





Example

- A ball of mass 0.10 kg is released from 2.0 m above a floor, and rebounds to a height of 1.5 m.
- (a) What is the impulse of the floor on the ball?
- (b) How much mechanical energy is lost from the system due to the collision?
- (c) From this deduce the speed of the ball immediately before and immediately after striking the floor.

Problem 9.38

- A ball of mass 300 g with a speed of v = 6.0 m/s strikes a wall at an angle $\theta = 30^\circ$, and then rebounds with the same speed and angle, as shown. The ball is in contact with the wall for 10 ms.
- (a) What is the impulse of the wall on the ball?
- (b) What is the average force on the ball?

P-5 Conservation of Linear Momentum • If there is no external force on the system, only the internal forces of each particle another, then $\vec{P} = \text{constant}$ (closed, isolated system) which means that $\vec{P}_i = \vec{P}_f$. • If no net external force acts on a system of particles, the total linear momentum \vec{P} of the system cannot change.	 Internal forces can change momenta of parts of the system, but cannot change the linear momentum of the entire system Do not confuse momentum and energy
This is called the law of conservation of linear momentum.Check the components of the net external force to know if	An initially stationary device lying on a frictionless floor explodes into two pieces, which then slide across the floor, one of them in the positive <i>x</i> direction. (a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the second piece move at an angle to the <i>x</i> axis? (c) What is the direction of the momentum of the second piece?
you can apply this. If the component of the net <i>external</i> force on a closed system is zero along an axis, then the component of the linear momentum of the system along that axis cannot change.	Answer : (a) zero (b) no (c) the negative x direction