PHYS 2610: Final Exam Formula Sheet 2017

Current: $i=\frac{d q}{d t}=\int \mathbf{J} \cdot \overrightarrow{d a}$
Ohm's law: $\mathbf{J}=\sigma \mathbf{E}=\frac{\mathrm{E}}{\rho} \Rightarrow v=i R$ with $R=\rho \ell / A$

Steady state: $\frac{d i}{d t}=0 ; \oint \mathbf{J} \cdot \overrightarrow{d a}$
Current density: $\mathbf{J}=n e \vec{v}_{d}$

Gauss's law: $\oint \mathbf{E} \cdot \overrightarrow{d a}=q_{\text {net }} / \varepsilon_{0}$
Electric potential and potential energy: $V=U / q ; d U=q d V$
Potential difference and emf: $\int_{a}^{b} \mathbf{E} \cdot \overrightarrow{d l}=-\left(V_{b}-V_{a}\right) ; \oint \mathbf{E} \cdot \overrightarrow{d l}=0$
Power: $P=v i$
Capacitor: $q=C V, U=q^{2} /(2 C)$
Solution to $\frac{d y}{d x}+a x=b$ has the form $y=A e^{-a x}+b / a$
Faraday's law: $\varepsilon_{i n d}=\int_{a}^{b} \mathbf{E} \cdot \overrightarrow{d l}=-\frac{d}{d t} \int \mathbf{B} \cdot \overrightarrow{d a}=-L \frac{d i}{d t}$
Inductor: $\mathcal{E}=L \frac{d i}{d t}$
Magnetic field of ideal solenoid: $B=\mu_{0} n I$
Euler's formula: $e^{j \theta}=\cos \theta+j \sin \theta$
Complex impedance: $Z=R+j X=|Z| e^{j \phi} ; \tilde{v}=Z \tilde{z} ; v=\operatorname{Re}(\tilde{v})=V \cos \omega t$
Capacitive impedance: $Z_{C}=-j X_{C}=\frac{1}{j \omega C} \quad$ Inductive impedance: $Z_{L}=j X_{L}=j \omega L$
Series impedance: $Z=\sum Z_{i} \quad$ Parallel impedance: $\frac{1}{Z}=\sum \frac{1}{z_{i}}$
Voltage gain: $a=\frac{v_{\text {out }}}{v_{\text {in }}}$
Gain in dB: $G_{d B}=20 \log \left|\frac{v_{2}}{v_{1}}\right|$
Q Factor: $Q=\omega_{0} L / R$

Schockley diode equation: $I=I_{S}\left(e^{e V / \eta k T}-1\right) ; \eta$ is the ideality factor ~ 2 for Si
Bipolar transistor current gains: $\alpha=\frac{I_{C}}{I_{E}} ; \beta=\frac{I_{C}}{I_{B}}$
DeMorgan's theorems: $\overline{A+B}=\bar{A} \cdot \bar{B} ; \quad \overline{A \cdot B}=\bar{A}+\bar{B} ; A \cdot B=\overline{\bar{A}+\bar{B}} ; \quad A+B=\overline{\bar{A} \cdot \bar{B}}$
Half adder: $S=A \oplus B ; \quad C=A \cdot B$
Full adder: $S_{n}=A_{n} \oplus B_{n} \oplus C_{n-1} ; \quad C_{n}=A_{n} \cdot B_{n}+C_{n-1} \cdot\left(A_{n} \oplus B_{n}\right)$
Ones' complement: complement each bit
Two's complement: one's complement plus 1

