PHYS 2610: Midterm Formula Sheet 2018

Current:
$$i = \frac{dq}{dt} = \int \mathbf{J} \cdot \overrightarrow{da}$$

Steady state:
$$\frac{di}{dt} = 0$$
; $\oint \mathbf{J} \cdot \overrightarrow{da}$

Ohm's law:
$$\mathbf{J} = \sigma \mathbf{E} = \frac{\mathbf{E}}{\rho} \Rightarrow v = iR$$
 with $R = \rho \ell / A$ Current density: $\mathbf{J} = ne\vec{v}_d$

Current density:
$$\mathbf{J} = ne\vec{v}_d$$

Gauss's law:
$$\oint \mathbf{E} \cdot \overrightarrow{da} = q_{net}/\varepsilon_0$$

Electric potential and potential energy:
$$V = U/q$$
; $dU = qdV$

Potential difference and emf:
$$\int_a^b \mathbf{E} \cdot \overrightarrow{dl} = -(V_b - V_a)$$
; $\oint \mathbf{E} \cdot \overrightarrow{dl} = 0$

Power:
$$P = vi$$

Capacitor:
$$q = CV$$
, $U = q^2/(2C)$

Solution to
$$\frac{dy}{dx} + ax = b$$
 has the form $y = Ae^{-ax} + b/a$

Faraday's law:
$$\mathcal{E}_{ind} = \int_a^b \mathbf{E} \cdot \overrightarrow{dl} = -\frac{d}{dt} \int \mathbf{B} \cdot \overrightarrow{da} = -L\frac{di}{dt}$$

Inductor:
$$\mathcal{E} = L \frac{di}{dt}$$

Magnetic field of ideal solenoid:
$$B = \mu_0 nI$$

Euler's formula:
$$e^{j\theta} = \cos\theta + j\sin\theta$$

Complex impedance:
$$Z = R + jX = |Z|e^{j\phi}$$
; $\tilde{v} = Z\tilde{i}$; $v = \text{Re}(\tilde{v}) = V\cos\omega t$

Capacitive impedance:
$$Z_C = -jX_C = \frac{1}{j\omega C}$$
 Inductive impedance: $Z_L = jX_L = j\omega L$

Series impedance:
$$Z = \sum Z_i$$
 Parallel impedance: $\frac{1}{Z} = \sum \frac{1}{Z_i}$

Complex voltage gain:
$$a = \frac{\tilde{v}_{out}}{\tilde{v}_{in}}$$

Gain in dB:
$$G_{dB} = 20\log \left| \frac{\tilde{v}_2}{\tilde{v}_1} \right|$$

Q Factor:
$$Q = \omega_0 L/R$$