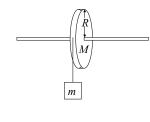
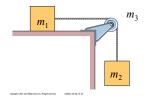


10.8: Work and Rotational Kinetic Energy


Pure Translation (Fixed Direction)		Pure Rotation (Fixed Axis)	
Position	x	Angular position	θ
Velocity	v = dx/dt	Angular velocity	$\omega = d\theta/dt$
Acceleration	a = dv/dt	Angular acceleration	$\alpha = d\omega/dt$
Mass	m	Rotational inertia	1
Newton's second law	$F_{\rm net} = ma$	Newton's second law	$\tau_{\rm net} = I \alpha$
Work	$W = \int F dx$	Work	$W = \int \tau d\theta$
Kinetic energy	$K = \frac{1}{2}mv^2$	Kinetic energy	$K = \frac{1}{2}I\omega^2$
Power (constant force)	P = Fv	Power (constant torque)	$P = \tau \omega$
Work-kinetic energy theorem	$W = \Delta K$	Work-kinetic energy theorem	$W = \Delta K$

Example 8

We will repeat example 7, but this time using conservation of energy:


- (a) Find the velocity after the block has fallen a distance h.
- (b) Deduce the acceleration from the result in part (a).

Example 9

Two blocks of mass m_1 and m_2 are connected by a string passing over a pulley in the form of a solid disc of mass m_3 . Static friction prevents the string from slipping.

Find the acceleration of the system. (This can be done either by using Newton's Law or by using conservation of energy.)

