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1.	 GENERAL	LABORATORY	INSTRUCTIONS	
 
	
1.1	INTRODUCTION	
 
There are several general goals of the laboratory section of this course which you should think 
about. Firstly, it must be emphasized that Physics is an experimental science; none of the 
physical and mathematical theories which you learn in this course or anywhere else can claim to 
have any bearing on reality unless it can stand the test of experimental scrutiny. Therefore, you 
will need to develop measurement skills and the ability to assess and interpret experimental 
data as you progress in your training as a professional scientist. In this course, a set of 
experiments has been selected in order to help you develop these skills while testing some of 
the physical theories that have been discussed in the lectures. You will be expected to keep a 
careful record of your activities in the lab, and to analyse and interpret your data. Written 
reports containing your results and some analysis as specified will be required for each student, 
for each experiment. The experiments you perform in this course, and the information in this 
laboratory manual, are considered to be important background preparation for laboratory work 
in higher level courses in physics. 
 
 
1.2	BACKGROUND	PREPARATION  
 
For each experiment, study the instructions found in this lab manual before the weekly lab 
session. These instructions describe the apparatus and measurement techniques to be used for 
the experiments and pose specific questions to be answered by your measurements and data 
analysis. One or more ‘pre-lab’ questions may be included for each experiment to help you 
review the relevant theoretical concepts, including a derivation of equations that you will need 
for subsequent interpretation of the data. 
 
The pre-lab questions will be marked for credit. They are due at the beginning of the lab 
period on Monday, at which time solutions will be posted.  
 
 
1.3	LABORATORY	PROCEDURES	
 
Each week at the beginning of the laboratory session, the instructor will give a brief discussion 
of the experiment, with advice on how to perform the measurements, sources of error, etc. 
Students will work in pairs to perform the measurements, and analyze the data. One report 
should be prepared, with the primary responsibility (first author) alternating from week to 
week.  
 
It is intended that you will be able to perform the measurements and at least a major part of 
the data analysis during the 3-hour laboratory session. All your work, including original data, 
derivation of equations, calculations, discussion and conclusions should be recorded directly, 
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with a pen, in your laboratory notebook. Don’t waste time and risk unnecessary mistakes by 
recopying data from scraps of loose paper! 
 
During the lab sessions, you should proceed methodically to perform the experiments and 
record your observations. There are no strict rules to judge whether an observation is ‘right’ or 
‘wrong’, so do not be afraid to record in your book any observation that seems relevant. If a 
question occurs to you during the course of the measurements, possibly triggered by an 
unexpected observation, record the question in your notebook and try to answer it during the 
lab session – either by performing more measurements, or analysis, or discussing it with the 
instructor. 
 
Important Guideline: 
 
You should record enough information in your lab notebook that another person referring to 
it would be able to perform exactly the same experiment with no other written instructions 
and obtain comparable results. 
 
 
1.4	NOTEBOOK	ORGANIZATION 
 
The notebook should represent a chronological record of your preparations for the lab, activity 
in the lab, and analysis of the results. It should contain some or all of the following: 
 
i.  Title and Date 
  
ii.  Statement of Purpose 

At the beginning of the laboratory session, write down, in your own words, the specific 
goal or goals of the experiment you are about to perform.  

 
iii.  Description of Apparatus and Method 

At the beginning of the laboratory session, examine the apparatus – assemble it in the 
intended configuration for the first measurements, turn it on, test it yourself, and make 
sure you understand how it works before you proceed to perform the measurements. 
Seek advice from the instructor or T.A. at an early stage if you need help. Refer to the 
laboratory manual and discuss with your partner how you plan to proceed with the 
experiment. Summarize this plan in a few sentences in your notebook together with a 
sketch of the apparatus and circuit diagram to be used – use a ruler and a pencil where 
appropriate. Refer to both the plan and the sketch as you proceed to record your 
observations. If a commercial electronic device is to be used, specify the manufacturer's 
name and the model number, and record the performance rating in your notebook (e.g. 
for a digital voltmeter, you should record the manufacturer's specification of the 
absolute accuracy for measurements of V on the scales you intend to use for the 
experiment). 
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iv.  Observations and Data 
For each set of measurements, record your quantitative observations in a data table. 
Specify both the quantities and the units in which they are measured at the headings of 
the columns in your data table. Your best estimate of the uncertainty in the 
measurement can also be recorded with the data, although in most cases in these 
experiments, it is not necessary. Each data table should have a descriptive title and 
should be accompanied by a description of how the measurements were obtained, 
referring to the apparatus diagram and specifying the settings of any meters, signal 
generators, etc. used in the measurements. The last column in a data table should be 
titled ‘Comments’, to be used for noting any changes to the apparatus or its behavior 
during the course of the measurements. A sample data table is shown below.  

 
Sample Data Table: Test of Ohm's Law 

 
V (volts) I (Amps) Comments 

1.00±0.01 0.60±0.02 resistor feels hot – 
does this affect the measurements? 

0.50±0.01 0.31±0.02  

0.20±0.01 0.098±0.002 changed Ammeter scale to 0.10 max 

0.099±0.001 0.048±0.002 changed Voltmeter scale to 0.10 max 

 
v.  Analysis 

Perform all your calculations in the lab notebook. If the data are to be compared with a 
theoretical model as worked out in the pre-lab exercises, state the specific comparison 
that is to be made and how it is to be tested. If the raw data are to be manipulated or 
‘reduced’ in order to plot a graph to test the theory, write down the equations that will 
be used in this process. When necessary, work out the appropriate equations to 
determine the uncertainties in the individual entries of the reduced data set. Set up a 
table to perform the calculations – ideally on a page in your notebook opposite the 
graph paper that you will use to plot the results. Pay careful attention to units and 
significant figures in both the raw and reduced data sets. 

 
General rule: report errors to one significant figure, and report measurements such 
that the least significant figure is the first uncertain figure according to the error 
estimate. 
 
If a graph is to be plotted, it should have the following attributes: a descriptive title; 
clearly labelled axes (with units); points plotted in ink with experimental error bars; best 
straight line (or other, as appropriate) fit drawn through the points with parameters of 
the fit indicated on the graph. You may also prepare graphs using the software available 
on the lab computers; these should be printed at an appropriate size and taped into 
your lab book. 
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It is important to complete at least a preliminary reduction of the data during the lab 
period so that you can test whether your measurements make sense. If the results do 
not make sense, discuss them with the instructor and repeat the measurements more 
carefully before drawing conclusions from the experiment. 

 
vi.  Results and Discussion 

Refer to the goals of the experiment stated in section ii, and summarize the quantitative 
results in light of these goals. Answer any questions that were specifically posed in the 
lab manual. Make quantitative comparisons with theory where possible. Comment on 
the dominant sources of statistical and systematic error in the measurements. Discuss 
any modifications to the apparatus or experimental procedure that you can think of 
making in order to improve the quality of the measurements. 

 
vii.  Conclusion 

Give an overall assessment of the experiment and its general outcome in one or two 
sentences. (What aspects of the experiment were a success? What aspects of the 
experiment failed? ‘Success’ and ‘failure’ should be quantified in light of the theoretical 
expectations and the accuracy of the measurements.) 

 
1.5	SUBMISSION	OF	WORK	AND	MARKING	SCHEMES	
 
One report from each pair of students should be submitted for experiments 1 to 8. The report 
should contain a brief description of the procedure, including necessary diagrams, the results of 
the measurements, analysis, including graphs, discussion and conclusions. Your lab notebook 
may also be inspected by the instructor or TA, and may be used to assist the evaluation. One half 
of the evaluation will be based on the measurements and analysis and will go to both students, 
while the evaluation of the full report will go to the first author. 
 
The overall laboratory mark is worth 25% of the course mark for PHYS 2610. The pre-lab 
exercises will make up 5%, and the reports the remaining 20%.  
 
 

 
Submission Deadlines 
 
 Lab reports are due on Mondays in the following lab session. Prelab questions should 

be handed in at the beginning of the respective lab session on Monday.   
 
NOTE: If you are ill and cannot attend a Monday lab session, consult the instructor so 
that a “make-up” lab can be scheduled. 
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2.	 ERROR	ANALYSIS	AND	INTERPRETATION	OF	DATA	
 
The following notes and exercises provide a brief introduction to several important topics in 
error analysis and data interpretation. For more details, consult a standard textbook on the 
subject – the paperback, Experimentation: An Introduction to Measurement Theory and 
Experiment Design by D.C. Baird, is worth investing in, particularly if you expect to be doing 
more lab work in future science courses. Another standard reference work, written at a 
somewhat higher level, is: Data Reduction and Error Analysis for the Physical Sciences, by P.R. 
Bevington (also available in paperback). J.R. Taylor’s book: ‘An Introduction to Error Analysis: 
The Study of Uncertainties in Physical Measurements’ is also a great resource. 
 
 
2.1	 COMBINATION	OF	ERRORS	–	SIMPLE	CASE 
 
Provided that each element of a set of measurement data is independent of the other 
elements, then the individual measuring errors should be combined in quadrature. For example, 
if we have two measurements of the voltage drop across different portions of a circuit: 
 
   
 
then the total voltage drop  should be reported as: 
 

 
 

The combination of errors in quadrature takes into account the fact that it is unlikely that the 
two independent measurements V1 and V2 would each deviate from the ‘true’ values by the 
maximum possible amounts  and  respectively – hence, this method gives a smaller 
and more reasonable estimate of the uncertainty in the sum of the two voltage drops, 
, since by the ‘triangle inequality’: 
 

  (1) 
 
where  and  are both positive quantities. The quadrature method for combining 
errors is rooted in statistical theory; for a rigorous derivation, see J. R. Taylor, “An Introduction 
to Error Analysis,” ch. 5. 
 
Often, it is desirable to make repeated measurements of the same quantity x in order to 
improve the accuracy of the experiment. This technique reduces the uncertainty in the 
experimental value of x by averaging over random statistical fluctuations in the individual 
measurements, which tend to cancel out for a large number of observations. If there are N 
measurements of the same quantity, then the individual measurements are denoted xi for i = 1, 
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2 2
1 2 1 2( )V V V V V Vd d d± = + ± +
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N with measurement errors . The experimental result to be reported is the mean value , 
given by 
 

  (2) 

 
The error in the mean, , can be obtained from the quadrature formula discussed above, if 
the measurements are all independent (usual case) and the uncertainties  are correctly 
assessed for the conditions of the experiment, in which case: 
 

  (3) 

 
Notice that if all of the individual measurements have exactly the same uncertainty, , 

then equation (3) implies that the error in the mean value is proportional to . Thus, 
according to equation (3), the uncertainty in  can be made arbitrarily small simply by 
performing enough measurements; to reduce the uncertainty by a factor of 2 requires 4 times 
as many measurements, and so on. 
 
Problem 2.1.1: Prove the above assertion by writing out the combination of errors according to 
equation (3) for a particular value of N. 
 
 
2.2	 STATISTICAL	AND	SYSTEMATIC	ERRORS	
 
Unfortunately, it turns out that the simple form of equation (3) is not the best way to assess the 
error in the mean value . At issue is the question of whether the individual uncertainties  
are appropriately assessed at the input to the calculation. It turns out, in general, to be difficult 
if not impossible to estimate the errors  just by assessing the measuring apparatus alone. 
To do the job right requires a distinction between two types of uncertainty in any given 
measurement, namely statistical and systematic errors. Statistical errors lead to random 
fluctuations of the individual measurements about their mean value , and it is the effects of 
these random fluctuations which can be reduced by performing a large number of 
measurements and reporting the mean value. Systematic errors affect all measurements the 
same way and hence do not make any contribution to fluctuations in the individual 
measurements ; therefore, the effects of systematic errors cannot be reduced by performing 
a large number of measurements and reporting the mean value. Because of their different 
natures and implications for the outcome of an experiment, statistical and systematic errors 
should always be assessed and reported separately. 
 
As an example, suppose it was desired to determine the voltage drop V across a resistor in a 
circuit to high accuracy by performing a large number of measurements Vi. Statistical errors 
would be responsible for the fact that all individual measurements Vi did not have exactly the 
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same value; systematic errors would arise if the voltmeter used were wrong by a constant scale 
factor – that is, if the voltmeter read systematically too high or too low. Statistical errors could 
be assessed by analyzing the spread of the distribution of individual measurements Vi; the 
systematic error could be assessed by doing a separate experiment to compare the voltmeter 
used to measure the Vi against a known standard. The best way to report errors is to assess the 
statistical and systematic effects separately and report them as such. In the circuit example, the 
result should be reported as: 
 
  (4) 
 
Reporting errors in this way conveys the maximum amount of information. The quantity  
could be assessed independently from the spread in the individual data values. The quantity 

 could be assessed independently by looking up the manufacturer's specifications for the 

voltmeter that was used. If it was desired to improve the accuracy to which  was known, one 
would first compare the statistical and systematic error values. If it turned out that the 
statistical error was largest, then one should perform additional measurements Vi to reduce 
that contribution to the total error. On the other hand, if the systematic error was largest, then 
one should attempt to perform an additional experiment to calibrate the measuring device. If 
the calibration factor were known, the original data could be corrected in compensation, 
resulting in a different value of with a smaller systematic uncertainty. 
 
For most of the experiments in this course, it will be sufficient to look up the manufacturer's 
specifications for absolute accuracy (systematic error) for the devices that you use. Be careful 
when you read the instruction manuals, as these specifications often differ depending on the 
absolute value of the input – for example, a digital voltmeter may be rated to an absolute 
accuracy of ±0.001 volts on the 0.1 - 1 volt scale and to an absolute accuracy of ±0.01 volts on 
the 1 - 10 volt scale. Changing voltmeter scales part way through an experiment could therefore 
result in a ‘jump’ of the data values as the systematic error of the voltmeter changes with the 
scale setting. If you need to change scales part way through a series of measurements, you 
should try to take a reading of exactly the same potential difference on two voltmeter scales to 
check the consistency of the data. 
 
 
2.3	 ASSESSMENT	OF	THE	STATISTICAL	ERROR	CONTRIBUTION	
 
It turns out that the best way to assess the statistical error in a measured quantity is to perform 
a reasonably large number of measurements under exactly the same conditions and examine 
the spread in the data values. We can define a quantity called the standard deviation σ of a 
data set, which quantifies the statistical fluctuations. First of all, we define the deviation of each 
data value from the mean, as the quantity: 
 
  (5) 
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Then, for large N, the standard deviation is essentially the root mean square (RMS) deviation of 
the data set from the mean value: 
 

  (6) 

  
The factor N - 1 in the denominator of equation (6) is referred to as the number of degrees of 
freedom in the data set. Obviously, this equation breaks down if N = 1, in which case we have 
only one data entry, i = 1, and we report . There is no information with which to assess 
the fluctuations in the data, so the case N = 1 is said to have ‘zero degrees of freedom’ – the 
single data entry in this case has no freedom to take on a different value since there is only one 
measurement. We are unable to assess the standard deviation σ in this case. As the number of 
data entries increases, we have increasingly more information with which to assess the 
statistical fluctuations, and our ability to assess the statistical error  improves. In this 
case, the standard deviation σ is a reliable measure of the deviation of each individual data 
entry from the mean value. The standard deviation σ has the interpretation that if one more 
entry is added to the data set, we would expect that entry to have a value in the range  

. Thus, we would expect that the individual error estimates which correctly account 
for the statistical fluctuations in the data set should be assessed as: 
 
  (7) 
 
in which case, it follows from the quadrature method that the uncertainty in the mean value  

, arising from the statistical fluctuations in individual data entries should be reported as: 
 

  (8) 

 
The correct way to report the result of N measurements to determine the mean value is 
then: 

  (9) 

where N ≥ 5 is the minimum number of data entries required to obtain a reasonable estimate 
of σ. Looking back at equation (3) in section 2.1, it is clear that a test for the reliability of the 
originally assessed errors  (i.e. the values you would initially record in your data table, 
before calculating the standard deviation) is to compare the values  with the value of σ 
defined in equation (6). If the  are much larger than σ after accounting for the overall 
systematic error as a separate contribution, then the  must have been initially 
overestimated. Likewise, if the data values fluctuate much more than the  would imply, 
then the original error values were underestimated. 
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2.4	 THE	GAUSSIAN	DISTRIBUTION	
 
The amazing thing about statistical errors is that the random fluctuations in data values for 
repeated measurements will always result in the same type of distribution of observed values 
provided that two conditions are met: 
 
 (i) the number of measurements N is large 
 
 (ii) the measurements are all done under the same conditions. 
 
This distribution is called the Gaussian or Normal distribution, and is given by: 
 

  (10) 

 
Equation (10) defines a normalized Gaussian distribution, which has the property: 
 

  (11) 
 
This distribution has a mean value  and a standard deviation σ which is consistent with the 
definition of equation (6) in the limit . A graph of the normalized Gaussian distribution 
function g(x) is shown in figure 1. 
 

 
 

Figure 1: Gaussian distribution y=g(x) with . 
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The interpretation of the normalized Gaussian distribution g(x) is that the probability of 
observing a particular value of x in the range in a series of repeated 
measurements is given by g(x) dx. In other words, g(x) is a probability density distribution. Since 
the probability of observing any value at all as the outcome of a given measurement must be 

equal to 1, it follows that , as stated in equation (11). 

 
The probability density g(x) has its maximum value at , and its full width at half maximum 
value (fwhm) is 2.355σ;  of the data entries lie within ±σ of  and the remaining  of the 
entries are more than one standard deviation away from the mean value. Since g(x) is 
normalized to unity and its width is proportional to σ, it follows that a wider distribution will 
have a smaller maximum value. For comparison, a graph of two normalized Gaussian 
distributions g1(x) and g2(x) versus x with different standard deviations 	 and 	 is shown in 
figure 2. Incidentally, if a set of normalized distributions  is plotted as a function of the 

dimensionless ratio , then all of the distributions lie on a single universal curve, as shown 

in figure 3. 
 
 

 

Figure 2: Gaussian distributions with the solid curve has , and 
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Figure 3: Universal curve: , which describes all Gaussian distributions. 
 
To study a particular distribution of data values  and make a comparison with the expected 
Gaussian distribution g(x), it is necessary to sort the data values into ‘bins’ and draw a 
histogram of the distribution of data entries. Some care is required to choose the optimum bin 
size for a given data set – if the bins are too large, then all data values will fall into one or two 
bins, and the resolution of the histogram will be too low for a meaningful comparison with the 
expected distribution. On the other hand, if the bins are too small, then there will be relatively 
few entries in each bin, and the experimental information will be too ‘spread out’ to make much 
sense. The optimally selected histogram should have 10-20 bins containing all the data, and 
consists of a set of bin contents n(j) for each bin j, corresponding to a fixed value  at the 
center of the bin, with a total of  data entries. 
 
To compare the data histogram to the expected Gaussian shape, we can make use of the 
interpretation of g(x) as a probability density distribution. Since g(x)dx gives the probability of 
obtaining a data value within dx of x for any given measurement, then it follows that  
must be the probability of obtaining a data value lying in the jth bin of the discrete histogram, 
with bin size . The expected number of measurements whose values lie in the jth bin,  
n(j), is the total number of measurements N multiplied by the probability of a measurement 
occurring in the jth bin. Thus: 
 

 (12) 
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For a data set of finite size, the histogram entries n(j) will deviate randomly from their expected 
values given in equation (12); the size of these random deviations, as expected from statistical 
analysis, is given by: 
 

 
  (13) 
 
 
The random relative deviation between a given histogram bin entry n(j) and its expected value 
from the Gaussian distribution is therefore given by: 
 

  (14) 

 
For a given size of data set, the binning should be optimized so that the relative deviations of 
the bin entries are reasonably small for most of the bins – otherwise, the real data histogram 
cannot be expected to look very much like the Gaussian distribution of equation (12) even 
though the data set itself may be perfectly consistent with that description! These points are 
illustrated with the set of graphs that follows. 
 
For a finite sized data set, we should take care to distinguish between the true mean  and 
standard deviation σ	 of the ‘parent distribution’ and the mean and standard deviation of the 
actual data set, referred to as the ‘sample mean’ and ‘sample standard deviation’. To be 
perfectly clear, we should use different symbols to distinguish those quantities calculated from 
the actual data sample, e.g. and  (equations 2 and 6), from those which define the true 
Gaussian distribution (equations 10 and 12). The central idea here is that any finite data set 
consists of a number of measurements N which are randomly scattered about the true or 
parent distribution. As the number of measurements becomes very large, the statistical 
fluctuations in the data set will tend to average out, and the actual measured data histogram 
approaches the true distribution defined in equation (12). In this limit, the sample mean and the 
mean of the parent distribution will approach exactly the same value, and likewise for the 
sample and parent standard deviation.  
 
The random discrepancies between  and , and between  and σ scale with ; 

for a finite-sized sample, both  and  should be accurate to within an error of  
(standard deviation of the respective quantities). For the distributions illustrated in the next few 
figures, the actual data set (histogrammed, with error bars according to equation (13)) is 
compared to the parent distribution (solid line, equation (12)). For the sample of 100 data 
entries, the parent mean  was 62.50 as compared with the sample mean  of 61.72; the 
parent standard deviation σ was 12.00 as compared with the sample standard deviation of 
11.12. These small discrepancies are consistent within the expected uncertainty range of 

. 
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Figure 4: Random data sample (points) from a parent distribution (solid line) with = 62.50, σ 
= 12.00. For 100 data entries distributed and a bin size of 10 units, the data histogram gives a 
fairly good representation of the parent Gaussian distribution. 
 
 

 

Figure 5: Random data sample (points) from a parent distribution (solid line) as in the previous 
figure. For 100 data entries and a bin size of 2 units, the statistical fluctuations in the data 
histogram are too large for it to look very much like the parent distribution. 

x
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Figure 6: Random data sample (points) from the same parent distribution (solid line) as the 
previous figures. For the first 20 data entries with a bin size of 5 units, the data histogram has 
relatively large fluctuations. The sample mean is 60.64 compared with the parent mean of 62.5. 
There are not enough points to adequately test whether the data distribution fits well to a 
Gaussian or to some other function. 
 
  



15 
 

PROBLEM	(2.4.1) 
 
The distribution of student marks on a recent PHYS 1020 term test consisting of 30 questions is 
summarized in the data set below: 
 
 

Mark out of 30 Number of Students 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

4 
1 
7 
11 
15 
33 
36 
34 
51 
62 
55 
61 
48 
49 
43 
41 
30 
29 
19 
11 
8 
2 
5 
2 

 
 
a) Plot a histogram of this student mark distribution. Each point should be drawn with an 

appropriate statistical error bar, as described in section 2.4. 
b) Calculate the mean and standard deviation of the mark distribution. 
c) Assume that the marks are distributed according to a Gaussian distribution with the mean 

and standard deviation calculated in part b), and use this information to draw a solid line on 
the graph corresponding to this Gaussian distribution. (Your final graph should be identical 
in style to figure 4.) Calculate the fwhm of the Gaussian; then σ = fwhm/2.355. Does this 
agree with the result from (b)? Comment on the agreement between the data set and the 
Gaussian distribution. 
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2.5	 PROPAGATION	OF	ERRORS	IN	A	CALCULATION	
 
Often, a set of basic quantities is measured in order to determine the value of some particular 
function of these quantities which has a physical significance. If the set of experimentally 
measured quantities consists of the data values:  and the function to be 
evaluated is denoted , then we need to establish the correct procedure to evaluate 
the uncertainty  in terms of the individual measurement errors . In the case 
where the individual relative errors  are small (which they must be if you have done 
a reasonably good job of the measurements!), then differential calculus may be used to 
evaluate the uncertainty . The calculation proceeds in two stages. 
 

(i) evaluate the change  resulting from a change in the particular data value a, 
given by  

 
 (ii) add the contributions of  from the independent data values in quadrature. 
 
Thus: 

  (15) 
 
Incidentally, point (ii) above gives the correct approach for combining standard deviations of 
statistical (Gaussian) error distributions, as it must do, in order to be consistent with our 
discussions of the previous section. 
 
As a specific example of how to combine measuring errors, suppose that an experimental study 
of Joule heating in a resistor is performed. An ammeter and digital ohm-meter are used to 
measure the values  respectively. The Joule heating power is calculated as  

 from these data values, where  hence: 
 

  

 
and, 

  

 
A crucial assumption which restricts the applicability of equation (15) is that the measured 
values (a, b, ...) must be independent of each other; if they are not independent, then the chain 
rule must be used to correctly determine the change in the function f resulting from a change in 
the input values. A safer way to do the calculation is to re-express the function f in terms of 
independent variables only and then use equation (15). For example, if we want to assess the 
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error in a function f(a, b, c) = a2b+c and b = sin(a), we can use the chain rule, noting that there 
are really only two independent variables, a and c: 
 

  

 
which yields the same result for as if we had started by reuniting the original function as 

. 
 
PROBLEMS  
(2.5.4 - 2.5.7 are taken from D. C. Baird) 
 
2.5.1  Show that if f = a – b, and a and b are independent, then  
 

2.5.2  Show that if f = abn and a and b are independent, then  

 

2.5.3  Show that if , and a and b are independent, then  

 
2.5.4 A value is quoted as 6.74914±0.5%. State it as a value ± an absolute uncertainty, 

both with the appropriate number of significant figures. 
 
2.5.5 A simple pendulum is used to measure the acceleration of gravity, using the 

formula: . The period T was measured to be 1.24±0.02 sec, and the 
length ℓ was measured to be 0.381±0.002 m. Evaluate the resulting experimental 
value of g with its correct absolute and relative uncertainty. 

 
2.5.6 A diffraction grating is used to measure the wavelength of light using the 

equation . The value of θ is measured to be 13°34’±2’. Assuming 
that the value of d is 1420×10-9m and that its uncertainty can be ignored, what 
are the absolute and relative uncertainties in the value of λ? 

 
2.5.7 A simple pendulum is used to measure g using the equation . 

Twenty measurements of T give a mean of 1.82 sec and a standard deviation of 
0.06 sec. Ten measurements of ℓ give a mean value of 0.823 m and a standard 
deviation of 0.014 m. What is the statistical error in the resulting value of g? 

( )( )

2

2
2 2

22 2

2 ( )

2 sin( ) cos( ) ( )

f a b c

bf ab a a c
a

a a a a a c

d d d

d d

= +

¶æ öæ ö= + +ç ÷ç ÷¶è øè ø

= + +

fd
2 sinf a a c= +

2 2f a bd d d= +

( ) ( )2 2f a n b
af b= +d d d

af
b

= ( ) ( )2 2f a b
af b= +d d d

2T gp= !

sin( )dl q=

2T gp= !
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Under these conditions, how many more of each type of measurement would be 
required to reduce the statistical error in g by one half? 

 
 
2.6	 	 LEAST	SQUARES	FIT	TO	A	STRAIGHT	LINE	
 
Often, analysis is performed on experimental data to test and/or exploit a linear relationship 
between different physical quantities. A simple example relevant to this course would be an 
experimental test of Ohm’s Law: . The goals of the data analysis in this case would be: 
 
 (i) to determine whether the relationship between V and I is linear 
 (ii) to determine the slope, R, of the best straight line through the points. 
 
These two goals can be addressed by drawing a careful graph of the experimental data, but it 
will also be necessary to establish a technique for finding the best straight line through the data 
points that is more rigorous than the ‘eyeball fit’ method that you will have used in first year 
science courses. There are several versions of the ‘least squares fit’ to polynomial functions 
which are widely used and described in textbooks on data analysis that will do the job of finding 
the best line under a given set of conditions. In this section, we will develop the equations 
needed to find the best straight line through a set of data points (xi, yi) under the simplifying 
conditions that: 
 
 (i) the uncertainties δxi in the ‘control variable’ are small enough to be ignored. 

 (ii) the uncertainties δyi in the ‘dependent variable’ are all approximately equal. 
 
This turns out to be the simplest case possible for introducing the least squares method, and is 
referred to as an ‘unweighted linear least squares fit’. 
 
The idea is to find the slope and intercept of the best fit line: 
 
  (16) 
  
which passes most closely through a set of N > 2 data points (xi, yi). If we consider the ith data 
point (xi, yi), the difference in y between this point and the best fit line is the deviation of the ith 
point from the line, given by: 
 
  (17) 
 
The deviations Δyi form a set of N numbers which can be positive or negative; the best line is 
specified by values of m and b which minimize the sum of absolute deviations  over the set 
of N data points – this guarantees that the line will be as close as possible to the set of N data 
points. To perform the minimization, note that: 
 

V IR=

y mx b= +

( )i i iy y mx bD = - +

iyD
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and hence, the problem is solved by finding the unique values of m and b which minimize the 
sum of squared deviations: 
 

  (18) 

 
To perform the minimization, we note that the data values (xi, yi) are fixed, and the only 
variables which M depends on are the slope m and the intercept b. Therefore, we obtain two 
equations to determine our two unknowns m and b: 
 

  (19) 

  (20) 

 
The solution to equations (19) and (20) is straightforward but a little tedious. The following 
exercises will lead you through the deviations: 
 
 
PROBLEMS	
 
2.6.1 Show that equation (19) can be rewritten as: 
 
  (21) 

 
2.6.2 Show that equation (20) can be rewritten as: 
 
  (22) 

 
2.6.3 Rearrange equations (21) and (22) to show that: 
 

  (23) 

 
and 

 

  (24) 
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The uncertainties δm and δb are evaluated through the dependences of m and b 
on the data values (xi,yi) and the measurement uncertainties . (Recall that 
we made the initial simplifying assumption that  for all xi for this 
particular type of least squares fit.) Formally, then: 

 

  (25) 

 
and 

 

  (26) 

 
The correct equations for δm and δb are: 

 

  (27) 

   
 

and 
 

  (28) 

 
where, as before: 

 
  
 

and the factor 
 

  (29) 

 
which enters both equations (27) and (28) is the standard deviation of the 
distribution of yi values with respect to the line . The factor (N - 2) in 
the denominator of equation (29) accounts for the fact that two parameters (m, 
b) have been determined from the data set, reducing the number of degrees of 
freedom from N to (N - 2). 
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2.6.4 (adapted from D. C. Baird) 
 

An experiment was performed to measure the impedance Z of a series R - L 
circuit as a function of frequency f. The expected relationship for the circuit 
investigated is: 

 
  

 
where R is the resistance measured in ohms (Ω), L is the inductance measured in 
Henries (H) and f is the frequency in Hz. The impedance Z was measured as a 
function of f, as shown in the data table below. A graph of Z2 versus f 2 is 
expected to yield a straight line whose slope can be used to determine the 
inductance L: 

 
f (Hz) Z (Ω) 

123±4 
158 
194 
200 
229 
245 
269 
292 
296 

7.4±0.2 
8.4 
9.1 
9.6 
10.3 
10.5 
11.4 
11.9 
12.2 

 
In the following exercises you must show all of your calculations and formulas 
in order to receive full marks! 

 
a) Reduce these data in order to plot them in the manner indicated on a sheet of 

graph paper, and draw error bars to show the uncertainties on the data points. 
(Set up a new data table with additional columns to allow for the quantities you 
need to calculate, together with their uncertainties, in order to draw the graph.) 
Make sure the graph is neatly drawn and clearly labelled. 

 
b) Using a clear plastic ruler, draw the best ‘eyeball fit’ solid line through the points, 

attempting to minimize the distance between the line and the set of data points 
by eye. Calculate the slope of this line, and the corresponding value of L. 

 
c) Draw dotted lines on your graph corresponding to the largest and smallest 

reasonable slopes that would be consistent with the data (in your opinion), and 
extract from the slopes of these lines an uncertainty range for the value of L. The 

2 2 2 2 24Z R f Lp= +
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range does not have to be symmetric about the optimum value obtained in part 
b)! 

 
d) From the intercepts for the lines drawn in (b) and (c), obtain the best value for R 

and an uncertainty range for this value. 
 
e) Perform an unweighted least squares fit to obtain the slope and intercept of the 

best line through the data points. Use the formulae given in this section of the 
lab manual in order to obtain the uncertainties in the slope and intercept of the 
line. Deduce the corresponding values of R and L and their uncertainties. 

 
f) Compare your findings for R and L and their uncertainties for the two methods 

used to analyze the data, and comment on the results. 
 


