The Interstellar Medium

First Reader: Jordan Second Reader: Danny Boy

What is the ISM?

- Everything that is not stars and blackholes
- Molecular clouds are just dense regions of the ISM
- Globular clusters are tiny star dense regions within the ISM
 Not ISM

- Cold dense phase (T<300K)
- Warm intercloud phase (T~10⁴K)
- Hot shock phase (T~10⁶K)

Composition of ISM

- Sparse Gas
 - HI, H₂, HII, CO
- Dust particles
 - Carbon, Silicon, Oxygen

- Magnetic Fields
- Electrons, Protons
- Atomic Nuclei

Spiral Galaxies

Galactic Composition

- Mostly HI and H₂
- Easiest to determine mass of HI and ¹²CO
- H₂ to ¹²CO ratio is 10⁴:1
- Total mass in a galaxy ranges wildly
- More interesting is mass ratio of ISM gas mass to galactic mass
- This ratio depends on Hubble type

Galactic Composition

- Another interesting ratio is the ratio between HI and H₂
- However the H₂ component being derived from the ¹²CO amount
- It is assuming the H₂: ¹²CO ratio is the same for all galaxy types

CO->H₂

- H₂ being a symmetric molecule makes it difficult to observe
- We use a temperature density of CO: I_{co} which has units of (K Km s⁻¹)
- And measure in the milkyway X=N(H₂)/I_{co}=2.3E24
- X increases with metallicity
- This is a poor way to determine H₂ amount

Milky Way Composition

Component	Description	Density (cm ⁻³)	Temperature (K)	$\frac{Pressure}{(p/k_{\rm B})}$	Vertical extent	Mass (\mathcal{M}_{\odot})	Filling factor
Dust grains $large \leq 1$ um	Silicates soot		~20		150 pc	10 ⁷ -10 ⁸	Tiny
small $\sim 100 \text{ Å}$ PAH $< 100 \text{ atoms}$	Graphitic C Big molecules		30–100		80 pc		
Cold clumpy gas	Molecular: H ₂ Atomic: HI	>200 25	<100 50–100	Big 2 500	80 pc 100 pc	$(2) \times 10^9$ 3 × 10 ⁹	<0.1% 2%–3%
Warm diffuse gas	Atomic: HI Ionized: HII	0.3 0.15	8 000 8 000	2 500 2 500	250 pc 1 kpc	$2 \times 10^{9} \\ 10^{9}$	35% 20%
HII regions	Ionized: HII	$1 - 10^4$	~ 10000	Big	80 pc	5×10^7	Tiny
Hot diffuse gas	Ionized: HII	~0.002	$\sim 10^{6}$	2 500	$\sim 5 \rm kpc$	(10^8)	45%
Gas motions	$\frac{3}{2} \langle \rho_{\rm HI} \rangle \sigma_{\rm r}^2$ Relativistic	$\langle n_{\rm H} \rangle \sim 0.5$ 1 eV cm ⁻³	$10 \rm km s^{-1}$	8 000 8 000	~3 kmc	Tiny	
Magnetic field Starlight UV starlight	$B \sim 5 \ \mu G$ $\langle \nu h_P \rangle \sim 1 \ eV$ $11-13.6 \ eV$	1 eV cm^{-3} 1 eV cm^{-3} 0.01 eV cm^{-3}		8 000	~3 kpc ~500 pc	Tilly	

Elliptical Galaxies

Galactic Composition

- Mostly hot plasma (T>10⁶K)
- It is difficult to determine amounts of cool gas
- ¹²CO has only been detected in ~40% of ellipticals
- Dust particles often form a dust lane which rotates perpendicular to most of the stars

Dust Lanes

- Dust is usually thought to be ejecta from supernova
- Dust lanes can't really be reconciled with this theory because they don't usually rotate parallel to most of the stars
- We don't see them in spirals
- We expect that this gas has fallen in from outside of the galaxy

Observations

- HI from the 21 cm line
- ¹²CO from the 2.6mm and 1.3mm line
- Total gas amount can be determined from the amount of cosmic rays detected vs the amount of gamma rays that we see from the same area

HII & HI Emission

Balmer Lines

- HII regions emit lines in the Balmer series
- The Lyman series photons are too easily reabsorbed by the gas
- $H_{alpha} = 656nm$, $H_{beta} = 486nm$, $H_{gamma} = 434nm$
- There is a discrepancy between observed and predicted H_{alpha}/H_{beta} ratios
- This is due to absorption by dust

21cm Line

- The ground level on atomic hydrogen is split into two states
- Parallel vs Antiparallel spins of the electron and proton
- This spin flip transition happens spontaneously only about once in 10⁷ years
- However it can happen about 400 times a year due to collisions
- Since it is collision dominated it is entirely temperature and density dependant

Gamma Radiation

- Densest regions glow with gamma radiation
- Caused when photons collide with high energy nuclei and electrons
- Called Inverse-Compton scattering
- Also caused by emissions from collisions between two high energy charged particles

Blackboard Equations/ Diagrams

 (\mathbf{V})

m2Hz

We measure in: Janskys/beam.channel Channel [Km/s]

Einstein Coefficients (probability of absorption/emission)

 $\mathcal{L}_{1} = \mathcal{L}_{1} ds$

ed

- Binney J, Merrifield M. 1998. Galactic Astronomy p. 451-452, 463-474, 482-483, 488-500, 525-530
- Sparke L S, Gallagher J S. 2007. Galaxies in the Universe: An Introduction p. 94-104
- Jayanne's Website: <u>http://www.physics.umanitoba.ca/~english/</u> <u>astroimages.html#newhcg31</u>
- Images: <u>https://en.wikipedia.org/wiki/Carbon#/media/</u> <u>File:Glassy_carbon_and_a_1cm3_graphite_cube_HP68-79.jpg</u>, <u>https://commons.wikimedia.org/wiki/File:SiliconCroda.jpg</u>, <u>http://www.periodictable.com/Items/008.10/index.html</u>