/Direct3D project by Kyle Hayward (posted on his blog, 2009)
- Unity project by Brian Su (posted on Unity forums and github, 2010)

Single-pass algorithm:
- “Render to 3D Texture” demo from the NVIDIA OpenGL SDK 10 Code Samples
The colour transfer function defines the colour of any data point (a voxel in 3D) as a function of parameters such as intensity, velocity, coordinates.

Colour can be given in machine space vs. perceptual space

Common examples:
- Use grayscale to show emission intensity
- Use blue-red to show blueshift/redshift

Jayanne English uses visual art techniques to clarify/support information
Example: Use 3D cursor for selection

- display coordinates and data value
- select all data of the same value (iso-contouring)
- show where a voxel falls on the histogram

Example: Overlay other data

- 2D on 3D: step an optical image through the cube, segment it and attach it to the cube’s matching features
- 3D on 3D: merge data cubes (as when making 2D image composites)
Conclusion

Aims of this exploratory project:

• Get a workbench that allows us to experiment with the aspects that we feel are important for our data (e.g. proper colouring, and overlaying other data)

Come have a look at our demo here today on the zSpace
Come visit us on U of M campus to get into the CAVE

• Raise general awareness in the astro community, and build a special interest group

We welcome any questions/comments, and new collaborators!

We are on the lookout for
- funding sources/non-academic partners
- people with the relevant interdisciplinary skills