CO MOLECULAR GAS

AND EARLY-TYPE GALAXIES AND PSEUDOBULGES

COLE TREYTURIK

CONTENTS

• CO MOLECULAR GAS

- WHAT IS CO MOLECULAR GAS?
- IMPORTANCE TO ASTRONOMY
- EMISSION & DETECTION
- CONVERSION FROM CO TO H₂
- Uses and applications

• EARLY-TYPE GALAXIES

- WHAT IS AN EARLY-TYPE GALAXY?
- PROPERTIES OF EARLY-TYPE GALAXIES
- ACTUAL PROPERTIES OF EARLY-TYPE GALAXIES
- PSEUDOBULGES
 - What is a Pseudobulge?

CO MOLECULAR GAS

M. GAS CARBO CARBONIS MONOXIDE

WHAT IS CO MOLECULAR GAS?

- DISCOVERED ASTRONOMICALLY IN 1970
- Second most abundant molecular gas
 - AROUND 1 CO FOR EVERY 10⁴ H₂ LOCALLY
- FREQUENTLY FOUND IN MOLECULAR CLOUDS

IMPORTANCE TO ASTRONOMY

- WE CAN'T SEE H₂ GAS
 - SYMMETRIC MOLECULE
 - COLD H₂ BARELY EMITS
- WE CAN SEE CO GAS
 - ASYMMETRIC MOLECULE
 - Emits at ~10K
- Can be used as a tracer of H₂

EMISSION & DETECTION

- Most readily observed transition line is $J = 1 \rightarrow 0$
 - 2.6 MM LINE
 - CAN BE OBSERVED FROM THE GROUND
- Excited through collisions with H_2 and through radiative trapping
- OPTICALLY THICK GIVEN TYPICAL MOLECULAR CLOUD DENSITIES

Molecule	Transition	Frequency v	Wavelength λ	$\frac{E_{\rm upper}}{\rm (K)}$	^{<i>a</i>} Typical $n_{\rm H}$ (cm ⁻³)
СО	$J = 1 \rightarrow 0$	115.3 GHz	2.6 mm	5.5	~ 100
	$J = 2 \rightarrow 1$	230.5 GHz	1.3 mm	17	${\sim}1000$
	$J = 3 \rightarrow 2$	345.8 GHz	0.87 mm	34	$10^{3}-10^{4}$

CONVERSION FROM CO TO H₂

- Relationship between CO line strength and H_2 density for the $J=1 \rightarrow 0$ transition
- X is the conversion factor
- STANDARD X FOR THE MILKY WAY IS $X = (2.3 \rightarrow 2.8) \times 10^{20} \text{ cm}^{-2} (K \text{ km s}^{-1})^{-1}$
- X varies based on metallicity and galactic morphology

 $X = (0.6 \rightarrow 10) \times 10^{20} \text{ CM}^{-2} (K \text{ KM s}^{-1})^{-1}$

$$\left[\frac{\mathcal{N}_{\mathrm{H}_2}}{\mathrm{cm}^{-2}}\right] = X \int_v \left[\frac{\mathrm{T}_{\mathrm{B}}[\mathrm{CO}(J=1\to0)]}{\mathrm{K}}\right] \left[\frac{dv}{\mathrm{km\,s^{-1}}}\right]$$

USES AND APPLICATIONS

- CAN BE USED TO TRACE NON-EMITTING MOLECULAR HYDROGEN
- BRIGHTNESS OF EMISSION LINES ACCURATELY REFLECTS LOCAL TEMPERATURE
- HIGH RESOLUTION KINEMATIC DATA CAN BE USED TO DETECT ANOMALIES SUCH AS BLACK HOLES

EARLY-TYPE GALAXIES

PRIMO-GENUS GALAXIES

WHAT IS AN EARLY-TYPE GALAXY?

- Stems from the appearance of the Hubble tuning fork diagram
- INTERPRETATION THAT GALAXIES EVOLVED ALONG THE DIAGRAM, FROM LEFT TO RIGHT

THE NOMENCLATURE, IT IS EMPHASIZED, REFERS TO POSITION IN THE SEQUENCE, AND TEMPORAL CONNOTATIONS ARE MADE AT ONE'S PERIL. THE ENTIRE CLASSIFICATION IS PURELY EMPIRICAL AND WITHOUT PREJUDICE TO THEORIES OF EVOLUTION...

EDWIN HUBBLE

THE CLASSIFICATION OF SPIRAL NEBULAE, 1927

WHAT IS AN EARLY-TYPE GALAXY?

- GALAXIES TO THE LEFT OF THE FORK ARE KNOWN AS "EARLY-TYPE GALAXIES"
 - E0 E7, S0
- GALAXIES TO THE RIGHT OF THE FORK ARE KNOWN AS "LATE-TYPE GALAXIES"
 - SA SC, SBA SBC

PROPERTIES OF EARLY-TYPE GALAXIES

- PROPERTIES OF ELLIPTICALS!
- DO NOT EXHIBIT MUCH ACTIVE STAR FORMATION
 - TYPICALLY THOUGHT TO NOT CONTAIN VERY MUCH GAS
- Stars do not follow an orderly rotation
 - INSTEAD EXPERIENCE MORE RANDOM MOTION

ACTUAL PROPERTIES OF EARLY-TYPE GALAXIES

- STILL DO NOT EXHIBIT MUCH ACTIVE STAR FORMATION
 - DO CONTAIN GAS AND DUST: CO IS QUITE PROMINENT
- Stars can follow an orderly orbit

PSEUDOBULGES

TUMORES PSEUDO-

WHAT IS A PSEUDOBULGE?

CLASSICAL BULGES HAVE PROPERTIES SIMILAR TO THOSE OF ELLIPTICAL GALAXIES

- PRIMARILY COMPOSED OF OLDER STARS
 - Results in a reddish hue
- Stars have more random, less ordered orbits
 - RESULTS IN A TYPICALLY SPHERICAL SHAPE
- LACK GAS AND DUST
 - Typically very little star formation

WHAT IS A PSEUDOBULGE?

- Pseudobulges have properties more akin to those of spiral galaxies
 - Stars orbit in an orderly fashion, similar to the stars in the outer disk
 - Results in a disk-like shape; "disk-like bulges"
 - Contain similar amounts of gas as in the outer disk
 - SIMILAR STAR FORMATION RATE AS IN TYPICAL DISK GALAXIES

REFERENCES

- Sparke & Gallagher Galaxies in the Universe: An Introduction (2E)
- BINNEY & MERRIFIELD GALACTIC ASTRONOMY (1998)
- IRWIN ASTROPHYSICS: DECODING THE COSMOS (2007)
- CARROLL & OSTLIE AN INTRODUCTION TO MODERN ASTROPHYSICS (2E)
- RYBICKI & LIGHTMAN RADIATIVE PROCESSES IN ASTROPHYSICS (2004)
- BRADT ASTROPHYSICS PROCESSES (2008)
- <u>HTTP://SKYSERVER.SDSS.ORG/DR1/EN/PROJ/ADVANCED/GALAXIES/TUNINGFORK.ASP</u>
- <u>HTTP://WWW.ARMAGHPLANET.COM/BLOG/EXPLORERS-OF-THE-GALAXY-PART-3-THE-GALAXY-IN-MILLIMETRE-WAVES.HTML</u>
- <u>HTTP://WWW-ASTRO.PHYSICS.OX.AC.UK/ATLAS3D/</u>
- KATHERINE ALATALO, ET AL; THE ATLAS^{3D} PROJECT XVIII. CARMA CO IMAGING SURVEY OF EARLY-TYPE GALAXIES. MON NOT R ASTRON SOC 2013; 432 (3): 1796-1844. DOI: 10.1093/MNRAS/STS299

