Phys 2610 (2019) Assignment 5

Due 2 April 2019

1. Find a general expression for the output of the following circuit, and show that it reduces to $v_{\text {out }}=\frac{R_{2}}{R_{1}}\left(v_{B}-v_{A}\right)$ when $\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$.

2. Show that the gain for the following circuit, with $R_{5}=R_{7}=R$, and $\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$ is given by

$$
a=\frac{v_{\text {out }}}{v_{A}-v_{B}}=-\frac{R_{2}}{R_{1}}\left(1+\frac{2 R}{R_{6}}\right)
$$

3. Find an expression for the complex gain of the following circuit, when $\omega=\omega_{1}=1 /\left(R_{1} C_{1}\right)$.

4. Design a summing amplifier to sum from inputs $v_{A}, v_{B}, v_{C}, v_{D}$ and to produce an output of $v_{\text {out }}=v_{A}+2 v_{B}+4 v_{C}+8 v_{D}$.
5. Design an op amp differentiator with an output given by $v_{\text {out }}=-\left(10^{-6} \mathrm{~s}\right) \frac{d}{d t} v_{\text {in }}$. If an input step function rises from 0 to 1 V in $2 \mu \mathrm{~s}$ and then is constant at 1 V , sketch the output.
6. Design an ideal diode op amp circuit to produce a negative half-waveform from a sinusoidal input.

