Example

Scenario 1: A car is speeding at 120 km/hr. It passes a police cruiser parked by the side of the road. At the moment the car passes, the cruiser accelerates at a constant rate of 10 km/hr/s. When and where does the cruiser overtake the car?

Scenario 2: As above, but the cruiser accelerates until it reaches its maximum speed of 160 km/hr, after which its speed remains constant.

Example: The Dilemma Zone

Consider the design parameters of a traffic intersection on a road with speed limit v_0 , assuming the braking acceleration is a (a < 0) under ideal conditions. The design parameters include:

- the time interval *T* of the yellow light;
- the length D of the intersection.

Answer the following questions:

- a) What is the minimum braking distance from the intersection?
- b) How should T be adjusted depending on v_0 and a?
- c) What is the maximum distance beyond which a car cannot
- make it through the intersection before the light turns red?d) What are the conditions for a <u>dilemma zone</u>, where a car can neither stop nor make it through?

	$a = -20 \text{ km/h/s} = -5.6 \text{ m/s}^2$			
Assumptions:	$T = \Delta t_2 = \frac{v_0}{(-a)}$			
	$\Delta x_2 = \frac{v_0^2}{2(-a)};$	$\Delta x_1 = v_0 T$	$=\frac{v_0^2}{(-a)}=2\Delta x_2;$	$\therefore D = \Delta x_2$
v ₀ (km/h)	v ₀ (m/s)	Δt_2 (s)	$\Delta x_2(m)$	$\Delta x_1(m)$
40	11.1	2	11.1	22.2
60	16.7	3	25	50
80	22.2	4	44.4	88.9
100	27.8	5	69.4	138.9

The dilemma zone is more likely to occur at low speeds (small v_0), or under slippery driving conditions (large *a*).