Mathematics

Quadratic equation:

$$ax^{2} + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Trigonometry:

$$x^{2} + y^{2} = r^{2}$$

$$sin \vartheta = y/r$$

$$cos \vartheta = x/r$$

$$y$$

$$tan \vartheta = y/x$$

Calculus:

$$\frac{d}{dt}(t^n) = nt^{n-1}$$
$$\int x^n dx = \frac{x^{n+1}}{n+1}$$

Constants and Units

$$\begin{split} k &= 10^3, \, \mu = 10^{\text{-6}}, \, n = 10^{\text{-9}} \\ g &= 9.80 \, \, \text{m/s}^2 \\ 1 \, \, \text{N} &= 1 \, \, \text{kg} \, \, \text{m/s}^2 \\ 1 \, \, \text{J} &= 1 \, \, \text{kg} \, \, \text{m}^2 \! / \! \text{s}^2 \end{split}$$

Constant acceleration in one dimension

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$v = v_0 + at$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

Uniform circular motion

$$a = \frac{v^2}{r}$$
$$T = \frac{2\pi r}{v} \quad \text{period}$$

Particle Dynamics

$$\vec{F} = m\vec{a}$$

$$W = mg \quad \text{weight}$$

$$f_s \le \mu_s F_N \quad \text{static friction}$$

$$f_k = \mu_k F_N \quad \text{kinetic friction}$$

Kinetic energy and Work

$K = \frac{1}{2}mv^2$	kinetic energy
$W = \vec{F} \cdot \vec{d} = \vec{F} \cdot \Delta$	\vec{x} work by constant force
$\Delta K = K_f - K_i = V$	V
$W_g = -mg\Delta y$	work by gravitational force
$W = \int_{x_i}^{x_f} F(x) dx$	work by variable force
$F_s = -kx$	spring force (Hooke's Law)
$W_s = \frac{1}{2}kx_i^2 - \frac{1}{2}kx_f^2$	