April 11, 2019, 9 am-12 noon
FINAL EXAM
PAGE NO.: 1 of 7
DEPARTMENT \& COURSE NO.: PHYS 2610
TIME: 3 hours
EXAMINATION: Circuit Theory and Introductory Electronics
EXAMINER: W Ens
One letter-sized sheet of notes (both sides) is permitted.
Questions 4 and 7 are worth 15 marks. All the others are worth 10 . The total is 100 .

10 marks

1. (a) In the circuit shown below left, what is the current in R_{3} if $\frac{R_{1}}{R_{4}}=\frac{R_{2}}{R_{5}}$?
(b) In the same circuit, what is the equivalent resistance between points A and B if $\frac{R_{1}}{R_{4}}=\frac{R_{2}}{R_{5}}$?
(c) For the circuit shown below right, what would a voltmeter with a $1 \mathrm{M} \Omega$ input resistance read across $V_{\text {out }}$ if (i) $R=1 \mathrm{k} \Omega$, and if (ii) $R=1 \mathrm{M} \Omega$

10 marks
2. For the band pass filter shown below, sketch the gain in dB as a function of the \log of the angular frequency ω (in rad/s). Make the sketch to scale on the graph provided. Use $C_{1}=1 \mu \mathrm{~F}, R_{1}=1 \mathrm{k} \Omega, C_{2}=100 \mathrm{pF}$ and $R_{2}=10 \mathrm{k} \Omega$. Take $R_{4}=0$, so the op amp simply acts as a voltage follower allowing the two RC filters to be treated independently.

April 11, 2019, 9 am-12 noon
FINAL EXAM
PAGE NO.: 2 of 7
DEPARTMENT \& COURSE NO.: PHYS 2610
TIME: 3 hours
EXAMINATION: Circuit Theory and Introductory Electronics
EXAMINER: W Ens
10 marks 3. For the RLC circuit shown, find the Thevenin equivalent circuit if $L=100 \mathrm{mH}, R=400 \Omega, C=1 \mu \mathrm{~F}$, and the input is sinusoidal with an angular frequency of $2000 \mathrm{rad} / \mathrm{s}$ and an amplitude of 10 V . What load impedance will ensure maximum power transfer? What is the equivalent circuit at resonance?

15 marks 4. Sketch the output waveforms expected when a $100 \mathrm{~Hz}, 10 \mathrm{~V}$ (peak) sine wave is applied to the circuits (a) and (b) below. Specify important voltage levels and time scales. The input is on the left and the output is on the right.

(c) Sketch the output waveform to scale for the following circuit with the input as shown.

FINAL EXAM
PAGE NO.: 3 of 7
TIME: 3 hours
EXAMINER: W Ens

10 marks 5. (a) Design an H-biased common emitter amplifier circuit with a gain of 5, that will set a reasonable operating point for a transistor with the characteristics shown below. What is the approximate maximum input signal amplitude that can be used before the output is clipped or distorted?
(b) How would you change the biasing to use the same transistor in an emitter follower amplifier?

10 marks 6 . Draw a simplified ac equivalent circuit for the amplifier of question 5 a , and estimate the midband voltage gain and input and output impedances. Use $r_{\mathrm{be}}=1 \mathrm{k} \Omega$. How would the gain and input impedance change if a bypass capacitor were used across the emitter resistor?

April 11, 2019, 9 am-12 noon
FINAL EXAM
PAGE NO.: 4 of 7
DEPARTMENT \& COURSE NO.: PHYS 2610
TIME: 3 hours
EXAMINATION: Circuit Theory and Introductory Electronics

15 marks 7. (a) Find the complex gain for the following circuit when $\omega=1 / R_{2} C_{2}$.

(b) When the open loop gain of an op amp is considered to be finite, the gain of the inverting amplifier below is given by $a=\frac{-a_{o} R_{2}}{R_{1}+R_{2}+a_{o} R_{1}}$. Suppose the magnitude of the gain decreases by 3 dB from its dc value at a frequency of 100 kHz when $R_{2}=1.0 \mathrm{k} \Omega$. What will be the $3-\mathrm{dB}$ frequency for $R_{2}=100 \mathrm{k} \Omega$? Assume the open loop gain decreases at 20 dB per decade.

(c) Design an op-amp circuit that will take the derivative of one signal and add it to the integral of a second signal. It is not necessary to specify component values.

10 marks 8. (a) A half adder takes two inputs (A, B) and generates two outputs ($A \cdot B, A \oplus B$). Using $A \oplus B=\overline{\overline{A+B}+A \cdot B}$, show how to implement a half adder using 3 gates selected from AND, NAND, OR, and NOR. A full adder takes three inputs (A, B, C) and provides two outputs $(A \oplus B \oplus C, A \cdot B+A \oplus B \cdot C)$. Show how to implement a full adder using 7 gates.
(b) Write the truth table for the following gate schematic. (P is called the parity.)

April 11, 2019, 9 am-12 noon
FINAL EXAM
PAGE NO.: 5 of 7
TIME: 3 hours
EXAMINER: W Ens

10 marks 9. (a) Initially $R=S=Q=0 \mathrm{~V}$ on the RS flip flop shown below. At time $t=0, S$ goes to 1 . Sketch v_{A} as a function of time.

(b) Identify the function of each of the following gates.
(a)

(b)

(c)

The End

April 11, 2019, 9 am-12 noon
FINAL EXAM
PAGE NO.: 6 of 7
DEPARTMENT \& COURSE NO.: PHYS 2610
TIME: 3 hours
EXAMINATION: Circuit Theory and Introductory Electronics

PHYS 2610: Final Exam Formula Sheet 2017

Current: $i=\frac{d q}{d t}=\int \mathbf{J} \cdot \overrightarrow{d a}$
Steady state: $\frac{d i}{d t}=0 ; \oint \mathbf{J} \cdot \overrightarrow{d a}$
Ohm's law: $\mathbf{J}=\sigma \mathbf{E}=\frac{\mathbf{E}}{\rho} \Rightarrow v=i R$ with $R=\rho \ell / A \quad$ Current density: $\mathbf{J}=n e \vec{v}_{d}$
Gauss's law: $\oint \mathbf{E} \cdot \overrightarrow{d a}=q_{n e t} / \varepsilon_{0}$
Electric potential and potential energy: $V=U / q ; d U=q d V$
Potential difference and emf: $\int_{a}^{b} \mathbf{E} \cdot \overrightarrow{d l}=-\left(V_{b}-V_{a}\right) ; \oint \mathbf{E} \cdot \overrightarrow{d l}=0$
Power: $P=v i$
Capacitor: $q=C V, U=q^{2} /(2 C)$
Solution to $\frac{d y}{d x}+a x=b$ has the form $y=A e^{-a x}+b / a$
Faraday's law: $\varepsilon_{i n d}=\int_{a}^{b} \mathbf{E} \cdot \overrightarrow{d l}=-\frac{d}{d t} \int \mathbf{B} \cdot \overrightarrow{d a}=-L \frac{d i}{d t}$
Inductor: $\mathcal{E}=L \frac{d i}{d t}$
Magnetic field of ideal solenoid: $B=\mu_{0} n I$
Euler's formula: $e^{j \theta}=\cos \theta+j \sin \theta$
Complex impedance: $Z=R+j X=|Z| e^{j \phi} ; \tilde{v}=Z \tilde{\imath} ; v=\operatorname{Re}(\tilde{v})=V \cos \omega t$
Capacitive impedance: $Z_{C}=-j X_{C}=\frac{1}{j \omega C} \quad$ Inductive impedance: $Z_{L}=j X_{L}=j \omega L$
Series impedance: $Z=\sum Z_{i} \quad$ Parallel impedance: $\frac{1}{Z}=\sum \frac{1}{z_{i}}$
Voltage gain: $a=\frac{v_{\text {out }}}{v_{\text {in }}}$
Gain in dB: $G_{d B}=20 \log \left|\frac{v_{2}}{v_{1}}\right|$
Q Factor: $Q=\omega_{0} L / R$

April 11, 2019, 9 am-12 noon
FINAL EXAM
PAGE NO.: 7 of 7
DEPARTMENT \& COURSE NO.: PHYS 2610
TIME: 3 hours
EXAMINATION: Circuit Theory and Introductory Electronics
Schockley diode equation: $I=I_{S}\left(e^{e V / \eta k T}-1\right) ; \eta$ is the ideality factor ~ 2 for Si
Bipolar transistor current gains: $\alpha=\frac{I_{C}}{I_{E}} ; \beta=\frac{I_{C}}{I_{B}}$
DeMorgan's theorems: $\overline{A+B}=\bar{A} \cdot \bar{B} ; \quad \overline{A \cdot B}=\bar{A}+\bar{B} ; A \cdot B=\overline{\bar{A}+\bar{B}} ; \quad A+B=\overline{\bar{A} \cdot \bar{B}}$
Half adder: $S=A \oplus B ; \quad C=A \cdot B$
Full adder: $S_{n}=A_{n} \oplus B_{n} \oplus C_{n-1} ; \quad C_{n}=A_{n} \cdot B_{n}+C_{n-1} \cdot\left(A_{n} \oplus B_{n}\right)$
Ones' complement: complement each bit
Two's complement: one's complement plus 1

Phys 2610 (2019) Final Exam solutions

1. (a) In the circuit shown below left, what is the current in R_{3} if $\frac{R_{1}}{R_{4}}=\frac{R_{2}}{R_{5}}$?
(b) In the same circuit, what is the equivalent resistance between points A and B if $\frac{R_{1}}{R_{4}}=\frac{R_{2}}{R_{5}}$?
(c) For the circuit shown below right, what would a voltmeter with a $1 \mathrm{M} \Omega$ input resistance read across $V_{\text {out }}$ if (i) $R=1 \mathrm{k} \Omega$, and if (ii) $R=1 \mathrm{M} \Omega$

(a) With R_{3} removed, $V_{c}=V \frac{R_{4}}{R_{1}+R_{4}}=V \frac{1}{1+R_{4} / R_{1}} \quad \& \quad V_{D}=V \frac{1}{1+R_{5} / R_{2}}$

$$
\Rightarrow V_{c}=V_{D} \text { if } \frac{R_{4}}{R_{1}}=\frac{R_{5}}{R_{2}} . \quad \therefore I_{3}=0
$$

(Note the T heverin V altage between $C+D$ with R_{3} removed is $V_{t h}=V_{c}-V_{D}=0$)
(b)

If $I_{3}=0, R_{3}$ can be ignored $\Rightarrow R_{A B}=\left(R_{1}+R_{4}\right) / /\left(R_{2}+R_{5}\right) \quad[1]$

$$
R_{3} \text { can also be shooed } \Rightarrow R_{A B}=R_{1} / / R_{2}+R_{4} / / R_{5} \quad[2]
$$

lither result, without simplification is good for full credit, but both reduce to the same simpler expression using $\frac{R_{1}}{R_{4}}=\frac{R_{2}}{R_{5}}$
$[1]=\left(R_{1}+R_{4}\right) / /\left(R_{2}+R_{5}\right)=\left(\frac{1}{R_{1}+R_{4}}+\frac{1}{R_{2}+R_{5}}\right)^{-1}$ but $\frac{1}{R_{2}+R_{5}}=\frac{1}{R_{2}+R_{2} R_{4} / R_{1}}=\frac{R_{1}}{R_{2}\left(R_{1}+R_{4}\right)}$ using $R_{5}=R_{2} R_{4} / R_{1}$
so $R_{A B}=\left(\frac{R_{2}+R_{1}}{R_{2}\left(R_{1}+R_{4}\right)}\right)^{-1}=\frac{R_{2}\left(R_{1}+R_{4}\right)}{R_{1}+R_{2}}$
$[2]=R_{1} / / R_{2}+R_{4} / / R_{5}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}+\frac{R_{4} R_{5}}{R_{4}+R_{5}} \quad$ lent $\frac{R_{4} R_{5}}{R_{4}+R_{5}}=\frac{R_{4} R_{2} R_{4} / R_{1}}{R_{4}+R_{2} R_{4} / R_{1}}=\frac{R_{2} R_{4}}{R_{1}+R_{2}}$ using $R_{5}=R_{2} R_{4} / R_{1}$
so $R_{A B}=\frac{R_{2}\left(R_{1}+R_{4}\right)}{R_{1}+R_{2}}$
(c)

(ii) $V \frac{1}{[}\left\{\begin{array}{l}=1 m s \\ R \xi R) V_{\text {out }}\end{array} \quad V_{\text {out }}=V_{\text {in }} \frac{R / / R}{R+R / \mathbb{R}}=V_{\text {in }} \frac{R / 2}{3 / 2 R}=\frac{V_{\text {in }}}{3}=4 \mathrm{~V}\right.$
2. For the band pass filter shown below, sketch the gain in dB as a function of the \log of the angular frequency ω (in rad /s). Make the sketch to scale on the graph provided. Use $C_{1}=1 \mu \mathrm{~F}, R_{1}=1 \mathrm{k} \Omega, C_{2}=100 \mathrm{pF}$ and $R_{2}=10 \mathrm{k} \Omega$. Take $R_{4}=0$, so the op amp simply acts as a voltage follower allowing the two RC filters to be treated independently.

$\Rightarrow|a|=\frac{1}{\sqrt{1+(\omega R C)^{2}}}$ so $\left.\begin{array}{rl}\omega=1 / R C & \Rightarrow|a|=1 / \sqrt{2} \\ \omega<1 / R C & \Rightarrow|a|=1 \\ \omega>1 / R C & \Rightarrow|a|=1 / \omega R C \\ & \Rightarrow 20 \log |a|=-20 \log R C-20 \log \omega\end{array}\right\}$

There $\omega_{B_{2}}=1 / R_{2} c_{2}=10^{6} \mathrm{rad} / \mathrm{s}$

Overall gain is product $a=a_{1} a_{2}$ or the sum in $d B \quad G_{d B}=G_{d B 1}+G_{d B 2}$
But when one gain is not unity $\left(G_{J B} \neq 0\right)$, the other is unity $\left(G_{d B}=0\right)$, so combining
3. For the RLC circuit shown, find the Thevenin equivalent circuit if $L=100 \mathrm{mH}, R=400 \Omega, C=1 \mu \mathrm{~F}$, and the input is sinusoidal with an angular frequency of $2000 \mathrm{rad} / \mathrm{s}$ and an amplitude of 10 V . What load impedance will ensure maximum power transfer? What is the equivalent circuit at resonance?

Theremin voltage $=$ open cot output $=\frac{v_{i} R}{3}$ where $z=R+j(\omega L-1 / \omega c)=|z| e^{j \theta}$
where $|z|=\sqrt{R^{2}+(\omega L-1 / \omega c)^{2}}+\tan \theta=\frac{\omega L-1 / \omega c}{R}$
So $v_{\text {th }}=\frac{V_{i} R}{|z|} e^{j(\omega t-\theta)}$

Using the given valuer,

$$
\begin{aligned}
& X_{L}=\omega L=(2000)\left(100 \times 10^{-3}\right)_{\Omega}=200 \Omega \\
& X_{C}=1 / \omega C=1 /(2000)\left(10^{-4}\right)^{\Omega}=500 \Omega
\end{aligned}
$$

so $\quad|z|=\sqrt{R^{2}+\left(X_{c}-x_{c}\right)^{2}}=\sqrt{400^{2}+(200-500)^{2}} \Omega=500 \Omega$
\& $\theta=\arctan \frac{X_{L-}-x_{c}}{R}=\arctan \left(\frac{-300}{400}\right)=-37^{\circ} n-0.643 \mathrm{rad}$
so $v_{\text {th }}=(8 v) e^{j(\omega t+0.643)}$ (magnitude is enough for full credit)

Thevenin Impedance $=$ resistance with voltage source replaced by a shat cot.

$$
=R \| j(\omega L-\omega C)
$$

Using the giver valuer, $Z_{t h}=400 \Omega / / j(-300 \Omega)=\frac{-120000 j}{400-300 j} \Omega=\frac{-1.2 k j(4+3 j)}{5^{2}} \Omega$

$$
=\frac{3.6 h}{25}-\frac{4.8 h}{25} j \Omega=144-192 j \Omega
$$

Max power hanger:

$$
z_{L}=\delta_{+h^{*}}=144+192 j \Omega
$$

Then $v_{\text {th }}=v_{0}=v_{i}$ eq' t et:

4. Sketch the output waveforms expected when a $100 \mathrm{~Hz}, 10 \mathrm{~V}$ (peak) sine wave is applied to the circuits (a) and (b) below. Specify important voltage levels and time scales. The input is on the left and the output is on the right.
(a)

For input $>0.6 \mathrm{~V}$, both dioder turn on, so the equiv. circint is:

Jo $0.6 \mathrm{~V}>$ input $>-6.3 \mathrm{~V}$, both diodes are off:

For input $<-6.3 V$, the goner beater down:

(b)

This is a filtered $1 / 2$ wave rectifin
Input period: $T=1 / f=1 / 100 \mathrm{~Hz}=10 \mathrm{~ms}$
RC time const: $\quad \tau=R C=10 \mathrm{ks} \cdot 1 \mu F=10 \mathrm{~ms}$

The peak output is $V_{p}=V_{\text {in }}-V_{t}=9.4 \mathrm{~V}$
The decay: $v_{\text {out }}=V_{p} e^{-t / \tau} \Rightarrow q_{n} t=T=\tau$, $v_{\text {out }}=V_{p} / e=3.5 \mathrm{~V}$
(c) Sketch the output waveform to scale for the following circuit with the input as shown.

For input $>2.6 \mathrm{~V}$, the diode turn on:

Fo input $<2.6 \mathrm{~V}$, the diode is off:

5. (a) Design an H-biased common emitter amplifier circuit with a gain of 5, that will set a reasonable operating point for a transistor with the characteristics shown below. What is the approximate maximum input signal amplitude that can be used before the output is clipped or distorted?
(b) How would you change the biasing to use the same transistor in an emitter follower amplifier?

(a) From load line \& op point shown,
(1) $V_{c c}=10 \mathrm{~V}$ and $R_{c}+R_{E}=\frac{V_{c c}}{8 m A}=1.25 \mathrm{k} \Omega$
(2) For a gain of $(-) 5, \quad R_{C} / R_{E}=5$

Then $5 R_{E}+R_{E}=1.25 \mathrm{k} \Rightarrow \Rightarrow R_{E}=208 \Omega$

> load line:
$V_{c C}-I_{C}\left(R_{C}+R_{E}\right)-V_{C E}=0$
$\rightarrow I_{c}=\frac{V_{c c}}{R_{c}+R_{E}}-\frac{V_{c E}}{R_{c}+R_{E}}$
and $R_{c}=1.25 \mathrm{~h} \Omega-R_{E} \Rightarrow R_{c}=1042 \Omega$
(3) At op. pt. $I_{C} \cong I_{E}=3.8 \mathrm{~mA}$ so $V_{E}=I_{E} R_{E}=0.79 \mathrm{~V} \rightarrow V_{B}=V_{E}+0.6 \mathrm{~V}=1.39 \mathrm{~V}$
(4) $V_{B}=V_{c c} \frac{R_{2}}{R_{1}+R_{2}}$ if $I_{2} \gg I_{B}$. Choosing $I_{2}=20 I_{B}$ at the op. pt, $I_{2}=20(20 \mu \mathrm{~A})=0.4 \mathrm{~m} \mathrm{~A}$

Since $V_{B}=I_{2} R_{2}, R_{2}=V_{B} / I_{2}=1.39 \mathrm{~V} / 0.4 \mathrm{~mA} \Rightarrow R_{2}=3.48 \mathrm{k} \Omega$
Also $I_{2}=\frac{V_{c c}-V_{B}}{R_{1}} \Rightarrow R_{1}=\frac{V_{c c}-V_{B}}{I_{2}}=\frac{(10-1.39) \mathrm{V}}{0.4 \mathrm{~mA}} \Rightarrow R_{1}=21.5 \mathrm{k} \Omega$
The output amplitude cannot exceed $\sim 4.5 \mathrm{~V}$, so the input must be smaller than $\frac{4.5 \mathrm{~V}}{5}=0.9 \mathrm{~V}$.
(
(b) For an emitter follower, R_{C} is removed so $R_{E}=1.25 \mathrm{k} \Omega$ to give the same operating pts. This would raise V_{E} to $I_{C} R_{E}=4.75 \mathrm{~V}+V_{B}$ to 5.35 V . Then $R_{1}+R_{2}$ would be changed to provide thin voltage,
6. Draw a simplified ac equivalent circuit for the amplifier of question 5 a, and estimate the midband voltage gain and input and output impedances. Use $r_{\mathrm{be}}=1 \mathrm{k} \Omega$. How would the gain and input impedance change if a bypass capacitor were used across the emitter resistor?

gain: $a=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{-\beta_{i b} R_{c}}{i b \Lambda_{b e}+(\beta+1) R_{E}} \cong-\frac{R_{c}}{R_{E}} \rightarrow a=-5$ (Dy design)
input impedance: $\Omega_{\text {in }}=R_{1} / / R_{2} / /\left(\Omega_{\text {be }}+(\beta+1) R_{E}\right) \cong R_{1} / / R_{2} / / \beta R_{E}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{\beta} R_{E}\right)^{-1}$

$$
\Rightarrow \Omega_{\text {in }}=\left(\frac{1}{3.5 k}+\frac{1}{21.5 k}+\frac{1}{(190)(208)}\right)^{-1} \Omega \rightarrow \Omega_{\text {in }}=2.8 k \Omega
$$

output impedance: $\Lambda_{\text {out }}=\frac{v_{\text {out }} \text { (open) }}{i_{\text {out }} \text { (short) }}=\frac{-\beta i_{b} R_{c}}{-\beta i_{b}}=R_{c} \rightarrow \Omega_{\text {out }}=1042 \Omega$
with bypass capacity across R_{E} :

gain: $a=\frac{v_{\text {out }}}{N_{\text {in }}}=\frac{-\beta i_{b} R_{c}}{i_{b} \pi_{b e}}=\frac{-\beta R_{c}}{r_{b e}}=\frac{-(190)(1042)}{1000} \rightarrow a=-198$
input impedance: $\Omega_{\text {in }}=R_{1} / / R_{2} / / \Omega_{b e}=\left(\frac{1}{21.5 k}+\frac{1}{3.48 k}+\frac{1}{1000}\right)^{-1} \Omega$

$$
\Rightarrow \Omega_{\text {in }}=750 \mathrm{~s}
$$

7. (a) Find the complex gain for the following circuit when $\omega=1 / R_{2} C_{2}$.

\qquad

$$
v_{\text {in }}=v_{+}=v_{-}=\frac{v_{\text {out }} R_{1}}{R_{1}+g_{2}} \text { where } g_{2}=R_{2} / /\left(1 / j \omega c_{2}\right)
$$

$$
\text { or } g_{2}=R_{2} / /\left(-j R_{2}\right) \quad \text { fo } \omega=1 / R_{2} C_{2}
$$

$$
=\frac{-j R_{2}^{2}}{R_{2}-j R_{2}}=\frac{R_{2}}{1+j}
$$

$$
\Rightarrow a=\frac{v_{\text {out }}}{v_{i m}}=\frac{R_{1}+R_{2} /(1+j)}{R_{1}}=1+\frac{R_{2}}{R_{1}(1+j)}
$$

$$
\text { or } a=1+\frac{R_{2}(1-j)}{R_{1} 2}=\left(1+\frac{R_{2}}{2 R_{1}}\right)-j\left(\frac{R_{2}}{2 R_{1}}\right)
$$

(b) When the open loop gain of an op amp is considered to be finite, the gain of the inverting amplifier below is given by $a=\frac{-a_{0} R_{2}}{R_{1}+R_{2}+a_{o} R_{1}}$ Suppose the magnitude of the gain decreases by 3 dB from its dc value at a frequency of 100 kHz when $R_{2}=1.0 \mathrm{k} \Omega$. What will be the $3-\mathrm{dB}$ frequency for $R_{2}=100 \mathrm{k} \Omega$? Assume the open loop gain decreases at 20 dB per decade.

(1) Fins find open loop gain at $f_{1}=100 \mathrm{kH} z$ with $R_{2}=1 \mathrm{k} \Omega$

For $R_{2}=1 k \Omega$, the dc gain is $a_{d c}=-R_{2} / R_{1}=-1$
Then at 100 kHz , the gain is 3 dB lower: $a=-1 / \sqrt{2}$
so from $A \quad 1 / \sqrt{2}=\frac{a_{0} R_{2}}{R_{1}+R_{2}+a_{0} R_{1}}=\frac{a_{0}}{2+a_{0}} \quad\left(\right.$ using $\left.R_{1}=R_{2}\right)$.
Solving for $a_{0},\left(2+a_{0}\right)=\sqrt{2} a_{0} \Rightarrow a_{0}(\sqrt{2}-1)=2 \Rightarrow a_{0}=\frac{2}{\sqrt{2}-1}=4.82$
(2) Neat, find the open loop gain at the $3-d B$ freq. $\left(f_{2}\right)$ with $R_{2}=100 \mathrm{k} \Omega$
$F_{n} R=100 \mathrm{k} \Omega$, the $d c$ gain is $a_{d c}=-R_{2} / R_{1}=-100 \rightarrow a=-100 / \sqrt{2}$ at f_{2}
so from ${ }^{100} / \sqrt{2}=\frac{a_{0} R_{2}}{R_{1}+R_{2}+a_{0} R_{1}}=\frac{a_{0} 100}{1+100+a_{0}} \quad$ (using $R_{2}=100 R_{1}$)
Solving for $a_{0}, a_{0}+101=\sqrt{2} a_{0} \Rightarrow a_{0}(\sqrt{2}-1)=101 \Rightarrow a_{0_{2}}=244$
(3) Find the 3-dB freq $\left(f_{2}\right)$ in step 2

Since a_{0} decreases at $20 d B /$ decade, $20 \log \left(a_{0}\right)=A-20 \log (f)$
so $20 \log \left(a_{02}\right)-20 \log \left(a_{01}\right)=20 \log f_{1}-20 \log f_{2}$

$$
\text { of } \quad \frac{a_{02}}{a_{01}}=\frac{f_{1}}{f_{2}} \Rightarrow f_{2}=f_{1}\left(\frac{a_{01}}{a_{02}}\right)=100 \mathrm{kH}_{3}\left(\frac{4.82}{244}\right) \Rightarrow f_{2}=1.97 \mathrm{kHz} \text {. }
$$

(c) Design an op-amp circuit that will take the derivative of one signal and add it to the integral of a second signal. It is not necessary to specify component values.

\qquad
8. (a) A half adder takes two inputs (A, B) and generates two outputs $(A \cdot B, A \oplus B)$. Using
$A \oplus B=\overline{\overline{A+B}+A \cdot B}$, show how to implement a half adder using 3 gates selected from AND, NAND, OR, and NOR. A full adder takes three inputs (A, B, C) and provides two outputs $(A \oplus B \oplus C, A \cdot B+A \oplus B \cdot C)$.
Show how to implement a full adder using 7 gates.

Italf adder with 3 gater using $A \oplus B=\overline{\overline{A+B}+A \cdot B}$

A full adder can be made from 2 half adder and a Nor gate:

Using the 3 gater above for each half adder giver a full adder with 7 gater

\qquad
\qquad
\qquad

[^0](b) Write the truth table for the following gate schematic. (P is called the parity.)

	$D_{0} D_{1} D_{2} D_{3}$	$D_{0} \oplus D_{1}$	$D_{2} \oplus D_{3}$	$P=\left(D_{0} \oplus D_{1}\right) \oplus\left(D_{2} \oplus D_{3}\right)$			
0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	1
2	0	0	1	0	0	1	1
3	0	0	1	1	0	0	0
4	0	1	0	0	1	0	1
5	0	1	0	1	1	1	0
6	0	1	1	0	1	1	0
7	0	1	1	1	1	0	1
8	1	0	0	0	1	0	1
9	1	0	0	1	1	1	0
10	1	0	1	0	1	1	0
11	1	0	1	1	1	0	1
12	1	1	0	0	0	0	0
13	1	1	0	1	0	1	1
14	1	1	1	0	0	1	1
15	1	1	1	1	0	0	0

9. (a) Initially $R=S=Q=0 \mathrm{~V}$ on the RS flip flop shown below. At time $t=0, S$ goes to 1 . Sketch v_{A} as a function of time.

Initially, the trainuts is off $(Q=0)$, so the aivait can be reperented as:

$$
\left\{\begin{array}{l}
\{5 \mathrm{~V} \\
10 \mathrm{k} \Omega \\
1 \mathrm{k} \Omega \\
\frac{1}{\frac{T}{T}} \operatorname{lnF}
\end{array}\right.
$$

When S (set) goer to logic 1 , then $Q \rightarrow 1$, and the trainutos turn on. Then the circint
can be redrawn ar:

Then the capacitor will discharge from +5 V to ground thought the $1 \mathrm{~K}_{\Omega}$ resists:

$$
\begin{array}{ll}
N_{A}=V_{0} e^{-t / R C} \quad \text { Here } R C=(1 k \Omega)(1 \mu F)=1 \mathrm{~ms} \text {, so } \\
V_{A}=+5 V e^{-t /(1 \mathrm{~ms})}
\end{array}
$$

(b) Identify the function of each of the following gates.
(a)

NOT
$A B \quad$ OUT
$0 \quad 1 \quad 1$
$1 \quad 1 \quad 0$
When A is low, Q_{1} tum on
$B \rightarrow$ low
$Q_{2} \rightarrow$ off
OUT \rightarrow high
When A is high, $Q_{1} \rightarrow$ off
$B \rightarrow$ high
$Q_{2} \rightarrow$ on
OUT \rightarrow low

(b)

NOR
(c)

$A N D$

A	B	OUT	$A+B$	$\overline{A+B}$	A	B	OUT	$A \cdot B$
1	1	0	1	0	0	0	0	0
1	0	0	1	0	0	1	0	0
0	1	0	1	0	1	0	0	0
0	0	1	0	1	1	1	1	1
		0		7				

See pant (a) $\begin{array}{r}A^{\prime} \text { foll om } A \\ B^{\prime} \text { follow } B\end{array}$
of both A and B are high, both thaniston are on, so OUT \rightarrow high
Them if with A の $B(a b-t h)$ ore high
the respective tamitan $(s) \rightarrow$ on Othenvire one $o r$ both
and OUT \rightarrow low are off and
If both $A+B$ are low, both
traninitu \rightarrow off, No OUT \rightarrow high
\qquad

[^0]: \qquad

