
Example 

Scenario 1:  A car is speeding at 120 km/hr.  It passes a police 
cruiser parked by the side of the road. At the moment the car 
passes, the cruiser accelerates at a constant rate of 10 km/hr/s.  
When and where does the cruiser overtake the car? 

Scenario 2:  As above, but the cruiser accelerates until it reaches 
its maximum speed of 160 km/hr, after which its speed remains 
constant. 
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Elevator example in more detail 
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Elevator example in more detail 
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Elevator example in more detail 
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Elevator example in more detail 
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Example: The Dilemma Zone 
Consider the design parameters of a traffic intersection on a road 
with speed limit v0, assuming the braking acceleration is a (a < 0) 
under ideal conditions.  The design parameters include: 

•   the time interval T of the yellow light; 
•   the length D of the intersection. 

Answer the following questions: 

a)  What is the minimum braking distance from the intersection? 
b)  How should T be adjusted depending on v0 and a? 
c)  What is the maximum distance beyond which a car cannot 

make it through the intersection before the light turns red? 
d)  What are the conditions for a dilemma zone, where a car can 

neither stop nor make it through? 
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This is the last car that can make it 
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Cars with speed v < v0 don’t make 
it through in time. 
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These cars can’t make it through in 
time at speed v0. 
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If Δt2 < T then cars can stop before the intersection. 
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Cars closer than Δx2 can’t stop in time. 
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If Δt2 > T then cars can’t stop before the intersection. 
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If  (Δx1–D) > Δx2  then there is an overlapping zone 
where drivers have a choice to brake or go through. 
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Assume Δt2 = T. 
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If  (Δx1–D) < Δx2  then there is a dilemma zone where 
drivers can neither brake nor make it through in time. 
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An interesting case is if  (Δx1–D) = Δx2 (no overlap).  
Then 
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∴Δx2 = D
i.e. the minimum stopping distance equals the length 
of the intersection! 

v0 (km/h) v0 (m/s) Δt2 (s) Δx2 (m) Δx1 (m) 

40 11.1 2 11.1 22.2 

60 16.7 3 25 50 

80 22.2 4 44.4 88.9 

100 27.8 5 69.4 138.9 

Assumptions: 
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T = Δt2 =
v0

(−a)

Δx2 =
v0

2

2(−a)
; Δx1 = v0T =

v0
2

(−a)
= 2Δx2; ∴D = Δx2

The dilemma zone is more likely to occur at low speeds (small v0), 
or under slippery driving conditions (large a). 


