Phys2610 Mid-term Test

1 March 2016, 1:00-2:15 pm
Room 519 Allen

1. Find the Thevenin equivalent circuit for the circuit shown below. That is, find an equivalent ideal seat of emf with a series resistance that would behave in the same way at the output.

2. (a) For the RC circuit below, if $R=1 \mathrm{M} \Omega$, and $C=100 \mu \mathrm{~F}$, and the input is a step function from 0 to 6 V , how long does it take for the capacitor to charge from 3 V to 3.78 V ? The capacitor is initially uncharged.
(b) For a $20-\mathrm{kHz}$ ac input, and for $R=1 \mathrm{k} \Omega$ and $C=10 \mathrm{nF}$, what is the phase shift between the output and input voltages, and what is the gain in dB ?

3. If the input in the circuit below is given by $v=V \cos (\omega t)$, express the output as a function of time. What is the gain at resonance.

4. Calculate the peak voltage across the inductor, capacitor, and the 8Ω speaker in the circuit shown for the resonant frequency and for 200 Hz . Treat the speaker like a simple resistor.

Current: $i=\frac{d q}{d t}=\int \mathbf{J} \cdot \overrightarrow{d a}$
Ohm's law: $\mathbf{J}=\sigma \mathbf{E}=\frac{\mathbf{E}}{\rho} \Rightarrow v=i R$ with $R=\rho \ell / A \quad$ Current density: $\mathbf{J}=n e \vec{v}_{d}$
Gauss's law: $\oint \mathbf{E} \cdot \overrightarrow{d a}=q_{n e t} / \varepsilon_{0}$
Electric potential and potential energy: $V=U / q ; d U=q d V$
Potential difference and emf: $\int_{a}^{b} \mathbf{E} \cdot \overrightarrow{d l}=-\left(V_{b}-V_{a}\right) ; \oint \mathbf{E} \cdot \overrightarrow{d l}=0$
Power: $P=v i$
Capacitor: $q=C V, U=q^{2} /(2 C)$
Solution to $\frac{d y}{d x}+a x=b$ has the form $y=A e^{-a x}+b / a$
Faraday's law: $\mathcal{E}_{\text {ind }}=\int_{a}^{b} \mathbf{E} \cdot \overrightarrow{d l}=-\frac{d}{d t} \int \mathbf{B} \cdot \overrightarrow{d a}=-L \frac{d i}{d t}$
Inductor: $\mathcal{E}=L \frac{d i}{d t}$
Magnetic field of ideal solenoid: $B=\mu_{0} n I$
Euler's formula: $e^{j \theta}=\cos \theta+j \sin \theta$
Complex impedance: $Z=R+j X=|Z| e^{j \phi} ; \tilde{v}=Z \tilde{\imath} ; v=\operatorname{Re}(\tilde{v})=V \cos \omega t$
Capacitive impedance: $Z_{C}=\frac{1}{j \omega C} \quad$ Inductive impedance: $Z_{L}=j \omega L$
Series impedance: $Z=\sum Z_{i} \quad$ Parallel impedance: $\frac{1}{Z}=\sum \frac{1}{Z_{i}}$
Gain in dB: $G_{d B}=20 \log \left|\frac{v_{2}}{v_{1}}\right|$
Q Factor: $Q=\omega_{0} L / R$

