9-7 Elastic Collisions in One Dimension

• For a target that is also moving, Here is the generic setup For a target at rest (lab frame), $v_{2i} = 0$, so we have for an elastic collision with we have the general result: $m_1 v_{1i} = m_1 v_{1f} + m_2 v_{2f}$ (linear momentum) a moving target. $\frac{1}{2}m_1v_{1i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2$ (kinetic energy) $m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$ $\frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2$ $v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i}, \quad v_{2f} = \frac{2m_1}{m_1 + m_2} v_{1i}$ Find $\frac{m_1 - m_2}{m_1 + m_2} v_{1i} + \frac{2m_2}{m_1 + m_2} v_2$ • After some algebra, we find: • Equal masses, $m_1 = m_2$: $v_{1f} = 0$, $v_{2f} = v_{1i}$ First object stops, exchange of velocities (e.g. billiard balls) $\frac{2m_1}{m_1 + m_2}v_{1i} + \frac{m_2 - m_1}{m_1 + m_2}v_{2i}$ • Massive target, $m_2 \gg m_1$: $v_{1f} = -v_{1i}$ First object bounces backwards, but speed unchanged. • Special case: (We recover the previous • Massive projectile, $m_1 \gg m_2$: $v_{1f} \approx v_{1i}$, $v_{2f} \approx 2v_{1i}$ result for $v_{2i} = 0$.) First object keeps going; target goes forward at twice its speed • Equal masses: $v_{1f} = v_{2i}$, $v_{2f} = v_{1i}$ (exchange of velocities) • For last 2 cases, massive object hardly affected, while Δv of lightest object is $2v_{1i}$ in magnitude

Example

- Consider a Newton's cradle with two balls, but now take them to be of different masses. One bob has mass 30 g and begins at a height 8.0 cm above the bottom of its circular arc. The other bob of mass 75 g is initially at rest.
- (a) What is the maximum height of bob 1 after the collision (assuming it is elastic)?
- (b) What is the maximum height of bob 2 after the collision?

Problem 9.59

- Block 1 has mass 2.0 kg and a velocity of 10 m/s. Block 2 has mass 5.0 kg and a velocity of 3.0 m/s. The surface is frictionless. A spring of spring constant k = 1120 N/m is fixed to block 2. Find the maximum compression of the spring during the collision phase.
- **Hint:** At this point both blocks move as one at a common velocity v_{j} . The collision is completely inelastic at this point. The lost kinetic energy is stored in the potential energy of the spring, which we can use to calculate the compression.

