MIDTERM EXAM
PAGE NO.: 1
TIME: 3 hours
EXAMINER: W Ens
EXAMINER: W Ens

EXAMINATION: Circuit Theory and Introductory Electronics
Answer 5 of the 6 questions. All questions are of equal value.

1. Calculate I_{1} and I_{2}. What is the power delivered by the 3-V battery?

2. A high impedance voltmeter is used to measure the output voltage of an unknown network, giving a result of 4.5 V . When a 300Ω resistor is connected across the output, the voltage is reduced to 1.25 V . What are the Thevenin equivalent voltage and resistance of the unknown circuit?
3. In the RL circuit below, determine the output voltage as a function of time if the input is stepped from zero to V_{0} at time $t=0$. What is the current at very long times?

4. Determine the output voltage for the RL circuit of question 3 if $v_{i n}=V_{0} \cos \omega t$. What is the phase shift? Is this a high-pass or a low-pass filter? What is the breakpoint frequency, where the gain drops by 3 dB from its maximum value?
5. Calculate the magnitude of the impedance at resonance for the following circuit.

6. Give the expressions for the magnitude and phase of the impedance of a series RLC circuit, and sketch a graph of both as a function of frequency, indicating the resonance frequency and the vertical scales.

Phy 2610 (2017) Midterm Solutronic
(1)

$$
\begin{array}{ll}
12 \mathrm{~V}-I_{a}(5 k \Omega)-\left(I_{a}-I_{b}\right) 1 k \Omega=0 & \text { loop } a \\
-3 \mathrm{~V}-I_{b}(1 k \Omega)-\left(I_{b}-I_{a}\right) 1 k \Omega=0 & \operatorname{loop} b
\end{array}
$$

Reanange:

$$
\begin{align*}
& I_{a}(6 k \Omega)+I_{b}(-1 k \Omega)=12 \mathrm{~V} \tag{1}\\
& I_{a}(-1 k \Omega)+I_{b}(2 k \Omega)=-3 \mathrm{~V} \tag{2}
\end{align*}
$$

2.(1)+(2): $\quad I_{a}(11 k \Omega)=21 \mathrm{~V} \Rightarrow I_{a}=1.91 \mathrm{~mA}$
(1) $+6 .(2): \quad I_{b}(11 \mathrm{~h} \Omega)=-6 \mathrm{~V} \Rightarrow I_{b}=-0.56 \mathrm{~mA}$

Then $I_{2}=I_{a}=1.91 \mathrm{~mA}$

$$
I_{1}=I_{a}-I_{b}=2.45 \mathrm{~mA}
$$

Power from 3 V battern: $P=V I_{3}=V\left(-I_{b}\right)$

$$
=1.63 \mathrm{~mW}
$$

(2)

$$
V_{2}=\frac{V_{\text {th }} R}{R+R_{\text {th }}} \rightarrow R_{\text {th }}=\frac{V_{\text {th }} R}{V_{2}}-R
$$

$$
=\left(\frac{V \not R}{V_{2}}-1\right) R=\left(\frac{4.5 \mathrm{~V}}{1.25 \mathrm{~V}}-1\right) 300 \Omega
$$

$$
=780 \Omega
$$

(3)

For $t \rightarrow \infty$, inductor impedance $\rightarrow 0$, so

$$
i=\frac{V_{0}}{R} \text { and } N_{\text {out }}=V_{0}
$$

For $t=0, v_{L}$ is max $+\quad i=0 \Rightarrow v_{\text {ont }}=0$. Using KVL: $\quad V_{0}-L \frac{d i}{d t}-i R=0$

$$
\begin{array}{ll}
\rightarrow i(t)=A e^{-t / \tau}+i(\infty) & (\tau=L / R) \\
\rightarrow i(t)=\frac{V_{0}}{R}\left(1-e^{-t / \tau}\right) & \text { from above } \\
\rightarrow N_{\text {out }}=V_{0}\left(1-e^{-t / \tau}\right) & \text { boundary cord'm }
\end{array}
$$

or using $v_{\text {out }}=V_{1}+V_{2} e^{-t / \tau} \quad(\tau=L / R)$
$=V_{0}\left(1-e^{-t / \tau}\right)$ from above boundary cord'ns.
(4)

$$
\begin{aligned}
& \text { Voltage divide : Nout }=\left(\frac{R}{R+j \omega L}\right) \text { Sin } \\
& \rightarrow \text { Nowt }=\frac{R}{\sqrt{R^{2}+(\omega L)^{2}} e^{j \theta}} \quad V_{0} e^{j \omega t}
\end{aligned}
$$

where $\tan \theta=\omega L / R$

$$
\rightarrow v_{\text {out }}=\frac{V_{0}}{\sqrt{1+\left(\frac{\omega L}{R}\right)^{2}}} e^{j(\omega t-\theta)}
$$

Phase shift is $\alpha=-\theta=-\arctan (\omega L / R)$
This is a low pass filter since for $\omega \rightarrow 0$,

- Nowt \rightarrow N in

Break point frequency $\Rightarrow\left|\frac{v_{\text {out }}}{v_{\text {in }}}\right|=\frac{1}{\sqrt{2}}$

$$
\Rightarrow \frac{\omega L}{R}=1 \Rightarrow \omega_{B}=\frac{R}{L}
$$

$$
\begin{aligned}
Z & =(1 / j \omega c) / /(R+j \omega C) \\
& =\frac{(1 / j \omega C)(R+j \omega C)}{R+j \omega L+1 / j \omega c}=\frac{(1 / \omega c)(\omega L-j R)}{R+j(\omega L-1 / \omega C)}
\end{aligned}
$$

$A t$ resonance, $\omega=\omega_{0}=1 / \sqrt{L C}$

$$
\Rightarrow \omega L=1 / \omega C=\sqrt{\frac{L}{c}}=\sqrt{4.0 \times 10^{5}} \Omega
$$

Then $z\left(\omega_{0}\right)=\frac{\left(4.0 \times 10^{5}\right) \Omega^{2}-j \sqrt{4.0 \times 10^{5}} \Omega^{2}}{1 \Omega}$ α

$$
\begin{aligned}
z\left(\omega_{0}\right) & =\sqrt{(400 \mathrm{k} \Omega)^{2}+4.0 \times 10^{5} \Omega^{2}} \\
& =400 \mathrm{k} \Omega \quad(400.0005 \mathrm{k} \Omega)
\end{aligned}
$$

(6)

$$
z=R+j\left(\omega L-\frac{1}{\omega c}\right)=|z| e^{j \theta}
$$

with $|z|=\sqrt{R^{2}+(\omega L-1 / \omega c)^{2}}$
\& $\tan \theta=\frac{(\omega L-1 / \omega c)}{R}$

Fon $\omega \rightarrow 0,|z| \rightarrow \infty, \tan \theta \rightarrow-\infty, \theta \rightarrow-\pi / 2$
Fon $\omega \rightarrow \infty,|z| \rightarrow \infty, \tan \theta \rightarrow+\infty, \theta \rightarrow \pi / 2$
For $\omega=\omega_{0}=1 / \sqrt{k c},|z|=R, \quad \tan \theta=0 \Rightarrow \theta=0$
Alro, for $\omega \rightarrow 0,|z| \cong 1 / \omega c L_{\omega}$
ψ for $\omega \rightarrow \infty,|z| \cong \omega L \quad{ }^{|z|} L_{\omega}$

So

