Phys2610 (2019) Prelab 7 solutions

Experiment 7: The Common Emitter Amplifier

Goal: To construct a common emitter amplifier using the NPN bipolar junction transistor that was characterized last week in experiment 6.

Amplifier Circuit and Prelab Exercises:

(Refer to the introductory notes for experiment 6 as needed.)

With no ac input, the dc power supply $\left(+V_{c c}\right)$ and the bias resistors establish the operating point.

The circuit will be built with and without capacitor C_{E} to see how it affects the performance of the circuit.

We will use: $V_{C C}=18 \mathrm{~V}, R_{1}=33 \mathrm{k} \Omega, R_{2}=2.2 \mathrm{k} \Omega, R_{C}=3.3 \mathrm{k} \Omega, R_{E}=220 \Omega, C_{1}=C_{2}=0.47 \mu \mathrm{~F}$, $C_{\mathrm{E}}=10 \mu \mathrm{~F}$.
a) Assuming I_{b} is small, and that $V_{B E}=0.6 \mathrm{~V}$ when the BE junction is forward biased, determine the dc currents I_{2} (flowing through R_{2}) and I_{C} for these component values.
b) What is the value of $V_{C E}$?
c) Using your measurement of β from expt. $6(\beta \approx 200)$, what is the value of I_{b} ?
d) On a copy of the transistor characteristic curves from expt. 6, plot the load line: I_{C} versus $V_{C E}$ for $V_{\mathrm{cc}}=18 \mathrm{~V}$. Identify and mark the operating point ($I_{C}, V_{C E}$ and I_{b}).
(You may interpolate between the measured characteristic curves to illustrate this.)
e) Suppose $V_{B} \rightarrow V_{B}+\delta V_{B}$. Assume $V_{B E}$ and $V_{C C}$ are constant. What are the corresponding changes in I_{E} and I_{C} ? What is δV_{C} ? Show that $\delta V_{C} / \delta V_{B} \approx-R_{C} / R_{E}$. (This is essentially the gain of the amplifier circuit; the - sign indicates a phase shift of π)
a) Assuming I_{b} is small, and that $V_{B E}=0.6 \mathrm{~V}$ when the BE junction is forward biased, determine the dc currents I_{2} (flowing through R_{2}) and I_{C} for these component values.

We will use: $V_{C C}=18 \mathrm{~V}, R_{l}=33 \mathrm{k} \Omega, R_{2}=2.2 \mathrm{k} \Omega, R_{C}=3.3 \mathrm{k} \Omega, R_{E}=220 \Omega, C_{1}=C_{2}=0.47 \mu \mathrm{~F}$, $C_{\mathrm{E}}=10 \mu \mathrm{~F}$.

Assuming I_{b} is small,

$$
V_{B}=V_{C C} \frac{R_{2}}{R_{1}+R_{2}}=1.12 \mathrm{~V}
$$

Then, $I_{2}=\frac{V_{B}}{R_{2}}=0.51 \mathrm{~mA}$
and $V_{B}-V_{B E}-I_{E} R_{E}=0 \rightarrow I_{E}=\frac{V_{B}-V_{B E}}{R_{E}}=2.82 \mathrm{~mA} \rightarrow I_{C} \cong I_{E}=2.39 \mathrm{~mA}$
b) What is the value of $V_{C E}$? \qquad
\qquad
Applying KVL, $V_{C C}-I_{C} R_{C}-V_{C E}-I_{C} R_{E}=0$
giver $V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)=9.6 \mathrm{~V}$
c) Using your measurement of β from expt. $6(\beta \approx 200)$, what is the value of I_{b} ?

From the sample data supplied with experiment 6, at $V_{C E}=9.6 \mathrm{~V}$ and $I_{c}=2.4 \mathrm{~mA}$, the value of $\beta_{\text {de }}$ can be taken ar the average of the valuer on the $I_{b}=10 \mathrm{~mA}$ and $I_{b}=15_{\mu} \mathrm{A}$ culver. Dir gaur $\beta d c=188$, to $I_{b}=I_{c} / \beta=\frac{2.4 \mathrm{~m}^{\mu}}{188}=12.2 \mathrm{~mA}$ (which is consistent with simply interpolating between the I_{s} culver.
d) On a copy of the transistor characteristic curves from expt. 6, plot the load line: I_{C} versus $V_{C E}$ for $V_{\mathrm{cc}}=18 \mathrm{~V}$. Identify and mark the operating point ($I_{C}, V_{C E}$ and I_{b}).
(You may interpolate between the measured characteristic curves to illustrate this.)
Load line: $I_{C}=\frac{V_{c c}}{R_{C}+R_{E}}-\frac{V_{C E}}{R_{C}+R_{E}}=5.11 m A-V_{C E}\left(\frac{1}{3.52 h \Omega}\right)$
0 prating point: $I_{C}=2.8 \mathrm{~mA}, V_{C E}=8.1 \mathrm{~V}, I_{B}=15 \mathrm{~mA}$

e) Suppose $V_{B} \rightarrow V_{B}+\delta V_{B}$. Assume $V_{B E}$ and $V_{C C}$ are constant. What are the corresponding changes in I_{E} and I_{C} ? What is δV_{C} ? Show that $\delta V_{C} / \delta V_{B} \approx-R_{C} / R_{E}$. (This is essentially the gain of the amplifier circuit; the - sign indicates a phase shift of π)

For $V_{B} \rightarrow V_{B}+\delta V_{B}, V_{E} \rightarrow V_{E}+\delta V_{B}$ since $V_{E}=V_{B}-V_{B E}$ and $V_{B E}$ is const.
Then, $I_{E}\left(\right.$ and $\left.I_{c}\right) \rightarrow I_{E}+\frac{\delta V_{B}}{R_{E}}$
so $\delta I_{C}=\frac{\delta V_{B}}{R_{E}}$

Since $V_{c}=V_{c c}-I_{c} R_{c}$

$$
\delta V_{c}=-\delta I_{c} R_{c}=-\delta V_{B} \frac{R_{c}}{R_{E}}
$$

and the gain in $\frac{\delta V_{c}}{\delta V_{B}}=-\frac{R_{c}}{R_{E}}$

