March 5, 2018
MIDTERM EXAM
PAGE NO.: 1
DEPARTMENT \& COURSE NO.: PHYS 2610
TIME: 3 hours
EXAMINATION: Circuit Theory and Introductory Electronics
EXAMINER: W Ens
All questions have equal value.

1. For the circuit shown, calculate the current through each resistor and the power delivered by the 6 V battery.

2. Give the Thevenin and Norton equivalent circuits for the circuit below. What load resistance connected to the output terminals would give the largest power transfer?

3. In the RL circuit below, determine the output voltage as a function of time if the input is stepped from zero to V_{o} at time $t=0$. What is the current at very long times?

4. Show that the circuit of question 3 acts as a differentiating circuit under certain conditions, and give the conditions.
5. Give an expression for the complex impedance connected to the signal generator below. If the input is given by $v=V_{0} \sin (\omega t)$, give and expression for the current through R_{1}.

6. Consider a series RLC circuit with $R=10 \Omega, L=100 \mathrm{mH}$, and $C=10 \mu \mathrm{~F}$. What is the Qvalue of the circuit? What are the two frequencies for which the voltage across the resistor drops by 3 dB from its maximum value?

Current: $i=\frac{d q}{d t}=\int \mathbf{J} \cdot \overrightarrow{d a}$
Ohm's law: $\mathbf{J}=\sigma \mathbf{E}=\frac{\mathbf{E}}{\rho} \Rightarrow v=i R$ with $R=\rho \ell / A \quad$ Current density: $\mathbf{J}=n e \vec{v}_{d}$
Gauss's law: $\oint \mathbf{E} \cdot \overrightarrow{d a}=q_{\text {net }} / \varepsilon_{0}$
Electric potential and potential energy: $V=U / q ; d U=q d V$
Potential difference and emf: $\int_{a}^{b} \mathbf{E} \cdot \overrightarrow{d l}=-\left(V_{b}-V_{a}\right) ; \oint \mathbf{E} \cdot \overrightarrow{d l}=0$
Power: $P=v i$
Capacitor: $q=C V, U=q^{2} /(2 C)$
Solution to $\frac{d y}{d x}+a x=b$ has the form $y=A e^{-a x}+b / a$
Faraday's law: $\varepsilon_{i n d}=\int_{a}^{b} \mathbf{E} \cdot \overrightarrow{d l}=-\frac{d}{d t} \int \mathbf{B} \cdot \overrightarrow{d a}=-L \frac{d i}{d t}$
Inductor: $\mathcal{E}=L \frac{d i}{d t}$
Magnetic field of ideal solenoid: $B=\mu_{0} n I$
Euler's formula: $e^{j \theta}=\cos \theta+j \sin \theta$
Complex impedance: $Z=R+j X=|Z| e^{j \phi} ; \tilde{v}=Z \tilde{v} ; v=\operatorname{Re}(\tilde{v})=V \cos \omega t$
Capacitive impedance: $Z_{C}=-j X_{C}=\frac{1}{j \omega C} \quad$ Inductive impedance: $Z_{L}=j X_{L}=j \omega L$
Series impedance: $Z=\sum Z_{i} \quad$ Parallel impedance: $\frac{1}{Z}=\sum \frac{1}{z_{i}}$
Complex voltage gain: $a=\frac{\tilde{v}_{\text {out }}}{\tilde{v}_{\text {in }}}$
Gain in dB: $G_{d B}=20 \log \left|\begin{array}{l}\tilde{\nu}_{2} \\ \tilde{v}_{1}\end{array}\right|$
Q Factor: $Q=\omega_{0} L / R$

Phyc2610 (2018) Mïterm Solutionin
(1)

loop 1: $6 \mathrm{~V}-I_{1}(5 k \Omega)-\left(I_{1}-I_{2}\right)(1 k \Omega)=0$

$$
\begin{equation*}
\rightarrow I_{1}(-6 k \Omega)+I_{2}(1 k \Omega)=-6 \mathrm{~V} \tag{1}
\end{equation*}
$$

loop 2: $1.5 \mathrm{~V}-\left(I_{2}-I_{1}\right)\left(1 k_{\Omega}\right)-I_{2}(2 k \Omega)=0$

$$
\rightarrow \quad I_{1}(1 k \Omega)+I_{2}(-3 k \Omega)=-1.5 \mathrm{~V}
$$

$$
\begin{aligned}
(1)+6(2) & \rightarrow 0+I_{2}(1 k \Omega-18 k \Omega)=(-6 \mathrm{~V}-9 \mathrm{~V}) \\
& \rightarrow I_{2}=\frac{-15 \mathrm{~V}}{-17 k \Omega}=0.88 \mathrm{~mA}
\end{aligned}
$$

$$
(1) \rightarrow I_{1}=\frac{-6 \mathrm{~V}-I_{2}(1 \mathrm{k} \Omega)}{-6 k \Omega}=1.15 \mathrm{~mA}
$$

Cument through

$$
\begin{array}{ll}
5 \mathrm{k}: & I_{1}=1.15 \mathrm{~mA} \\
2 \mathrm{k} \Omega: & I_{2}=0.88 \mathrm{~mA} \\
1 \mathrm{k}: & I_{1}-I_{2}=0.27 \mathrm{~mA}
\end{array}
$$

Power delivend by 6 V battery: $P=V \cdot I_{1}=(6 \mathrm{~V})(1.15 \mathrm{~m} \mathrm{~A})$

$$
=6.9 \mathrm{~mW}
$$

(2)

Thevenin

$V_{\text {th }}=$ opencet voltage

$$
\rightarrow V_{\text {th }}=V_{1}+V_{2}
$$

(since no current flowz in R_{2})
$R_{t h}$ is resintance with balterin shoted:

$$
R_{\text {th }}=R_{1} / / 0+R_{2} \rightarrow R_{\text {th }}=R_{2}
$$

Nato

$$
R_{N}=R_{\text {th }} \Rightarrow R_{N}=R_{2}
$$

$$
I_{N}=\text { shat circint curvent } \rightarrow I_{N}=\frac{V_{1}+V_{2}}{R_{2}}
$$

Powen Max pown transen $\Rightarrow R_{L}=R_{H}=R_{2}$
Recall $P=I^{2} R_{L}=\left(\frac{V_{\text {th }}}{R_{\text {th }}+R_{L}}\right)^{2} R_{L}=V_{\text {th }^{2}}\left(\frac{R_{L}}{\left(R_{H}+R_{L}\right)^{2}}\right)$

$$
\text { and } \frac{d}{d R_{L}} \frac{R_{L}}{\left(R_{\text {th }}+R_{L}\right)^{2}}=0 \Rightarrow R_{L}=R_{+h}
$$

Knihhoffir male: $V_{0}-i R-L \frac{d i}{d t}=0$

$$
\begin{aligned}
& \frac{d i}{d t}+\frac{R}{L} i=\left(\frac{L}{L}\right) V_{0} \\
& \rightarrow i=A e^{-R t / L}+\frac{V_{0}}{R}
\end{aligned}
$$

Boundary condition: At $t=0, i=0$ ($L \frac{d i}{d t}$ is max)

$$
\begin{aligned}
& \rightarrow 0=A+\frac{V_{0}}{R} \rightarrow A=-\frac{V_{0}}{R} . \\
& \rightarrow i=\frac{V_{0}}{R}\left(1-e^{-R t / L}\right)
\end{aligned}
$$

For $t \rightarrow \infty, \quad i \rightarrow \frac{V_{0}}{R}$
Output Voltage: $v_{L}=L \frac{d i}{d t}=L \frac{V_{0}}{R}\left(-e^{-R t / L}\right) \cdot\left(\frac{-R}{L}\right)$

$$
V_{L}=V_{0} e^{-R t / L}
$$

$$
\begin{aligned}
& v_{\text {out }}=L \frac{d i}{d t} \\
& \text { but } i=\frac{v_{\text {in }}-N_{\text {out }},}{R}, \text { so } \\
& v_{\text {out }}=\frac{L}{R} \frac{d}{d t}\left(v_{\text {in }}-v_{\text {out }}\right) \\
& \text { If } v_{\text {out }} \ll v_{\text {in }}, \quad v_{\text {out }}=\frac{L}{R} \frac{d}{d t} v_{\text {in }}
\end{aligned}
$$

For harmonic voltage, vout $\ll v_{\text {in }}$ corresponds to $\omega L \ll R$
or

$$
\frac{\omega L}{R} \ll 1
$$

(5)

Impedance: $\quad Z=Z_{1} \| Z_{2}=\left(R_{1}+j \omega L\right) / /\left(R_{2}+\frac{1}{j \omega c}\right)$

$$
Z=\frac{\left|Z_{1}\right| e^{j \theta_{1}}\left|Z_{2}\right| e^{j \theta_{2}}}{\left(R_{1}+R_{2}\right)+j(\omega L-1 / \omega c)}=\frac{\left|Z_{1}\right|\left|z_{2}\right|}{\left|Z_{3}\right|} e^{j\left(\theta_{1}+\theta_{2}-\theta_{3}\right)} \quad(p d \omega)
$$

where $\left|Z_{1}\right|=\sqrt{R_{1}^{2}+(\omega L)^{2}}, \quad\left|Z_{2}\right|=\sqrt{R_{2}^{2}+(1 / \omega C)^{2}}$,

$$
\begin{aligned}
& \left|z_{3}\right|=\sqrt{\left(R_{1}+R_{2}\right)^{2}+(\omega L-1 / \omega c)^{2}}, \tan \theta_{1}=\omega L / R_{1}, \\
& \tan \theta_{2}=1 / \omega R C, \quad \tan \theta_{3}=\frac{\omega L-1 / \omega c}{R_{1}+R_{2}}
\end{aligned}
$$

Current through R_{1} :
Complex impedaree in R_{1} branch: $Z_{1}=R_{1}+j \omega L$ or $z_{1}=\left|z_{1}\right| e^{j \theta}=\sqrt{R_{1}^{2}+(\omega L)^{2}} e^{j \theta} ; \tan \theta=\omega L / R$

Then, since $\tilde{i}_{1}=\frac{\tilde{v}}{z_{1}}, \quad$ if $v=V_{0} \sin \omega t$

$$
i_{1}=\frac{V_{0}}{\sqrt{R_{1}^{2}+(\omega L)^{2}}} \sin (\omega t-\theta) ; \quad \tan \theta=\omega L / R
$$

Note 1: Rectangular representation of Z :

$$
\begin{aligned}
Z & =\frac{(R+j \omega L)\left(R_{2}+\frac{1}{j \omega c}\right)}{\left(R_{1}+R_{2}\right)+j(\omega L-1 / \omega c)}=\frac{\left(R_{1} R_{2}+L / c\right)+j\left(R_{2} \omega L-R_{1} / \omega c\right)}{\left(R_{1}+R_{2}\right)+j(\omega L-1 / \omega c)} \\
& =\frac{\left[\left(R_{1} R_{2}+L / c\right)+j\left(R_{2} \omega L-R_{1} / \omega L\right)\right]\left[\left(R_{1}+R_{2}\right)-j(\omega L-1 / \omega c)\right]}{\left(R_{1}+R_{2}\right)^{2}+(\omega L-1 / \omega c)^{2}} \\
& =\left\{\begin{array}{c}
{\left[\left(R_{1} R_{2}+1 / c\right)\left(R_{1}+R_{2}\right)+\left(R_{2} \omega L-R_{1} / \omega c\right)(\omega L-1 / \omega c)\right]} \\
+j\left[\left(R_{1} R_{2}+L / c\right)(1 / \omega c-\omega L)+\left(R_{2} \omega L-\frac{R_{1}}{\omega c}\right)\left(R_{1}+R_{2}\right)\right] \\
\left(R_{1}+R_{2}\right)^{2}+(\omega L-1 / \omega c)^{2}
\end{array}\right\}
\end{aligned}
$$

Note 2:

$$
v=V_{0} \sin \omega t=R_{e}(\tilde{v}) \omega \text { with } \tilde{v}=V_{0} e^{j(\omega t-\pi / 2)}
$$

$$
\sigma=\operatorname{Im}(\tilde{v}) \text { with } \tilde{v}=V_{0} e^{j \omega t}
$$

Then $\tilde{c}=\frac{\tilde{v}}{z_{1}}=\frac{\tilde{v}}{\sqrt{R_{1}^{2}+(\omega L)^{2}}} e^{-j \theta}$
and

$$
i=\operatorname{Re}\left(\frac{V_{0} e^{j(\omega t-\pi / 2-\theta)}}{\left|z_{1}\right|}\right) \rightarrow i=\frac{V_{0} \sin (\omega t-\theta)}{\left|z_{1}\right|}
$$

107

$$
i=\operatorname{lm}\left(\frac{V_{0} e^{j(\omega t-\theta)}}{\left|z_{1}\right|}\right) \rightarrow i=\frac{V_{0} \sin (\omega t-\theta)}{\left|z_{1}\right|}
$$

(6)

$$
\begin{aligned}
& L=100 \mathrm{mH} \quad v=V_{0} e^{j \omega t} \\
& C=10 \mu \mathrm{~F} \\
& R=10 \Omega
\end{aligned}
$$

Revonant freq: $\omega_{0}=1 / \sqrt{L C}=1000 \mathrm{rad} / \mathrm{s}$
Q. facts: $Q=\omega_{0} L / R=10$
but $Q=\frac{\omega_{0}}{\Delta \omega}$

Where $\omega_{0} \pm \frac{\Delta \omega}{2}$ reperent $3 d B$ attenuation pountr: $\left(\frac{V_{R}}{V_{0}}=\frac{1}{\sqrt{2}}\right)$
Then $\Delta \omega=\omega_{0} / Q=100 \mathrm{rad} / \mathrm{s}$, so

$$
\omega_{3 d B}=\left(1000 \pm \frac{100}{2}\right) \mathrm{rad} / \mathrm{s}=950,1050 \mathrm{rad} / \mathrm{s}
$$

Aho $v_{R}=i R=\frac{R}{\sqrt{R^{2}+(\omega L-1 / \omega c)^{2}}} V_{0} e^{j(\omega t-\theta)}$

$$
\begin{aligned}
& \text { so } \frac{V_{R}}{V_{0}}=\frac{R}{\sqrt{R^{2}+(\omega L-1 / \omega C)^{2}}}=\frac{1}{\sqrt{1+(\omega L-1 / \omega C)^{2} / R^{2}}} \\
& \begin{aligned}
& \therefore \frac{V_{R}}{V_{0}}=\frac{1}{\sqrt{2}} \quad \omega \text { hen }(\omega L-1 / \omega C)^{2}=R^{2} \\
& \Rightarrow \omega L-1 / \omega C= \pm R \Rightarrow \omega^{2} L \pm \omega R-1 / C=0 \\
& \Rightarrow \omega=\frac{ \pm R \pm \sqrt{R^{2}+4 L / C}}{2 L}= \pm 950 \text { rad/s, } \pm 1050 \mathrm{rad} / \mathrm{s} \\
& \text { (phyical valuer are poiitie) }
\end{aligned}
\end{aligned}
$$

