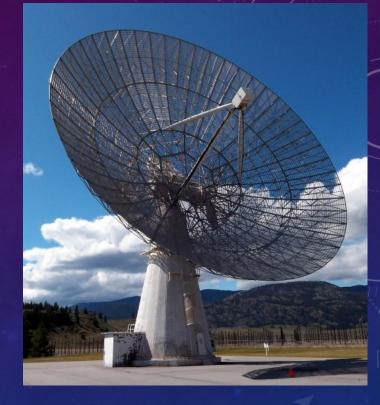


- Review: HI 21cm Line Generation
- Signal Detection
- Signal Processing
- Data
- Dynamical Mass
- References

- Review: HI 21cm Line Generation
- Signal Detection
- Signal Processing
- Data
- Dynamical Mass
- References

HI 21cm Line Generation

Cool HI gas emits at radio wavelengths

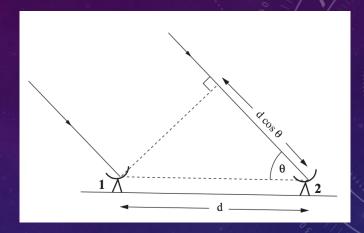

Radio waves can penetrate the dusty disk of a galaxy

Observing spectral lines allows calculation of gas velocity

- Review: HI 21cm Line Generation
- Signal Detection
- Signal Processing
- Data
- Dynamical Mass
- References

Signal Detection - The Basics

- Signals are detected using radio telescopes
- Single telescope or array of multiple antennas
- One dish results in a global HI intensity profile



John A. Galt Telescope at DRAO

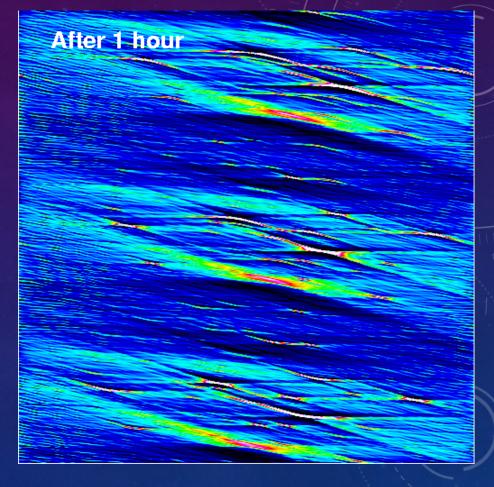
• An array (interferometer) results in much higher resolution

Signal Detection – Architecture

- More antennas = better coverage
- Resolution is directly correlated to baseline length
- Array layout determines coverage pattern
- Straight line array allows full coverage in a 12hr period

2-antenna interferometer [S&G_o pg. 207]

VLA in New Mexico

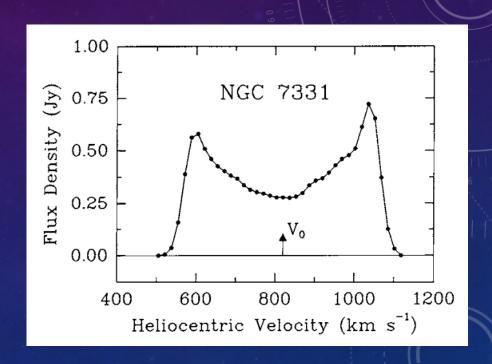

- Review: HI 21cm Line Generation
- Signal Detection
- Signal Processing
- Data
- Dynamical Mass
- References

Signal Processing

Signal from the antennas is processed in a correlator

 The interference fringes are fourier transformed onto the plane of the sky

Take the Radio Astronomy course for more


Assembling radio synthesis data

- Review: HI 21cm Line Generation
- Signal Detection
- Signal Processing
- Data
- Dynamical Mass
- References

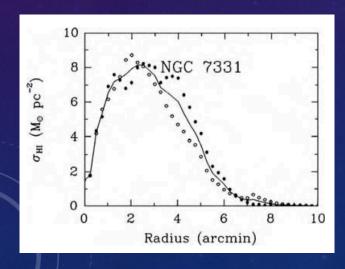
Data - Hardware Matters!

- Single dish catches all signal from the target
- This gives a global HI intensity profile (Double Horn)

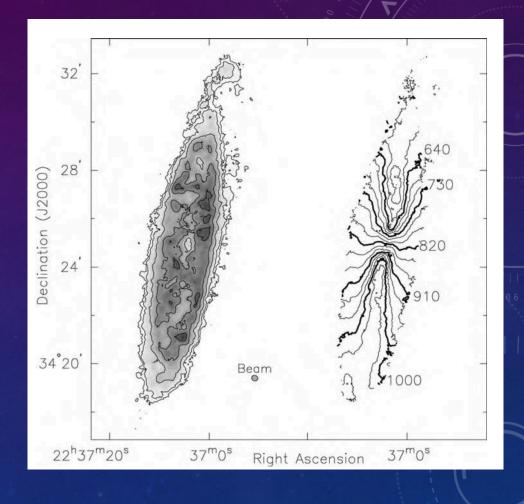
- Array (interferometer) gives a much higher resolution
- 'Full Synthesis' interferometer is best

Double Horn global HI profile for NGC 7331 [S&G pg. 220]

Data - Putting It All Together

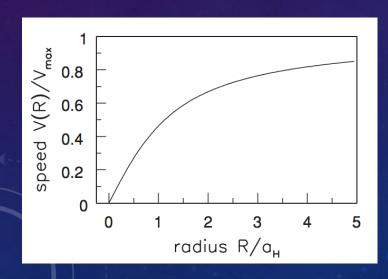

Each channel of data results in a Channel Map

- We can combine these Channel Maps to get more maps
 - Moment Maps
 - Velocity Field Maps
 - Position-Velocity diagram


(Prof's note: Examples were given on data of NGC 3198 using the KARMA visualization suite.)

Data - Moment Maps

- 'Moment Zero' Map gives N_{HI} (column density)
- Summing globally gives gas mass
- We also get density vs. radius


Density vs. radius [S&G pg. 211

NGC 7331 Moment zero map (left) and velocity field map (right) – Data from VLA [S&G pg. 210]

Data - Velocity Field Maps

- 'First Moment' Map gives gas velocity
- From this we can get the rotation
- Results in 'butterfly' pattern channel maps

Example rotation curve based on velocity profile [S&G pg. 216]

Velocity field channel maps of UGC 2885 [Van Gorkom & Ekers pg. 337]

- Review: HI 21cm Line Generation
- Signal Detection
- Signal Processing
- Data
- Dynamical Mass
- References

Dynamical Mass

Do we really need a slide for this?

$$\frac{V^2(R)}{R} = \frac{G\mathcal{M}(\langle R)}{R^2}$$

Dynamical Mass equation [S&G pg. 215]

Dynamical Mass

Do we really need a slide for this?

$$\frac{V^2(R)}{R} = \frac{G\mathcal{M}(\langle R)}{R^2}$$

Dynamical Mass equation [S&G pg. 215]

References – "I Would Like to Thank the Academy..."

- Galaxies in the Universe: An Introduction 2ed. (Sparke & Gallagher)
- Synthesis Imaging in Radio Astronomy (Van Gorkom & Ekers)
- Galactic Astronomy: Structure and Kinematics (Mihalas & Binney)
- Essential Radio Astronomy (Condon & Ransom)
- ALMA website: alma.mtk.nao.ac.jp/e/index.html
- DRAO website: www.nrc-cnrc.gc.ca/eng/solutions/facilities/drao.html
- NRAO website: public.nrao.edu
- NED Level 5: ned.ipac.caltech.edu/level5/
- Some Grumpy Cat picture from a Google search
- Dr. English

Bored Board Equations...

 $V_{HI} = 1.82 \times 10^{22} \int_{-\infty}^{\infty} dv T_{2}(v) \left[a^{toms}/m^{2}\right]$ Column Density ($V_{\Gamma}(R, i) = V_{SUS} + V(R) Sin(i) (OSI)$ Systemic Velocity equation (S&G eqn. 5.5)

(Prof's note: N_HI can be converted to hydrogen gas mass. See previous lecture.)

Column Density (From Jordan's presentation)

Craft Time!

Congratulations to Wolfgang who actually finished his! The extra decorations are in OPUS if anyone would like to bedazzle their antenna.