DEPARTMENT \& COURSE NO.: PHYS 2610
TIME: 3 hours
EXAMINATION: Circuit Theory and Introductory Electronics
EXAMINER: W Ens
All questions have equal value, except number 5, which has double weight.

1. For the following circuit find the total current supplied by the battery, and the current through R_{4}, if $V=10 \mathrm{~V}, R_{1}=2 \Omega, R_{2}=5 \Omega, R_{3}=2 \Omega, R_{4}=5 \Omega$, and $R_{5}=10 \Omega$.

2. In the RC circuit shown below, with $R=15 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$, determine the charge on the capacitor 15 ms after the input switches from -5 V to +5 V . What is the limiting output voltage after a long time, and how long will it take to reach 99% of that value? (Assume the input was at -5 V for a long time before it switched.)

3. For the following circuit, give an expression for the output if the input is given by $v_{i n}=V_{i n} \cos (\omega t)$. What is the ratio of the output amplitude to the input amplitude at zero frequency (dc), at high frequency, and at resonance frequency?

EXAMINATION: Circuit Theory and Introductory Electronics
EXAMINER: W Ens
4. (a) Sketch the output waveform for the following circuit if the input is sinusoidal. Assume the turn-on voltage for the diode is zero.

(b) What is the output of the following circuit if the input is sinusoidal with a peak voltage of 2.0 V? Assume the RC time constant is much longer than the period of the input, and both diodes turn on at zero volts.

5. (a) For common emitter amplifier shown below, with $V_{\mathrm{CC}}=20 \mathrm{~V}, R_{1}=35 \mathrm{k} \Omega, R_{2}=2.8 \mathrm{k} \Omega$, $R_{\mathrm{C}}=2.25 \mathrm{k} \Omega, R_{\mathrm{E}}=250 \Omega$, and $\beta=100$, what are V_{CE} and I_{C} at the operating point?

(b) Using the circuit shown for the transistor with $r_{b e}=2000 \Omega$, draw an ac-equivalent circuit for the amplifier, and calculate the midband gain, the input impedance, and the output impedance.

(c) What value for C_{l} would result in 3 dB decrease in the gain at 20 Hz from its value at midband, not considering attenuation from other parts of the circuit.
(d) If C_{E} were removed, and the output taken from the emitter, what would the voltage gain be?

FINAL EXAM
PAGE NO.: 3 of 5
DEPARTMENT \& COURSE NO.: PHYS 2610
EXAMINATION: Circuit Theory and Introductory Electronics
TIME: 3 hours
EXAMINER: W Ens
6. Show that the output of the circuit below is approximately proportional to the integral of the input, and give the condition for the validity of the approximation.

Draw the circuit for a passive integrator, and give the condition for its validity.
7. (a) Draw the schematic diagram for an inverting amplifier with a gain of -75 and in input impedance of $5 \mathrm{k} \Omega$, using an op-amp.
(b) Draw a circuit diagram for a simple inverter (NOT gate) using one npn transistor and resistors. Practical gates add additional stages for more speed and to reduce the output impedance. Explain what limits the switching speed and output impedance of your single transistor gate.
8. (a) For the clocked RS flip-flop shown, with $Q=0, \bar{Q}=1$, sketch Q for the CK, R, and S inputs shown. If R is held at 0 , sketch Q for the $C K$ and S inputs shown

(b) Use a truth table to prove $\overline{A+B}=\bar{A} \cdot \bar{B}$
9. (a) A half-adder takes two inputs (A, B) and provides two outputs $(A \oplus B, A \cdot B)$. Show how to implement a half adder using only NAND gates.
(b) A full adder takes three inputs (A, B, C) and provides two outputs $(A \oplus B \oplus C$,
$A \cdot B+A \oplus B \cdot C)$. Show how to implement a full adder using two half-adders and NAND gates. Can you make a full adder with 9 NAND gates?

The End

PHYS 2610: Final Exam Formula Sheet 2017

Current: $i=\frac{d q}{d t}=\int \mathbf{J} \cdot \overrightarrow{d a}$
Steady state: $\frac{d i}{d t}=0 ; \oint \mathbf{J} \cdot \overrightarrow{d a}$
Ohm's law: $\mathbf{J}=\sigma \mathbf{E}=\frac{\mathbf{E}}{\rho} \Rightarrow v=i R$ with $R=\rho \ell / A \quad$ Current density: $\mathbf{J}=n e \vec{v}_{d}$
Gauss's law: $\oint \mathbf{E} \cdot \overrightarrow{d a}=q_{\text {net }} / \varepsilon_{0}$
Electric potential and potential energy: $V=U / q ; d U=q d V$
Potential difference and emf: $\int_{a}^{b} \mathbf{E} \cdot \overrightarrow{d l}=-\left(V_{b}-V_{a}\right) ; \oint \mathbf{E} \cdot \overrightarrow{d l}=0$
Power: $P=v i$
Capacitor: $q=C V, U=q^{2} /(2 C)$
Solution to $\frac{d y}{d x}+a x=b$ has the form $y=A e^{-a x}+b / a$
Faraday's law: $\mathcal{E}_{\text {ind }}=\int_{a}^{b} \mathbf{E} \cdot \overrightarrow{d l}=-\frac{d}{d t} \int \mathbf{B} \cdot \overrightarrow{d a}=-L \frac{d i}{d t}$
Inductor: $\mathcal{E}=L \frac{d i}{d t}$
Magnetic field of ideal solenoid: $B=\mu_{0} n I$
Euler's formula: $e^{j \theta}=\cos \theta+j \sin \theta$
Complex impedance: $Z=R+j X=|Z| e^{j \phi} ; \tilde{v}=Z \tilde{\imath} ; v=\operatorname{Re}(\tilde{v})=V \cos \omega t$
Capacitive impedance: $Z_{C}=-j X_{C}=\frac{1}{j \omega C} \quad$ Inductive impedance: $Z_{L}=j X_{L}=j \omega L$
Series impedance: $Z=\sum Z_{i} \quad$ Parallel impedance: $\frac{1}{Z}=\sum \frac{1}{z_{i}}$
Voltage gain: $a=\frac{v_{\text {out }}}{v_{\text {in }}}$
Gain in dB: $G_{d B}=20 \log \left|\frac{v_{2}}{v_{1}}\right|$

UNIVERSITY OF MANITOBA

April 14, 2018, 6-9 pm
FINAL EXAM
PAGE NO.: 5 of 5
DEPARTMENT \& COURSE NO.: PHYS 2610
TIME: 3 hours
EXAMINER: W Ens
EXAMINATION: Circuit Theory and Introductory Electronics
Q Factor: $Q=\omega_{0} L / R$
Schockley diode equation: $I=I_{S}\left(e^{e V / \eta k T}-1\right) ; \eta$ is the ideality factor ~ 2 for Si
Bipolar transistor current gains: $\alpha=\frac{I_{C}}{I_{E}} ; \beta=\frac{I_{C}}{I_{B}}$
DeMorgan's theorems: $\overline{A+B}=\bar{A} \cdot \bar{B} ; \overline{A \cdot B}=\bar{A}+\bar{B} ; A \cdot B=\overline{\bar{A}+\bar{B}} ; \quad A+B=\overline{\bar{A} \cdot \bar{B}}$
Half adder: $S=A \oplus B ; \quad C=A \cdot B$
Full adder: $S_{n}=A_{n} \oplus B_{n} \oplus C_{n-1} ; \quad C_{n}=A_{n} \cdot B_{n}+C_{n-1} \cdot\left(A_{n} \oplus B_{n}\right)$
Ones' complement: complement each bit
Two's complement: one's complement plus 1

Phyp $2610(2018)$ Final Exan Sclutions
(1) equivalent ciraint:

$$
\begin{aligned}
& R_{1}=2 \Omega \quad V=10 \mathrm{~V} \\
& R_{2}=5 \Omega \\
& R_{3}=2 \Omega \\
& R_{4}=5 \Omega \\
& R_{5}=10 \Omega
\end{aligned}
$$

Equivalect resistance: $R=R_{1}+R_{2} / /\left(R_{3}+R_{4} / / R_{5}\right)$

$$
\begin{aligned}
& R_{4} / / R_{5}=(5)(10) /(5+10) \Omega=3.33 \Omega \\
& R_{3}+R_{4} / / R_{5}=2 \Omega+3.33 \Omega=5.33 \Omega \\
& R_{2} / /\left(R_{3}+R_{4} / / R_{5}\right)=(5)(5.33) /(5+5.33) \Omega=2.58 \Omega \\
& R=2 \Omega+2.58 \Omega=4.58 \Omega
\end{aligned}
$$

Curnent supplid lon battery: $I=\frac{V}{R}=\frac{10 \mathrm{~V}}{4.58 \Omega}=2.18 \mathrm{~A}$
Then $V^{\prime}=V-I R_{1}=10 \mathrm{~V}-(2.18 \mathrm{~A})(2 \Omega)=5.64 \mathrm{~V}$
and $V^{\prime \prime}=\frac{V^{\prime}\left(R_{4} / / R_{5}\right)}{R_{3}+R_{4} / / R_{5}}=\frac{5.64 \mathrm{~V}(3.33 \Omega)}{5.33 \Omega}=3.52 \mathrm{~V}$
so $I_{4}=V^{\prime \prime} / R_{4}=3.52 \mathrm{~V} / 5 \Omega=0.705 \mathrm{~A}$
(2)

$$
V_{0}=5 \mathrm{~V}
$$

$$
\begin{aligned}
& R=15 \mathrm{k} \Omega, C=1 \mu F \\
& \Rightarrow \tau=R C=15 \mathrm{~ms}
\end{aligned}
$$

For const. Sin, after a long time, $v_{\text {out }}=v_{\text {in }}$, so Nowt start at - V_{0} and approaches $+V_{0}$ exponentially:
on $\quad v_{\text {out }}=V_{0}\left(1-2 e^{-t / \tau}\right)$
(i)

$$
\text { For } t=15 \mathrm{~ms}(=\tau), \begin{aligned}
v_{\text {out }} & =V_{0}\left(1-e^{-1}\right)=0.264 V_{0} \\
\rightarrow q & =v_{\text {out }} C=0.264(5 \mathrm{~V})(1 \mu F)=1.32 \mu \mathrm{C}
\end{aligned}
$$

(ii) Font $t \rightarrow \infty, v_{0} \rightarrow V_{0}=5 \mathrm{~V}$
(iii) Fo $v_{0}=0.99 V_{0}, 1-2 e^{-t / \tau}=0.99 \rightarrow 2 e^{-t / \tau}=0.01$

$$
\rightarrow-t / \tau=\ln (.005) \rightarrow t=-\tau \ln (.005)=79.5 \mathrm{~ms}
$$

(To complete 99\% of the $-V_{0} \rightarrow+V_{0}$ hansition, $1-e^{-t / \tau}=0.99$

$$
\Rightarrow t=-\tau \ln (.01)=69.1 \mathrm{~ms})
$$

* From $K V L, V_{0}-i R-q / c=0 \Rightarrow \frac{d q}{d t}+\frac{q}{R C}=\frac{V_{0}}{R}$

$$
\Rightarrow q=A e^{-t / R C}+V_{0} C
$$

For $t=0, q=-V_{0} C \Rightarrow A=-2 V_{0} C$, so

$$
q=V_{0} C-2 V_{0} C e^{-t / \tau}=V_{0} C\left(1-2 e^{-t / \tau}\right)
$$

$\sim \quad v_{\text {out }}=V_{0}\left(1-2 e^{-t / \tau}\right)$
(3)

Voltage divide: $\quad V_{\text {out }}=\frac{V_{\text {in }} z}{R+z}$ where $z=\frac{1}{j \omega C}+j \omega L$
The ratio of amplituder is then $=j(\omega L-1 / \omega c)$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\left|v_{\text {out }}\right|}{\left|v_{\text {in }}\right|}=\frac{|z|}{|R+z|}=\frac{(\omega L-1 / \omega c)}{\sqrt{R^{2}+(\omega L-1 / \omega c)^{2}}}
$$

For $\omega=0, \frac{V_{\text {out }}}{V_{\text {in }}} \rightarrow \frac{1 / \omega c}{1 / \omega c} \rightarrow 1$
($C_{\text {resents }}$ ∞ impedance)

For $\omega \rightarrow \infty, \frac{V_{\text {out }}}{V_{\text {in }}} \rightarrow \frac{\omega L}{\omega L} \rightarrow 1 \quad$ (L perente ∞ impedance)

$$
\text { For } \omega=1 / \sqrt{L c}, \frac{V_{\text {out }}}{V_{i n}}=0 \quad \text { (LC is shat et) }
$$

(4) (a)

$$
v_{\text {in }}=V_{0} \cos \omega t
$$

When B fins goer postie w.r.t. A the diode clover and the capacitor charger to the peak voltage.

When B decrease, the diode open and the capacitor has no path to discharge, so it maintain the voltage V_{0}, acting like a battery. Subsequently, the diode only opens when v in reacher $-V_{0}$ (or slight before if the capacitor leah n a small amount of charge).

$$
v_{\text {in }}^{a}
$$

(b)

The second diode is a cored switch until C_{2} charger to the maximum output of the first stere, which is 2V. from pant (a) (assuming C, dor not dirchange appreciably through R). C_{2} has no path to discharge and so hold the voltage $2 \mathrm{~V}_{0}=4 \mathrm{~V}$.
(5) (a) $V_{B}=\frac{V_{C C} R_{2}}{R_{1}+R_{2}}=1.48 \mathrm{~V}$ assuming I_{B} is small

$$
\begin{aligned}
& \Rightarrow V_{E}=V_{B}-V_{B E}=V_{B}-0.6 \mathrm{~V}=0.88 \mathrm{~V} \\
& \Rightarrow I_{E}=I_{C}=V_{E} / R_{E}=3.52 \mathrm{~A}
\end{aligned}
$$

but

$$
\begin{aligned}
I_{c}=\frac{\left(V_{c c}-V_{C E}\right)}{R_{c}+R_{E}} \Longrightarrow V_{C E} & =-I_{c}\left(R_{c}+R_{E}\right)+V_{c C} \\
& =11.2 V
\end{aligned}
$$

(b)

$$
\Omega_{b e}=1000 \Omega
$$

(i) gain $a_{v}=\frac{v_{0}}{v_{i}}=\frac{-\beta i_{b} R_{c}}{i_{b} \Omega_{b e}}=-\frac{\beta R_{c}}{\Omega_{b e}}=-112$
(ii) imper impedance: $\Omega_{\text {in }}=R_{1} / / R_{2} / / \Omega_{\text {be }}$

$$
=\left(\frac{1}{2.8 k \Omega}+\frac{1}{35 k \Omega}+\frac{1}{2 k \Omega}\right)^{-1}=1.1 k \Omega
$$

(iii) output impedance:

$$
r_{\text {out }}=\frac{v_{\text {out }} \text { (oren) }}{i_{\text {out }} \text { (shot) }}=\frac{\beta i_{b} R_{c}}{\beta i b}=R_{c}=2.25 \mathrm{k}
$$

(c) C_{1} forms a high pase filter with r in.

Fo 3 dB attenuation at 20 Hz due to this filter:

$$
\omega_{3 d B}=\frac{1}{\Omega_{i n} C_{1}} \Rightarrow C_{1}=\frac{1}{2 \pi f_{3 d B} \Omega i n}=7.2 \mu F
$$

(d) The gain for an emitter follower is unity, since

$$
\begin{aligned}
V_{E} & =V_{B}-V_{B E} \text { and } V_{B E} \text { is } \sim \text { constant } \\
\rightarrow v_{e} & =v_{b} \text { or } v_{\text {out }}=v_{\text {in }}
\end{aligned}
$$

(6)

Since $v_{-}=v_{+}, v_{-}=0$ (virtual ground)
Then vout $=-q / c=-\frac{1}{c} \int i d t$
But $v_{\text {in }}=i R$ so $v_{\text {out }}=\frac{-1}{R C} \int v_{\text {in }} d t$
This is valid for $\left|a_{0}\right| \gg|a|$ on $a_{0} \gg \frac{1 / \omega c}{R}$

$$
\text { on } \omega R C \gg 1 / a_{0} .
$$

A passive integrator is

Were $v_{\text {out }}=q / c=\frac{1}{c} S i d t$
and $v_{\text {in }}-i R=v_{\text {out }} \Rightarrow \quad i=\frac{1}{R}\left(v_{\text {in }}-v_{\text {out }}\right)$.
Then for $v_{\text {out }} \ll v_{\text {in }}$,

$$
i=\frac{1}{R C} \int v \operatorname{in} d t
$$

The condition wont \ll win $\Rightarrow 1 / w c \ll R$

$$
\Rightarrow \omega n c \gg 1
$$

(7) (a)

Arpent impedance: $R_{\text {in }}=\frac{V_{i n}}{i}=R_{1}$ since $v_{-}=V_{+}=0$

$$
\rightarrow R_{1}=5, \mathrm{k} \Omega
$$

Gain: $a=\frac{-R_{2}}{R_{1}} \rightarrow R_{2}=-a R_{1}=-(-75)(5 k \Omega)=375 \mathrm{k} \Omega$
(b) Aments:

R_{2} is needed to limit the current when the transistor is on, but it limits the speed because the effective capacitance of the transistor must charge through R_{2} when it turn off. R_{2} is also the output impedance which limits the load that it con drive.
(8)

(b)

A	B	$A+B$	$\overline{A+B}$	\bar{A}	\bar{B}	$\bar{A} \cdot \bar{B}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

$$
\therefore \overline{A+B}=\bar{A} \cdot \bar{B}
$$

(a)(a)

$$
\begin{array}{rlrl}
A \oplus B & =(A+B) \cdot \overline{A \cdot B} & \\
& =A \cdot \overline{A \cdot B}+B \cdot \overline{A \cdot B} & & \text { distributive prop. } \\
& =\overline{\overline{A \cdot \overline{A \cdot B}+\overline{B \cdot \overline{A \cdot B}}}} \quad & & \overline{\bar{A}}=A \\
& =\overline{\overline{A \cdot \overline{A \cdot B}} \cdot \overline{B \cdot \overline{A \cdot B}}} & & \text { De Morgan }
\end{array}
$$

Then

(b)

Adder with 9 gater

